1
|
Li X, Chai S, Li H. Polyoxometalate-based reticular materials for proton conduction: from rigid frameworks to flexible networks. Dalton Trans 2024; 53:6488-6495. [PMID: 38567513 DOI: 10.1039/d4dt00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Proton conductors play a crucial role in energy and electronic technologies, thus attracting extensive research interest. Recently, reticular chemistry has propelled the development of reticular materials with framework or network structures, which can offer tunable proton transport pathways to achieve optimal conducting performance. Polyoxometalates (POMs), as a class of highly proton-conducting units, have been integrated into these reticular materials using various linkers. This leads to the creation of hybrid proton conductors with structures varying from rigid crystalline frameworks to flexible networks, showing adjustable proton transport behaviors and mechanical properties. This Frontier article highlights the advancements in POM-based reticular materials for proton conduction and provides insights for designing advanced proton conductors for practical applications.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Shengchao Chai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
2
|
Xie S, Sun W, Sun J, Wan X, Zhang J. Apparent symmetry rising induced by crystallization inhibition in ternary co-crystallization-driven self-assembly. Nat Commun 2023; 14:6496. [PMID: 37838782 PMCID: PMC10576807 DOI: 10.1038/s41467-023-42290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
The concept of apparent symmetry rising, opposite to symmetry breaking, was proposed to illustrate the unusual phenomenon that the symmetry of the apparent morphology of the multiply twinned particle is higher than that of its crystal structure. We developed a unique strategy of co-crystallization-driven self-assembly of amphiphilic block copolymers PEO-b-PS and the inorganic cluster silicotungstic acid to achieve apparent symmetry rising of nanoparticles under mild conditions. The triangular nanoplates triply twinned by orthogonal crystals (low symmetry) have an additional triple symmetry (high symmetry). The appropriate crystallization inhibition of short solvophilic segments of the block copolymers favors the oriented attachment of homogeneous domains of hybrid nanoribbons, and consequently forms kinetic-controlled triangular nanoplates with twin grain boundaries.
Collapse
Affiliation(s)
- Siyu Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, 100871, Beijing, China
| | - Wenjia Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Junliang Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, 100871, Beijing, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, 100871, Beijing, China.
| |
Collapse
|
3
|
Wen T, Yuan J, Lai W, Liu X, Liu Y, Chen L, Jiang X. Morphology-Controlled Mesopores with Hydrophilic Pore Walls from Triblock Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jun Yuan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wei Lai
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiang Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yiliu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Liyu Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xing Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
In situ crosslinking of polyoxometalate-polymer nanocomposites for robust high-temperature proton exchange membranes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Guo H, Zeng M, Li X, He H, Wu L, Li H. Multifunctional Enhancement of Proton-Conductive, Stretchable, and Adhesive Performance in Hybrid Polymer Electrolytes by Polyoxometalate Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30039-30050. [PMID: 34139842 DOI: 10.1021/acsami.1c06848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High ionic conductivity, good mechanical strength, strong electrode adhesion, and low volatilization are highly desired properties for flexible solid electrolytes. However, it is difficult to realize all these properties simultaneously, which needs a rational synergy of different electrolyte constituents. Here, we present the use of polyoxometalates as versatile enhancers to fabricate nonvolatile flexible hybrid polymer electrolytes with improved conductive, stretchable, and adhesive properties. These electrolytes are based on the molecular hybridization of a polyacrylate elastomer, phosphoric acid, and a commercial polyoxometalate H3PW12O40 (PW). PW can serve as a nanosized plasticizer to favor the chain relaxation of polyacrylate and improve stretchability. Meanwhile, PW as a solid acid can increase the proton concentration and form a hybrid hydrogen-bonding network to facilitate proton conduction. Besides, the strong adsorption ability of PW on solid surfaces enables the electrolytes with enhanced adhesion. The hybrid electrolyte with 30 wt % PW shows a break stress of 0.28 MPa, a break elongation of 990%, and a conductivity of 0.01 S cm-1 at 298 K, which are 1.8, 1.8, and 2.5 times higher compared to the case without PW, respectively. Moreover, PW enhances the adhesive strength of hybrid electrolytes on polypropylene, steel, and glass substrates. The flexible supercapacitors based on the hybrid electrolytes and polyaniline electrodes hold a stable electrode-electrolyte interface and exhibit a high specific capacitance of 592 mF cm-2 and an excellent capacitance retention of 84% after 6000 charge-discharge cycles. These results demonstrate great potential of polyoxometalates as multifunctional enhancers to design hybrid electrolyte materials for energy and electronic applications.
Collapse
Affiliation(s)
- Haikun Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Minghao Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Haibo He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
He H, Wang G, Chai S, Li X, Zhai L, Wu L, Li H. Self-assembled lamellar nanochannels in polyoxometalate-polymer nanocomposites for proton conduction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Wen T, Wang Y, Yin P, Huang M. Hybrid Hairy Platelets with Tunable Structures by Inclusion Crystallization of Polyferrocene-Containing Block Copolymers and Silicotungstic Acid. ACS Macro Lett 2021; 10:272-277. [PMID: 35570793 DOI: 10.1021/acsmacrolett.0c00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Herein, we report hybrid hairy platelets formed by block copolymers containing a poly(ethylene oxide) (PEO) midblock and polyferrocene end-blocks with silicotungstic acid (STA). As inclusion crystallization of PEO midblocks and STA clusters lead to crystalline lamellae in thin films at room temperature, the polyferrocene end-blocks that are excluded from the lattice will graft on the surface of the lamellae, giving rise to hybrid hairy platelets. The dependence of crystallographic structures and morphologies of platelets on the length of end-blocks is investigated. The presence of relatively long end-blocks induces the formation of an inclusion crystal with a tetragonal cell (termed as β-form), whereas an inclusion crystal with an orthorhombic cell (termed as α-form) can be formed with block copolymers with relatively shorter end-blocks.
Collapse
Affiliation(s)
- Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yingying Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
8
|
He Q, Zhang Y, Li H, Chen Q. Rheological Properties of ABA-Type Copolymers Physically End-Cross-Linked by Polyoxometalate. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingbin He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, P. R. China
- University of Science and Technology of China, 230026 Hefei, P. R. China
| | - Yanjie Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, P. R. China
- University of Science and Technology of China, 230026 Hefei, P. R. China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, P. R. China
- University of Science and Technology of China, 230026 Hefei, P. R. China
| |
Collapse
|
9
|
Zhai L, Chai S, Wang G, Zhang W, He H, Li H. Triblock Copolymer/Polyoxometalate Nanocomposite Electrolytes with Inverse Hexagonal Cylindrical Nanostructures. Macromol Rapid Commun 2020; 41:e2000438. [PMID: 33000900 DOI: 10.1002/marc.202000438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Indexed: 12/24/2022]
Abstract
The primary issue of polymer electrolytes is to achieve high ion conductivity while retaining mechanical properties. A nanocomposite electrolyte with the inverse hexagonal cylindrical phase (three-dimensionally continuous domains for ion conduction and embedded domains for mechanical support) is prepared through the electrostatic self-assembly of a polyoxometalate (H3 PW12 O40 , PW) and a triblock copolymer poly(N-vinyl pyrrolidone)-block-polystyrene-block-poly(N-vinyl pyrrolidone) (PSP). The cylindrical nanocomposite exhibits a conductivity of 1.32 mS cm-1 and a storage modulus of 4.6 × 107 Pa at room temperature. These two values are higher than those of pristine PSP by two orders of magnitudes and a factor of six, respectively. PW clusters are used as multifunctional nano-additives (morphological inducer, proton conductor, and nano-enhancer) and their incorporation achieves the simultaneous improvement in both conductive and mechanical performance.
Collapse
Affiliation(s)
- Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shengchao Chai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Gang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haibo He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
10
|
Wen T, Zheng Z, Qiu L, Yuan J, Yin P. Uniform hybrid nanoribbons from unidirectional inclusion crystallization controlled by size-amphiphilic block copolymers. NANOSCALE 2020; 12:16884-16894. [PMID: 32766617 DOI: 10.1039/d0nr04567e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we suggest a unique approach to control the growth of hybrid crystals of silicotungstic acid (STA) by introducing a poly(ethylene oxide) (PEO)-containing block copolymer and a poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) block copolymer (MEM BCP). Remarkably, perfectly straight ribbon-like lamellae with a uniform width and a large length/width ratio (>200) can be obtained. The length of hybrid nanoribbons can be tuned by annealing time and temperature, whereas the width is dependent on the molecular weight of the PEO mid-block. The stability of hybrid nanoribbons has been investigated against solvent vapor, high temperatures and the presence of phosphotungstic acid (PTA). The formation of hybrid nanoribbons leads to enhanced mechanical properties and proton conductivities of STA hybrid nanocomposites. This effective approach will provide a representative strategy to the control of crystalline hybrid materials in the solid state.
Collapse
Affiliation(s)
- Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology (SCUT), Guangzhou, 510640, China.
| | | | | | | | | |
Collapse
|