1
|
Ni Z, Tan J, Luo Y, Ye S. Dynamic protein hydration water mediates the aggregation kinetics of amyloid β peptides at interfaces. J Colloid Interface Sci 2025; 679:539-546. [PMID: 39467365 DOI: 10.1016/j.jcis.2024.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Protein hydration water is essential for protein misfolding and amyloid formation, but how it directs the course of amyloid formation has yet to be elucidated. Here, we experimentally demonstrated that femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) and the femtosecond IR pump-SFG probe technique can serve as powerful tools for addressing this issue. Using amyloid β(1-42) peptide as a model, we determined the transient misfolding intermediates by probing the amide band spectral features and the local hydration water changes by measuring the ultrafast vibrational dynamics of the amide I band. For the first time, we established a correlation between the dynamic change in protein hydration water and aggregation propensity. The aggregation propensity depends on the dynamic change in the hydration water, rather than the static hydration water content of the initial protein state. Water expulsion enhances the aggregation propensity and promotes amyloid formation, while protein hydration attenuates the aggregation propensity and inhibits amyloid formation. The suppression of water expulsion and protein hydration can prevent protein aggregation and stabilize proteins. These findings contribute to a better understanding of the underlying effect of hydration water on amyloid formation and protein structural stability and provide a strategy for maintaining long-term stabilization of biomolecules.
Collapse
Affiliation(s)
- Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| |
Collapse
|
2
|
Pei R, Tan J, Luo Y, Ye S. Close Packing in Trans Conformers Promotes the Formation of Supramolecular Structures with C 1 Symmetry. J Phys Chem Lett 2024; 15:8797-8803. [PMID: 39166774 DOI: 10.1021/acs.jpclett.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Assemblies with C1 symmetry exhibit important applications in many fields such as enantioselective catalysis. However, their formation is challenging due to their large entropic disadvantage, and molecular information on their formation dynamics is limited because of the lack of effective characterization techniques. Here, using achiral amphiphilic molecules such as N-oleoyl ethanolamide (OEA) and its analogues as modeling assembly units, we demonstrated that the sss polarization signals, generated by femtosecond sum frequency generation vibrational spectroscopy (SFG-VS), provide a powerful tool to monitor the formation dynamics of the C1 symmetric supramolecular structures at the interfaces. The trans conformation of the assembly units can provide strong π-π interactions and thus produce enough enthalpy to drive the formation of C1 symmetric supramolecular structures. However, the cis conformation impedes the assembly of C1 symmetric structures and cannot generate sss and chiral polarization SFG signals. These findings may aid in rationally constructing ordered and functional superstructures and understanding the mechanism of chirality formation.
Collapse
Affiliation(s)
- Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
3
|
Pei R, Zhang J, Tan J, Luo Y, Ye S. Fermi Resonance of the N-D Stretching Mode Probing the Local Hydrogen-Bonding Environment in Proteins. J Phys Chem B 2024; 128:5658-5666. [PMID: 38836292 DOI: 10.1021/acs.jpcb.4c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Local H-bonding interactions are crucial for proteins to undergo various structural transitions and form different secondary structures. However, identifying slight distinctions in the local H-bonding of proteins is rather challenging. Here, we demonstrate that the Fermi resonance of the N-D stretching mode can provide an effective probe for the localized H-bonding environment of proteins both at the surface/interface and in the bulk. Using sum frequency generation vibrational spectroscopy and infrared spectroscopy, we established a correlation between the Fermi resonance of the N-D mode and protein secondary structures. The H-bond of N-D···C═O splits the N-D modes into two peaks (∼2410 and ∼2470 cm-1). The relative strength ratio (R) between the ∼2410 cm-1 peak and the ∼2470 cm-1 peak is very sensitive to H-bond strength and protein secondary structure. R is less than 1 for α-helical peptides, while R is greater than 1 for β-sheet peptides. For R < 2.5, both α-helical/loop structures and β-sheet structures exhibit almost identical Fermi coupling strengths (W = 28 cm-1). For R > 2.5, W decreases from 28 to 14 cm-1 and depends on the aggregation degree of the β-sheet oligomers or fibrils. The initial local H-bonding status impacts the misfolding dynamics of proteins at the lipid bilayer interface.
Collapse
Affiliation(s)
- Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jiahui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
4
|
Zheng X, Ni Z, Pei Q, Wang M, Tan J, Bai S, Shi F, Ye S. Probing the Molecular Structure and Dynamics of Membrane-Bound Proteins during Misfolding Processes by Sum-Frequency Generation Vibrational Spectroscopy. Chempluschem 2024; 89:e202300684. [PMID: 38380553 DOI: 10.1002/cplu.202300684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Protein misfolding and amyloid formation are implicated in the protein dysfunction, but the underlying mechanism remains to be clarified due to the lack of effective tools for detecting the transient intermediates. Sum frequency generation vibrational spectroscopy (SFG-VS) has emerged as a powerful tool for identifying the structure and dynamics of proteins at the interfaces. In this review, we summarize recent SFG-VS studies on the structure and dynamics of membrane-bound proteins during misfolding processes. This paper first introduces the methods for determining the secondary structure of interfacial proteins: combining chiral and achiral spectra of amide A and amide I bands and combining amide I, amide II, and amide III spectral features. To demonstrate the ability of SFG-VS in investigating the interfacial protein misfolding and amyloid formation, studies on the interactions between different peptides/proteins (islet amyloid polypeptide, amyloid β, prion protein, fused in sarcoma protein, hen egg-white lysozyme, fusing fusion peptide, class I hydrophobin SC3 and class II hydrophobin HFBI) and surfaces such as lipid membranes are discussed. These molecular-level studies revealed that SFG-VS can provide a unique understanding of the mechanism of interfacial protein misfolding and amyloid formation in real time, in situ and without any exogenous labeling.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shiyu Bai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Fangwen Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Chaari A, Saikia N, Paul P, Yousef M, Ding F, Ladjimi M. Experimental and computational investigation of the effect of Hsc70 structural variants on inhibiting amylin aggregation. Biophys Chem 2024; 309:107235. [PMID: 38608617 DOI: 10.1016/j.bpc.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (hIAPP), also known as amylin, have been implicated in the pathogenesis of type 2 diabetes (T2D). Heat shock proteins, specifically, heat shock cognate 70 (Hsc70), are molecular chaperones that protect against hIAPP misfolding and inhibits its aggregation. Nevertheless, there is an incomplete understanding of the mechanistic interactions between Hsc70 domains and hIAPP, thus limiting their potential therapeutic role in diabetes. This study investigates the inhibitory capacities of different Hsc70 variants, aiming to identify the structural determinants that strike a balance between efficacy and cytotoxicity. Our experimental findings demonstrate that the ATPase activity of Hsc70 is not a pivotal factor for inhibiting hIAPP misfolding. We underscore the significance of the C-terminal substrate-binding domain of Hsc70 in inhibiting hIAPP aggregation, emphasizing that the removal of the lid subdomain diminishes the inhibitory effect of Hsc70. Additionally, we employed atomistic discrete molecular dynamics simulations to gain deeper insights into the interaction between Hsc70 variants and hIAPP. Integrating both experimental and computational findings, we propose a mechanism by which Hsc70's interaction with hIAPP monomers disrupts protein-protein connections, primarily by shielding the β-sheet edges of the Hsc70-β-sandwich. The distinctive conformational dynamics of the alpha helices of Hsc70 potentially enhance hIAPP binding by obstructing the exposed edges of the β-sandwich, particularly at the β5-β8 region along the alpha helix interface. This, in turn, inhibits fibril growth, and similar results were observed following hIAPP dimerization. Overall, this study elucidates the structural intricacies of Hsc70 crucial for impeding hIAPP aggregation, improving our understanding of the potential anti-aggregative properties of molecular chaperones in diabetes treatment.
Collapse
Affiliation(s)
- Ali Chaari
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar.
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Mohammad Yousef
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Moncef Ladjimi
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
| |
Collapse
|
6
|
Faidon Brotzakis Z, Löhr T, Truong S, Hoff S, Bonomi M, Vendruscolo M. Determination of the Structure and Dynamics of the Fuzzy Coat of an Amyloid Fibril of IAPP Using Cryo-Electron Microscopy. Biochemistry 2023; 62:2407-2416. [PMID: 37477459 PMCID: PMC10433526 DOI: 10.1021/acs.biochem.3c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/03/2023] [Indexed: 07/22/2023]
Abstract
In recent years, major advances in cryo-electron microscopy (cryo-EM) have enabled the routine determination of complex biomolecular structures at atomistic resolution. An open challenge for this approach, however, concerns large systems that exhibit continuous dynamics. To address this problem, we developed the metadynamic electron microscopy metainference (MEMMI) method, which incorporates metadynamics, an enhanced conformational sampling approach, into the metainference method of integrative structural biology. MEMMI enables the simultaneous determination of the structure and dynamics of large heterogeneous systems by combining cryo-EM density maps with prior information through molecular dynamics, while at the same time modeling the different sources of error. To illustrate the method, we apply it to elucidate the dynamics of an amyloid fibril of the islet amyloid polypeptide (IAPP). The resulting conformational ensemble provides an accurate description of the structural variability of the disordered region of the amyloid fibril, known as fuzzy coat. The conformational ensemble also reveals that in nearly half of the structural core of this amyloid fibril, the side chains exhibit liquid-like dynamics despite the presence of the highly ordered network backbone of hydrogen bonds characteristic of the cross-β structure of amyloid fibrils.
Collapse
Affiliation(s)
- Z. Faidon Brotzakis
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Thomas Löhr
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Steven Truong
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Samuel Hoff
- Department
of Structural Biology and Chemistry, Institut
Pasteur, Université Paris Cité CNRS UMR 3528, 75015 Paris, France
| | - Massimiliano Bonomi
- Department
of Structural Biology and Chemistry, Institut
Pasteur, Université Paris Cité CNRS UMR 3528, 75015 Paris, France
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
7
|
Li NZ, Yu CH, Wu JY, Huang SJ, Huang SL, Cheng RP. Diagonal Interactions between Glutamate and Arginine Analogs with Varying Side-Chain Lengths in a β-Hairpin. Molecules 2023; 28:molecules28072888. [PMID: 37049652 PMCID: PMC10096425 DOI: 10.3390/molecules28072888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Cross-strand interactions are important for the stability of β-sheet structures. Accordingly, cross-strand diagonal interactions between glutamate and arginine analogs with varying side-chain lengths were studied in a series of β-hairpin peptides. The peptides were analyzed by homonuclear two-dimensional nuclear magnetic resonance methods. The fraction folded population and folding free energy of the peptides were derived from the chemical shift data. The fraction folded population trends could be rationalized using the strand propensity of the constituting residues, which was not the case for the peptides with lysine analogs, highlighting the difference between the arginine analogs and lysine analogs. Double-mutant cycle analysis was used to derive the diagonal ion-pairing interaction energetics. The most stabilizing diagonal cross-strand interaction was between the shortest residues (i.e., Asp2-Agp9), most likely due to the least side-chain conformational penalty for ion-pair formation. The diagonal interaction energetics in this study involving the arginine analogs appears to be consistent with and extend beyond our understanding of diagonal ion-pairing interactions involving lysine analogs. The results should be useful for designing β-strand-containing molecules to affect biological processes such as amyloid formation and protein-protein interactions.
Collapse
Affiliation(s)
- Nian-Zhi Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Hsu Yu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jhuan-Yu Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shou-Ling Huang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Richard P Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Guo W, Lu T, Crisci R, Nagao S, Wei T, Chen Z. Determination of protein conformation and orientation at buried solid/liquid interfaces. Chem Sci 2023; 14:2999-3009. [PMID: 36937592 PMCID: PMC10016606 DOI: 10.1039/d2sc06958j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Protein structures at solid/liquid interfaces mediate interfacial protein functions, which are important for many applications. It is difficult to probe interfacial protein structures at buried solid/liquid interfaces in situ at the molecular level. Here, a systematic methodology to determine protein molecular structures (orientation and conformation) at buried solid/liquid interfaces in situ was successfully developed with a combined approach using a nonlinear optical spectroscopic technique - sum frequency generation (SFG) vibrational spectroscopy, isotope labeling, spectra calculation, and computer simulation. With this approach, molecular structures of protein GB1 and its mutant (with two amino acids mutated) were investigated at the polymer/solution interface. Markedly different orientations and similar (but not identical) conformations of the wild-type protein GB1 and its mutant at the interface were detected, due to the varied molecular interfacial interactions. This systematic strategy is general and can be widely used to elucidate protein structures at buried interfaces in situ.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Tieyi Lu
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Ralph Crisci
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Satoshi Nagao
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Ako-gun Kamigouri-cho Hyogo 678-1297 Japan
| | - Tao Wei
- Department of Chemical Engineering, Howard University 2366 Sixth Street NW Washington 20059 DC USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| |
Collapse
|
9
|
Zhu M, Zeng L, Li Z, Wang C, Wu L, Jiang X. Revealing the Nanoarchitectonics of Amyloid β-Aggregation on Two-Dimensional Biomimetic Membranes by Surface-Enhanced Infrared Absorption Spectroscopy. ChemistryOpen 2023; 12:e202200253. [PMID: 36744594 PMCID: PMC9906390 DOI: 10.1002/open.202200253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
The in vivo folding of amyloid β (Aβ) is influenced by many factors among which biomembrane interfaces play an important role. Here, using surface-enhanced infrared absorption (SEIRA) spectroscopy and atomic force microscopy (AFM), the adsorption, structure, and morphology of Aβ42 aggregating on different two-dimensional interfaces were investigated. Results show that interfaces facilitate the aggregation of Aβ42 and are conducive to the formation of homogeneous aggregates, while the aggregates vary on different interfaces. On hydrophobic interfaces, strong hydrophobic interactions with the C-terminus of Aβ42 result in the formation of small oligomers with a small proportion of the β-sheet structure. On hydrophilic interfaces, hydrogen-bonding interactions and electrostatic interactions promote the formation of large aggregate particles with β-sheet structure. The hydration repulsion plays an important role in the interaction of Aβ42 with interfaces. These findings help to understand the nature of Aβ42 adsorption and aggregation on the biomembrane interface and the origin of heterogeneity and polymorphism of Aβ42 aggregates.
Collapse
Affiliation(s)
- Manyu Zhu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco-Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
| | - Zihao Li
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Chen Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science & Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
10
|
Li B, Ma Y, Han X, Hu P, Lu X. Enhanced Sum Frequency Generation for Monolayers on Au Relative to Silica: Local Field Factors and SPR Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:659-667. [PMID: 36580605 DOI: 10.1021/acs.langmuir.2c03016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using metals as signal magnified substrates, surface plasmon-enhanced sum frequency generation (SFG) vibrational spectroscopy is a promising technique to probe weak molecular-level signals at surfaces and interfaces. In this study, the vibrational signals of the n-alkane monolayer on the gold (Au) and silica substrates are investigated using the broadband femtosecond SFG. The enhancement factors are discovered to be up to ∼1076 and ∼31 for the methyl symmetric and asymmetric stretching (ss and as) modes of the monolayer, respectively. By systematically analyzing the second-order nonlinear susceptibility tensor components (χijks), the Fresnel coefficients (Fijks), and the surface plasmon resonance (SPR) effect, we find that the interplay between Fijk and χijk terms and the SPR effect dominate the SFG signal enhancement. Our study reveals that the relative contributions of different influencing factors (i.e., Fresnel coefficients and SPR) to the SFG signal enhancement provide an approach to interpreting enhanced SFG vibrational signals detected from probe molecules on distinct substrates and may finally guide the design of the experimental methodology to improve the detection sensitivity and signal-to-noise ratio.
Collapse
Affiliation(s)
- Bolin Li
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory (HMFL), Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui230031, P. R. China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yonghao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Pengcheng Hu
- School of Medical Imaging, Xuzhou Medical College, Xuzhou, Jiangsu221004, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
11
|
Sarkar D, Maity NC, Shome G, Varnava KG, Sarojini V, Vivekanandan S, Sahoo N, Kumar S, Mandal AK, Biswas R, Bhunia A. Mechanistic insight into functionally different human islet polypeptide (hIAPP) amyloid: the intrinsic role of the C-terminal structural motifs. Phys Chem Chem Phys 2022; 24:22250-22262. [PMID: 36098073 DOI: 10.1039/d2cp01650h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeting amyloidosis requires high-resolution insight into the underlying mechanisms of amyloid aggregation. The sequence-specific intrinsic properties of a peptide or protein largely govern the amyloidogenic propensity. Thus, it is essential to delineate the structural motifs that define the subsequent downstream amyloidogenic cascade of events. Additionally, it is important to understand the role played by extrinsic factors, such as temperature or sample agitation, in modulating the overall energy barrier that prompts divergent nucleation events. Consequently, these changes can affect the fibrillation kinetics, resulting in structurally and functionally distinct amyloidogenic conformers associated with disease pathogenesis. Here, we have focused on human Islet Polypeptide (hIAPP) amyloidogenesis for the full-length peptide along with its N- and C-terminal fragments, under different temperatures and sample agitation conditions. This helped us to gain a comprehensive understanding of the intrinsic role of specific functional epitopes in the primary structure of the peptide that regulates amyloidogenesis and subsequent cytotoxicity. Intriguingly, our study involving an array of biophysical experiments and ex vivo data suggests a direct influence of external changes on the C-terminal fibrillating sequence. Furthermore, the observations indicate a possible collaborative role of this segment in nucleating hIAPP amyloidogenesis in a physiological scenario, thus making it a potential target for future therapeutic interventions.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| | - Narayan Chandra Maity
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Kolkata 700 091, India
| | - Kyriakos Gabriel Varnava
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas, 78539, USA
| | - Sourav Kumar
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Kolkata 700 091, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Salt Lake, Kolkata 700106, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, EN 80, Sector V, Kolkata 700 091, India.
| |
Collapse
|
12
|
Andre JS, Grant J, Greyson E, Chen X, Tucker C, Drumright R, Mohler C, Chen Z. Molecular Interactions between Amino Silane Adhesion Promoter and Acrylic Polymer Adhesive at Buried Silica Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6180-6190. [PMID: 35512318 DOI: 10.1021/acs.langmuir.2c00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, the influence of an amino silane (3-(2-aminoethylamino)-propyldimethoxymethylsilane, AEAPS) on the interfacial structure and adhesion of butyl acrylate/methyl methacrylate copolymers (BAMMAs) to silica was investigated by sum frequency generation vibrational spectroscopy (SFG). Small amounts of methacrylic acid, MAA, were included in the BAMMA polymerizations to assess the impact of carboxylic acid functionality on the glass interface. SFG was used to probe the O-H and C═O groups of incorporated MAA, ester C═O groups of BAMMA, and CH groups from all species at the silica interfaces. The addition of AEAPS resulted in a significant change in the molecular structure of the polymer at the buried interface with silica due to specific interactions between the BAMMA polymers and silane. SFG results were consistent with the formation of ionic bonds between the primary and secondary amines of the AEAPS tail group and the MAA component of the polymer, as evidenced by the loss of the MAA O-H and C═O signals at the interface. It is extensively reported in the literature that methoxy head groups of an amino silane chemically bind to the silanols of glass, leaving the amine groups available to react with various chemical functionalities. Our results are consistent with this scenario and support an adhesion promotion mechanism of amino silane with various aspects: (1) the ionic bond formation between the tail amine group and acid functionality on BAMMA, (2) the chemical coupling between the silane head group and glass, (3) migration of more ester C═O groups to the interface with order, and (4) disordering or reduced levels of CH groups at the interface. These results are important for better understanding of the mechanisms and effect of amino silanes on the adhesion between acrylate polymers and glass substrates in a variety of applications.
Collapse
Affiliation(s)
- John S Andre
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph Grant
- Dow Coating Materials, Collegeville, Pennsylvania 19426, United States
| | - Eric Greyson
- Dow Coating Materials, Collegeville, Pennsylvania 19426, United States
| | - Xiaoyun Chen
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Christopher Tucker
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Ray Drumright
- Dow Coating Materials, Midland, Michigan 48674, United States
| | - Carol Mohler
- The Dow Chemical Company, Core R&D, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Bregnhøj M, Roeters SJ, Chatterley AS, Madzharova F, Mertig R, Pedersen JS, Weidner T. Structure and Orientation of the SARS-Coronavirus-2 Spike Protein at Air-Water Interfaces. J Phys Chem B 2022; 126:3425-3430. [PMID: 35477296 PMCID: PMC9063992 DOI: 10.1021/acs.jpcb.2c01272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Indexed: 11/28/2022]
Abstract
The SARS coronavirus 2 (SARS-CoV-2) spike protein is located at the outermost perimeter of the viral envelope and is the first component of the virus to make contact with surrounding interfaces. The stability of the spike protein when in contact with surfaces plays a deciding role for infection pathways and for the viability of the virus after surface contact. While cryo-EM structures of the spike protein have been solved with high resolution and structural studies in solution have provided information about the secondary and tertiary structures, only little is known about the folding when adsorbed to surfaces. We here report on the secondary structure and orientation of the S1 segment of the spike protein, which is often used as a model protein for in vitro studies of SARS-CoV-2, at the air-water interface using surface-sensitive vibrational sum-frequency generation (SFG) spectroscopy. The air-water interface plays an important role for SARS-CoV-2 when suspended in aerosol droplets, and it serves as a model system for hydrophobic surfaces in general. The SFG experiments show that the S1 segment of the spike protein remains folded at the air-water interface and predominantly binds in its monomeric state, while the combination of small-angle X-ray scattering and two-dimensional infrared spectroscopy measurements indicate that it forms hexamers with the same secondary structure in aqueous solution.
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Steven J. Roeters
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Adam S. Chatterley
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Fani Madzharova
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Rolf Mertig
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Jan Skov Pedersen
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| |
Collapse
|
14
|
Beasley M, Frazee N, Groover S, Valentine SJ, Mertz B, Legleiter J. Physicochemical Properties Altered by the Tail Group of Lipid Membranes Influence Huntingtin Aggregation and Lipid Binding. J Phys Chem B 2022; 126:3067-3081. [PMID: 35439000 DOI: 10.1021/acs.jpcb.1c10254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Huntington's disease is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) domain within the huntingtin protein (htt) that initiates toxic protein aggregation. Htt directly interacts with membranes, influencing aggregation and spurring membrane abnormalities. These interactions are facilitated by the 17 N-terminal residues (Nt17) that form an amphipathic α-helix implicated in both lipid binding and aggregation. Here, the impact of unsaturation in phospholipid tails on htt-lipid interaction and htt aggregation was determined. There was no correlation between the degree of htt-lipid complexation and the degree of htt aggregation in the presence of each lipid system, indicating that lipid systems with different properties uniquely alter the membrane-mediated aggregation mechanisms. Also, the association between Nt17 and membrane surfaces is determined by complementarity between hydrophobic residues and membrane defects and how easily the peptide can partition into the bilayer. Our results provide critical insights into how membrane physical properties influence downstream htt aggregation.
Collapse
Affiliation(s)
- Maryssa Beasley
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Nicolas Frazee
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Stephen J Valentine
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States.,Blanchette Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States.,Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
| |
Collapse
|
15
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
16
|
Zhang Q, Wang B, Zhang Y, Yang J, Deng B, Ding B, Zhong D. Probing Intermolecular Interactions of Amyloidogenic Fragments of SOD1 by Site-Specific Tryptophan and Its Noncanonical Derivative. J Phys Chem B 2021; 125:13088-13098. [PMID: 34812635 DOI: 10.1021/acs.jpcb.1c07175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transient amyloid intermediates are likely to be cytotoxic and play an essential role in amyloid-associated neurodegenerative diseases. Characterization of their structural and dynamic evolution is the key to elucidating the molecular mechanism of amyloid formation. Here, combining circular dichroism (CD), exciton couplet theory, and Fourier transform infrared spectroscopy with site-specific tryptophan (Trp) and its noncanonical derivative 5-cyano-tryptochan (Trp5CN), we developed a method to monitor strand-to-strand tertiary and sheet-to-sheet quaternary interactions in the aggregation cascades of an amyloidogenic fragment from protein SOD128-38 (with the sequence KVKVWGSIKGL). We found that the exciton couplet generated from the Bb band of Trp can be used as a probe for side chain interactions. Its sensitivity can be further improved by four times with the incorporation of Trp5CN. We further observed a red-shift of ∼2 cm-1 and a broadening of ∼2 cm-1 in the IR band generated from the CN stretch during the aggregation, which we attributed to the transition from a corkscrew-like structure to a cross-linked intermediate phase. We show here that the integration of optical methods with unique aromatic side chain-related probes is able to elucidate amyloid intermolecular interactions and even capture elusive transient intermediates on and off the amyloid assembling pathway.
Collapse
Affiliation(s)
- Qin Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Yang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bodan Deng
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Andrade S, Loureiro JA, Pereira MDC. Influence of in vitro neuronal membranes on the anti-amyloidogenic activity of gallic acid: Implication for the therapy of Alzheimer's disease. Arch Biochem Biophys 2021; 711:109022. [PMID: 34461085 DOI: 10.1016/j.abb.2021.109022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/31/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Molecules inhibiting the amyloid beta (Aβ) peptide aggregation and/or disaggregating mature fibrils are a promising approach for the Alzheimer's disease (AD) therapy, as the Aβ fibrillation is one of the key triggers of the disease. Gallic acid (GA) is a phenolic acid with anti-amyloidogenic activity against Aβ in buffered solutions. However, there is still no evidence of these properties in vivo. Given the rate of failures of AD drug development, there is a huge demand of replicating the in vivo environment in in vitro studies, thus allowing to stop earlier the study of molecules with no effect in vivo. Thus, this study aims to evaluate the effect of in vitro neuronal membranes on the GA's ability in preventing Aβ1-42 aggregation and disrupting preformed fibrils. To this end, liposomes were employed to mimic the cell membrane environment. The results reveal that the lipid membranes did not affect the GA's ability in inhibiting Aβ1-42 fibrillation. However, in vitro neuronal membranes modulate the GA-induced Aβ fibrils disaggregation, which may be related with the moderate affinity of the compound for the lipid membrane. Even so, GA presented strong anti-amyloidogenic properties in the cell membrane-like environment. This work highlights the promising value of GA on preventing and treating AD, thus justifying its study in animal models.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
18
|
Guo W, Lu T, Gandhi Z, Chen Z. Probing Orientations and Conformations of Peptides and Proteins at Buried Interfaces. J Phys Chem Lett 2021; 12:10144-10155. [PMID: 34637311 DOI: 10.1021/acs.jpclett.1c02956] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular structures of peptides/proteins at interfaces determine their interfacial properties, which play important roles in many applications. It is difficult to probe interfacial peptide/protein structures because of the lack of appropriate tools. Sum frequency generation (SFG) vibrational spectroscopy has been developed into a powerful technique to elucidate molecular structures of peptides/proteins at buried solid/liquid and liquid/liquid interfaces. SFG has been successfully applied to study molecular interactions between model cell membranes and antimicrobial peptides/membrane proteins, surface-immobilized peptides/enzymes, and physically adsorbed peptides/proteins on polymers and 2D materials. A variety of other analytical techniques and computational simulations provide supporting information to SFG studies, leading to more complete understanding of structure-function relationships of interfacial peptides/proteins. With the advance of SFG techniques and data analysis methods, along with newly developed supplemental tools and simulation methodology, SFG research on interfacial peptides/proteins will further impact research in fields like chemistry, biology, biophysics, engineering, and beyond.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zahra Gandhi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Strazdaite S, Roeters SJ, Sakalauskas A, Sneideris T, Kirschner J, Pedersen KB, Schiøtt B, Jensen F, Weidner T, Smirnovas V, Niaura G. Interaction of Amyloid-β-(1-42) Peptide and Its Aggregates with Lipid/Water Interfaces Probed by Vibrational Sum-Frequency Generation Spectroscopy. J Phys Chem B 2021; 125:11208-11218. [PMID: 34597059 DOI: 10.1021/acs.jpcb.1c04882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we use surface-sensitive vibrational sum-frequency generation (VSFG) spectroscopy to investigate the interaction between model lipid monolayers and Aβ(1-42) in its monomeric and aggregated states. Combining VSFG with atomic force microscopy (AFM) and thioflavin T (ThT) fluorescence measurements, we found that only small aggregates with probably a β-hairpin-like structure adsorbed to the zwitterionic lipid monolayer (DOPC). In contrast, larger aggregates with an extended β-sheet structure adsorbed to a negatively charged lipid monolayer (DOPG). The adsorption of small, initially formed aggregates strongly destabilized both monolayers, but only the DOPC monolayer was completely disrupted. We showed that the intensity of the amide-II' band in achiral (SSP) and chiral (SPP) polarization combinations increased in time when Aβ(1-42) aggregates accumulated at the DOPG monolayer. Nevertheless, almost no adsorption of preformed mature fibrils to DOPG monolayers was detected. By performing spectral VSFG calculations, we revealed a clear correlation between the amide-II' signal and the degree of amyloid aggregates (e.g., oligomers or (proto)fibrils) of various Aβ(1-42) structures. The calculations showed that only structures with a significant amyloid β-sheet content have a strong amide-II' intensity, in line with previous Raman studies. The combination of the presented results substantiates the amide-II(') band as a legitimate amyloid marker.
Collapse
Affiliation(s)
- S Strazdaite
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - S J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - A Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - T Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - J Kirschner
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - K B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - B Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - F Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - T Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - V Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - G Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
20
|
Noriega R. Measuring the Multiscale Dynamics, Structure, and Function of Biomolecules at Interfaces. J Phys Chem B 2021; 125:5667-5675. [PMID: 34042455 DOI: 10.1021/acs.jpcb.1c01546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The individual and collective structure and properties of biomolecules can change dramatically when they are localized at an interface. However, the small spatial extent of interfacial regions poses challenges to the detailed characterization of multiscale processes that dictate the structure and function of large biological units such as peptides, proteins, or nucleic acids. This Perspective surveys a broad set of tools that provide new opportunities to probe complex, dynamic interfaces across the vast range of temporal regimes that connect molecular-scale events to macroscopic observables. An emphasis is placed on the integration over multiple time scales, the use of complementary techniques, and the incorporation of external stimuli to control interfacial properties with spatial, temporal, and chemical specificity.
Collapse
Affiliation(s)
- Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
21
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 462] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
22
|
Lipid headgroups alter huntingtin aggregation on membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183497. [PMID: 33130095 DOI: 10.1016/j.bbamem.2020.183497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Huntington's Disease is a fatal neurodegenerative disorder caused by expansion of a glutamine repeat region (polyQ) beyond a critical threshold within exon1 of the huntingtin protein (htt). As a consequence of polyQ expansion, htt associates into a variety of aggregate species that are thought to underlie cellular toxicity. Within cells, htt associates with numerous membranous organelles and surfaces that exert influence on the aggregation process. In particular, the first 17 amino acids at the N-terminus of htt (Nt17) serve as a lipid-binding domain that is intrinsically disordered in bulk solution but adopts an amphipathic α-helical structure upon binding membranes. Beyond this, Nt17 is implicated in initiating htt fibrillization. As the interaction between Nt17 and lipid membranes is likely influenced by lipid properties, the impact of lipid headgroups on htt-exon1 aggregation, membrane activity, and the ability to form protein:lipid complexes was determined. Htt-exon1 with a disease-length polyQ domain (46Q) was exposed to lipid vesicles comprised of lipids with either zwitterionic (POPC and POPE) or anionic (POPG and POPS) headgroups. With zwitterionic head groups, large lipid to peptide ratios were required to have a statistically significant impact on htt aggregation. Anionic lipids enhanced htt fibrillization, even at low lipid:protein ratios, and this was accompanied by changes in aggregate morphology. Despite the larger impact of anionic lipids, htt-exon1(46Q) was more membrane active with zwitterionic lipid systems. The ability of Nt17 to form complexes with lipids was also mediated by lipid headgroups as zwitterionic ionic lipids more readily associated with multimeric forms of Nt17 in comparison with anionic lipids. Collectively, these results highlight the complexity of htt/membrane interactions and the resulting impact on the aggregation process.
Collapse
|
23
|
Zhang L, Tan J, Pei Q, Ye S. Film thickness and surface plasmon tune the contribution of SFG signals from buried interface and air surface. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2006113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Liang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Quanbing Pei
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Watanabe-Nakayama T, Sahoo BR, Ramamoorthy A, Ono K. High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-β and Amylin Aggregation Pathways. Int J Mol Sci 2020; 21:E4287. [PMID: 32560229 PMCID: PMC7352471 DOI: 10.3390/ijms21124287] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
Individual Alzheimer's disease (AD) patients have been shown to have structurally distinct amyloid-β (Aβ) aggregates, including fibrils, in their brain. These findings suggest the possibility of a relationship between AD progression and Aβ fibril structures. Thus, the characterization of the structural dynamics of Aβ could aid the development of novel therapeutic strategies and diagnosis. Protein structure and dynamics have typically been studied separately. Most of the commonly used biophysical approaches are limited in providing substantial details regarding the combination of both structure and dynamics. On the other hand, high-speed atomic force microscopy (HS-AFM), which simultaneously visualizes an individual protein structure and its dynamics in liquid in real time, can uniquely link the structure and the kinetic details, and it can also unveil novel insights. Although amyloidogenic proteins generate heterogeneously aggregated species, including transient unstable states during the aggregation process, HS-AFM elucidated the structural dynamics of individual aggregates in real time in liquid without purification and isolation. Here, we review and discuss the HS-AFM imaging of amyloid aggregation and strategies to optimize the experiments showing findings from Aβ and amylin, which is associated with type II diabetes, shares some common biological features with Aβ, and is reported to be involved in AD.
Collapse
Affiliation(s)
| | - Bikash R. Sahoo
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, and Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Kenjiro Ono
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Hatanodai, Shinagawa district, Tokyo 142-8666, Japan;
| |
Collapse
|
25
|
Wang W, Tan J, Ye S. Unsaturated Lipid Accelerates Formation of Oligomeric β-Sheet Structure of GP41 Fusion Peptide in Model Cell Membrane. J Phys Chem B 2020; 124:5169-5176. [PMID: 32453953 DOI: 10.1021/acs.jpcb.0c02464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane fusion of the viral and host cell membranes is the initial step of virus infection and is catalyzed by fusion peptides. Although the β-sheet structure of fusion peptides has been proposed to be the most important fusion-active conformation, it is still very challenging to experimentally identify different types of β-sheet structures at the cell membrane surface in situ and in real time. In this work, we demonstrate that the interface-sensitive amide II spectral signals of protein backbones, generated by the sum frequency generation vibrational spectroscopy, provide a sensitive probe for directly capturing the formation of oligomeric β-sheet structure of fusion peptides. Using human immunodeficiency virus (HIV) glycoprotein GP41 fusing peptide (FP23) as the model, we find that formation speed of oligomeric β-sheet structure depends on lipid unsaturation. The unsaturated lipid such as POPG can accelerate formation of oligomeric β-sheet structure of FP23. The β-sheet structure is more deeply inserted into the hydrophobic region of the POPG bilayer than the α-helical segment. This work will pave the way for future researches on capturing intermediate structures during membrane fusion processes and revealing the fusion mechanism.
Collapse
Affiliation(s)
- Wenting Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|