1
|
Zhao K, Huang N, Qi W, Liu R, Wang C, Huan Y, Zhang Z. Using nanocellulose to strengthen and toughen collagen-based film: Effect of carboxymethyl content of nanocellulose and relative humidity. Int J Biol Macromol 2025; 309:143209. [PMID: 40246095 DOI: 10.1016/j.ijbiomac.2025.143209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Collagen-based films possess numerous merits due to their biodegradability, edibility, and widespread existence. Although extensive research focuses on the mechanical strengthening of collagen films, the mechanisms underlying conformational changes of collagen during the film-forming stage and the impact of interface alterations on film's mechanical properties remain ill-defined. This work investigated the dynamic drying process of different-sized collagen fibers. It revealed that smaller size of collagen fiber exhibited a shorter gelatin stage and more rapid conformational transition. Subsequently, the effects of substitution degree (SD) of carboxymethylated nanocellulose (CNF) and relative humidity (RH) were analyzed on the mechanical behaviors of collagen-based film. When RH was in the range of 50 %-90 %, increasing RH and SD of CNF gradually weakens the interfacial strength between CNF and matrix, thereby increasing the toughness and decreasing strength of collagen-based film. The highest strength (110.76 ± 6.60 MPa) was achieved in COL/CNF-C2 film. Combined with water content and microstructure results, the transformation from brittle to ductile fracture could be observed in collagen-based films, ascribing the toughening of water molecules and hydration of CN with water. These results can provide a guidance for the actual production of collagen-based film and offer strategies for the adjustable mechanical properties of biopolymer films.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China.
| | - Na Huang
- Hebei University Health Science Center, Hebei University, Hebei 071002, China
| | - Wenhui Qi
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Ruitong Liu
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Conghui Wang
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Yufei Huan
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China
| | - Zhisheng Zhang
- Collage of Food Science and Technology, Hebei Agricultural University, Hebei 071001, China.
| |
Collapse
|
2
|
Hamedi MM, Sandberg M, Olsson RT, Pedersen J, Benselfelt T, Wohlert J. Wood and Cellulose: the Most Sustainable Advanced Materials for Past, Present, and Future Civilizations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415787. [PMID: 39777803 DOI: 10.1002/adma.202415787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Wood, with its constituent building block cellulose, is by far the most common biomaterial on the planet and has been the most important material used by humans to establish civilization. If there is one single biomaterial that should be studied and used by materials scientists across disciplines to achieve a sustainable future, it is cellulose. This perspective provides insights for the general materials science community about the unique properties of wood and cellulose and how they may be used in advanced sustainable materials to make a substantial societal impact. The focus is on sawn wood or cellulose fibers produced at scale by industry and the more recent cellulosic nanomaterials, highlighting the areas where these cellulose-based materials can be valorized into higher-order functions. Numerous articles have comprehensively reviewed different areas where cellulose is currently used in advanced materials science. The objective here is to provide general insight for all material scientists and to provide the opinions about the areas in which cellulose and wood have the largest potential to make a significant societal impact, especially to realize next-generation sustainable materials for construction, food, water, energy, and information. Discussing key areas where future research is needed to open avenues toward a more sustainable future is ended.
Collapse
Affiliation(s)
- Mahiar Max Hamedi
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Mats Sandberg
- RISE, Research Institutes of Sweden AB, Digital Systems, Smart Hardware, Printed, Bio- and Organic Electronics, Södra Grytsgatan 4, Norrköping, 60233, Sweden
| | - Richard T Olsson
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Jan Pedersen
- NCAB Group AB, Löfströms allé 5, Sundbyberg, 17266, Sweden
| | - Tobias Benselfelt
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Jakob Wohlert
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| |
Collapse
|
3
|
Bazan P, Kozub B, Rochman A, Melnychuk M, Majewska P, Mroczka K. Vibration Welding of PLA/PHBV Blend Composites with Nanocrystalline Cellulose. Polymers (Basel) 2024; 16:3495. [PMID: 39771347 PMCID: PMC11677671 DOI: 10.3390/polym16243495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Thermoplastic composites have garnered significant attention in various industries due to their exceptional properties, such as recyclability and ease of molding. In particular, biocomposites, which combine biopolymers with natural fibers, represent a promising alternative to petroleum-based materials, offering biodegradability and reduced environmental impact. However, there is limited knowledge regarding the efficacy of joining PLA/PHBV-based biocomposites modified with nanocrystalline cellulose (NCC) using vibration welding, which restricts their potential applications. This study demonstrates that vibration welding enables efficient bonding of PLA/PHBV composites with NCC, resulting in strong, biodegradable, and environmentally friendly materials. The investigation revealed that the addition of nanocrystalline cellulose (NCC) at 5, 10, and 15 wt.% significantly enhanced the strength of welded joints, with the highest strength achieved at 15% NCC content. Microstructural analysis using scanning electron microscopy (SEM) and deformation studies with digital image correlation (DIC) indicated that a higher NCC content led to greater local deformation, reducing the risk of brittle fracture. Mechanical hysteresis tests confirmed the composites' favorable resistance to variable loads, highlighting their stability and energy dissipation capabilities. Optimization of welding parameters, such as vibration amplitude, welding time, and pressure, is crucial for achieving optimal mechanical performance. These findings suggest that PLA/PHBV composites modified with NCC can be utilized as durable and eco-friendly materials in various industries, including automotive and packaging. This research presents new opportunities for the development of biodegradable high-strength materials that can serve as alternatives to traditional plastics.
Collapse
Affiliation(s)
- Patrycja Bazan
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (B.K.); (P.M.); (K.M.)
| | - Barbara Kozub
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (B.K.); (P.M.); (K.M.)
| | - Arif Rochman
- Department of Industrial and Manufacturing Engineering, University of Malta, MSD 2080 Msida, Malta;
| | - Mykola Melnychuk
- Department of Materials Science, Lutsk National Technical University, Lvivska 75, 43018 Lutsk, Ukraine;
| | - Paulina Majewska
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (B.K.); (P.M.); (K.M.)
| | - Krzysztof Mroczka
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (B.K.); (P.M.); (K.M.)
| |
Collapse
|
4
|
Cavallo V, Pruvost S, Gerard JF, Fina A. Dispersion of Cellulose Nanofibers in Methacrylate-Based Nanocomposites. Polymers (Basel) 2023; 15:3226. [PMID: 37571119 PMCID: PMC10421470 DOI: 10.3390/polym15153226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Poly(methylmethacrylate-co-methacrylic acid) (PMMA-co-MAA) polymers were prepared via cobalt-mediated free radical copolymerization and were characterized after synthesis. The synthesis led to a 98.5% conversion and a final ratio between the two units, MMA/MAA, was equal to 63:37 mol%. PMMA-co-MAA was then used as a matrix for cellulose-based nanocomposites to tailor filler compatibility, thanks to the presence of carboxylic groups capable of generating strong H-bonds with the cellulose surface. Cellulose nanofibers (CNFs) were dispersed using a solution with a mixture of two solvents to tailor compatibility of both the components. For this purpose, CNFs were successfully re-dispersed in methanol using the solvent exchange method and tetrahydrofuran/methanol mixtures at different ratios were used for the preparation of the films. Fully transparent films of PMMA-co-MAA + CNF were prepared up to 15 wt% of CNF with a good dispersion in the matrix. This dispersion state leads to the reinforcement of the polymethacrylate matrix, increasing its tensile strength whilst preserving optical transparency.
Collapse
Affiliation(s)
- Valentina Cavallo
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, CEDEX, F-69621 Villeurbanne, France; (V.C.); (S.P.)
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy
| | - Sébastien Pruvost
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, CEDEX, F-69621 Villeurbanne, France; (V.C.); (S.P.)
| | - Jean-François Gerard
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, CEDEX, F-69621 Villeurbanne, France; (V.C.); (S.P.)
| | - Alberto Fina
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, V.le Teresa Michel, 5, 15121 Alessandria, Italy
| |
Collapse
|
5
|
Jang D, Beckett LE, Keum J, Korley LTJ. Leveraging peptide-cellulose interactions to tailor the hierarchy and mechanics of peptide-polymer hybrids. J Mater Chem B 2023; 11:5594-5606. [PMID: 37255364 PMCID: PMC10330573 DOI: 10.1039/d3tb00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Inspired by spider silk's hierarchical diversity, we leveraged peptide motifs with the capability to tune structural arrangement for controlling the mechanical properties of a conventional polymer framework. The addition of nanofiller with hydrogen bonding sites was used as another pathway towards hierarchical tuning via matrix-filler interactions. Specifically, peptide-polyurea hybrids (PPUs) were combined with cellulose nanocrystals (CNCs) to develop mechanically-tunable nanocomposites via tailored matrix-filler interactions (or peptide-cellulose interactions). In this material platform, we explored the effect of these matrix-filler interactions on the secondary structure, hierarchical ordering, and mechanical properties of the peptide hybrid nanocomposites. Interactions between the peptide matrix and CNCs occur in all of the PPU/CNC nanocomposites, preventing α-helical ordering, but promoting inter-molecular hydrogen bonded β-sheet formation. Depending on peptide and CNC content, the Young's modulus varies from 10 to 150 MPa. Unlike conventional cellulose-reinforced polymer nanocomposites, the mechanical properties of these composite materials are dictated by a balance of CNC reinforcement, peptidic ordering, and microphase-separated morphology. This research highlights that leveraging peptide-cellulose interactions is a strategy to create materials with targeted mechanical properties for a specific application using a limited selection of building blocks.
Collapse
Affiliation(s)
- Daseul Jang
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, Delaware, 19716, USA.
| | - Laura E Beckett
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, Delaware, 19716, USA.
| | - Jong Keum
- Center for Nanophase Materials Sciences and Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, 37830, Tennessee, USA
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, Delaware, 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware, 19716, USA
| |
Collapse
|
6
|
Pei HW, Zhu YL, Lu ZY, Li JP, Sun ZY. Automatic Multiscale Method of Building up a Cross-linked Polymer Reaction System: Bridging SMILES to the Multiscale Molecular Dynamics Simulation. J Phys Chem B 2023. [PMID: 37200472 DOI: 10.1021/acs.jpcb.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An automatic method is introduced to generate the initial configuration and input file from SMILES for multiscale molecular dynamics (MD) simulation of cross-linked polymer reaction systems. Inputs are a modified version of SMILES of all the components and conditions of coarse-grained (CG) and all-atom (AA) simulations. The overall process comprises the following steps: (1) Modified SMILES inputs of all the components are converted to 3-dimensional coordinates of molecular structures. (2) Molecular structures are mapped to the coarse-grained scale, followed by a CG reaction simulation. (3) CG beads are backmapped to the atomic scale after the CG reaction. (4) An AA productive run is finally performed to analyze volume shrinkage, glass transition, and atomic detail of network structure. The method is applied to two common epoxy resin reactions, that is, the cross-linking process of DGEVA (diglycidyl ether of vanillyl alcohol) and DHAVA (dihydroxyaminopropane of vanillyl alcohol) and that of DGEBA (diglycidyl ether of bisphenol A) and DETA (diethylenetriamine). These components form network structures after the CG cross-linking reaction and are then backmapped to calculate properties in the atomic scale. The result demonstrates that the method can accurately predict volume shrinkage, glass transition, and all-atom structure of cross-linked polymers. The method bridges from SMILES to MD simulation trajectories in an automatic way, which shortens the time of building up cross-linked polymer reaction model and suitable for high-throughput computations.
Collapse
Affiliation(s)
- Han-Wen Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - You-Liang Zhu
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhong-Yuan Lu
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Jun-Peng Li
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Sino-Platinum Metals Company, Limited, Kunming 650106, People's Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
7
|
Hu Y, Zhao W, Wang L, Lin J, Du L. Machine-Learning-Assisted Design of Highly Tough Thermosetting Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55004-55016. [PMID: 36456181 DOI: 10.1021/acsami.2c14290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite advances in machine learning for accurately predicting material properties, forecasting the performance of thermosetting polymers remains a challenge due to the sparsity of historical experimental data and their complicated crosslinked structures. We proposed a machine-learning-assisted materials genome approach (MGA) for rapidly designing novel epoxy thermosets with excellent mechanical properties (high tensile moduli, high tensile strength, and high toughness) through high-throughput screening in a vast chemical space. Machine-learning models were established by combining attention- and gate-augmented graph convolutional networks, multilayer perceptrons, classical gel theory, and transfer learning from small molecules to polymers. Proof-of-concept experiments were carried out, and the structures designed by the MGA were verified. Gene substructures affecting the modulus, strength, and toughness were also extracted, revealing the mechanisms of polymers with high mechanical properties. The developed strategy can be employed to design other thermosetting polymers efficiently.
Collapse
Affiliation(s)
- Yaxi Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Wenlin Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Lei Du
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai200237, China
| |
Collapse
|
8
|
Wang H, Liu X, Liu J, Wu M, Huang Y. Tailoring Interfacial Adhesion between PBAT Matrix and PTFE-Modified Microcrystalline Cellulose Additive for Advanced Composites. Polymers (Basel) 2022; 14:polym14101973. [PMID: 35631855 PMCID: PMC9145506 DOI: 10.3390/polym14101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cellulose materials have the potential to serve as sustainable reinforcement in polymer composites, but they suffer from challenges in improving interfacial compatibility with polymers through surface modification. Here, we propose adjusting the interfacial compatibility between microcrystalline cellulose (MCC) and poly (butylene adipate-co-terephthalate) (PBAT) through the strategy based on surface energy regulation. Mechanical ball milling with polytetrafluoroethylene (PTFE) powder was used to simultaneously pulverize, and surface modify MCC to produce MCC sheets with different surface energy. The modified MCC was used to reinforce PBAT composites by simple melt blending. The surface morphology, surface energy of MCC, and the amount of friction transferred PTFE during ball milling were characterized. The mechanical performance, composite morphology, crystallization behavior and dynamic thermomechanical analysis of the composites were investigated. The interfacial adhesion strength of composites closely relates to the surface energy of modified MCC. When the surface energy of MCC is closer to that of the PBAT matrix, it exhibits the better interfacial adhesion strength, resulting in the increased mechanical properties, crystallization temperature, storage modulus, and loss modulus. This work provides effective strategy for how to design fillers to obtain high-performance composites.
Collapse
Affiliation(s)
- Hongkun Wang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.W.); (J.L.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuran Liu
- North China Institute of Aerospace Engineering, College of Material Engineering, Langfang 065000, China;
| | - Jinfeng Liu
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.W.); (J.L.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wu
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.W.); (J.L.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (M.W.); (Y.H.)
| | - Yong Huang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (H.W.); (J.L.)
- Correspondence: (M.W.); (Y.H.)
| |
Collapse
|
9
|
Abstract
Cellulose is the most common biopolymer and widely used in our daily life. Due to its unique properties and biodegradability, it has been attracting increased attention in the recent years and various new applications of cellulose and its derivatives are constantly being found. The development of new materials with improved properties, however, is not always an easy task, and theoretical models and computer simulations can often help in this process. In this review, we give an overview of different coarse-grained models of cellulose and their applications to various systems. Various coarse-grained models with different mapping schemes are presented, which can efficiently simulate systems from the single cellulose fibril/crystal to the assembly of many fibrils/crystals. We also discuss relevant applications of these models with a focus on the mechanical properties, self-assembly, chiral nematic phases, conversion between cellulose allomorphs, composite materials and interactions with other molecules.
Collapse
|