1
|
Liu B, Lu H, Guo Y, Liu H, Zhou T, Xue YH. Modular addition strategy-regulated polymerization-induced self-assembly: an in silico experiment. SOFT MATTER 2025; 21:1180-1191. [PMID: 39829210 DOI: 10.1039/d4sm01403k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We propose a modular addition strategy-regulated polymerization-induced self-assembly (PISA) system to effectively control the reaction kinetics and self-assembly morphologies. We validated this strategy by performing in silico experiments on a well-established PISA system. Two categories of modular addition strategies, i.e., the multistep addition strategy and the constant rate addition strategy, were investigated. Results showed that the modular addition operation of macromolecular chain transfer agents (macro-CTAs) effectively regulated the width of the molecular weight distribution for the hydrophobic PSt block, which further led to an assembly of vesicle structures with irregular aspherical cavities. Besides, we found a new transition pathway for the formation of vesicles, which involved generation of small vesicles in the early stage followed by a gradual growth in the intermediate and late stages. In the constant rate addition strategy, with the increase in the addition rate of macro-CTA, we found that the morphology basically tended to change from a micellar structure to a vesicle structure. This study holds potential to inspire future work toward the improvement of experimental techniques in PISA-relevant systems.
Collapse
Affiliation(s)
- Bin Liu
- School of Bridge and Building, Shaanxi Railway Institute, Zhanbei St. East 1#, Weinan 714000, P. R. China
| | - Hui Lu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuqi Guo
- Department of Chemical and Material Engineering, Lyuliang University, Lishi 033001, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tianhang Zhou
- College of Carbon Neutrality Future Technology, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Yao-Hong Xue
- Information Science School, Guangdong University of Finance and Economics, Guangzhou 510320, China.
| |
Collapse
|
2
|
Yamanaka R, Sugawara-Narutaki A, Takahashi R. Microphase Separation and Gelation through Polymerization-Induced Self-Assembly Using Star Polyethylene Glycols. ACS Macro Lett 2024; 13:1050-1055. [PMID: 39083349 PMCID: PMC11340017 DOI: 10.1021/acsmacrolett.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Polymerization-induced self-assembly (PISA) during the synthesis of diblock copolymers has garnered considerable interest; however, architectures beyond diblock copolymers have scarcely been explored. Here, we studied PISA using 4- and 8-arm star polyethylene glycol (PEG), as well as 2-arm (linear) PEG, wherein each terminus of PEG was functionalized with a chain-transfer agent, holding a constant molar mass for each arm. Styrene was polymerized from each PEG terminus through reversible addition-fragmentation chain-transfer (RAFT) polymerization in an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6]), with a total solute concentration of 40 wt %. While the styrene monomer is soluble in [BMIM][PF6], polystyrene is not; thus, self-assembly and cross-linking (gelation) occur. Structural analysis by small-angle X-ray scattering revealed that a relatively ordered microphase-separated structure for PISA was observed. Two-arm PEG-PS formed hexagonally packed cylinders, whereas 4- and 8-arm PEG-PS exhibited hexagonal close-packed spheres and disordered spheres. The dynamics, studied by oscillatory rheology, were also influenced by the number of arms; the 4-arm star block copolymers showed the highest plateau modulus. This study demonstrates that the topology is an important factor in controlling the microphase-separated structure and mechanical properties when preparing gels through PISA.
Collapse
Affiliation(s)
- Riku Yamanaka
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ayae Sugawara-Narutaki
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Institute
of Biomaterials and Bioengineering, Tokyo
Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rintaro Takahashi
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
3
|
Li D, Shao X, Li X, Qian Y, Wang G, Wei Y, Guo S. Versatile morphology transition of nano-assemblies via ultrasonics/microwave assisted aqueous polymerization-induced self-assembly based on host-guest interaction. ULTRASONICS SONOCHEMISTRY 2024; 107:106901. [PMID: 38735786 PMCID: PMC11179237 DOI: 10.1016/j.ultsonch.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Nano-assemblies have wide applications in biomedicine, functional coatings, Pickering emulsifiers, hydrogels, and so forth. The preparation of assemblies mainly utilizes the polymerization-induced self-assembly (PISA) method, which can produce high-concentration nanoscale assemblies in one step. However, the initiation processes of most reported PISA are limited to thermal initiation. Here, we reported two green and efficient methods for synthesizing nano-assemblies with various morphologies using ultrasound (20 kHz)/ microwave (500 W) assisted aqueous-phase RAFT-PISA in 3 h and 1 h. Cyclodextrin (CD) and styrene (St) nucleating monomer were complexed in a 1:1 ratio. Then, using Poly (ethylene glycol) methyl ether as the macromolecular reversible addition-fragmentation chain transfer (RAFT) agent (PEG-CTA) to control the CD/St complexes, the conversion rate of St monomer was respectively 27 %-60 %, 20 %-30 % within 3 h and 1 h under ultrasonics/microwave assisted PISA. Results showed that the morphologies of the assemblies are not only related to the length of PS block, but also to the assistance types and the remaining monomer concentration. The results showed that only PEG45-b-PS90 and PEG45-b-PS241 assemblies prepared by ultrasonics assisted PISA form evolved lamellaes and vesicles (100 nm), which break through the limitation of kinetic freezing. But the ultrasonic reaction on morphology of assemblies is not all favourable. For one thing, it can promote the movement of particles; for another, it makes reverse morphology transformation and sphere is preferred morphology. Therefore, the main reason of morphology evolution is the remaining monomer concentration of PEG45-b-PS90 and PEG45-b-PS241 assemblies reaches to 55 %-65 %, which promoting the segment movement. The results showed that the morphology of the assemblies prepared by microwave assisted PISA changed from spherical micelles to short rods, and finally to vesicles (120-140 nm) as the length of hydrophobic PS block increases. The kinetic freezing problem was solved in microwave-assisted PISA due to the action of microwaves and more remaining monomer concentration. Both them can boost particles movement.
Collapse
Affiliation(s)
- Dan Li
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Xin Shao
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Xin Li
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Yongqiang Qian
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Guxia Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Yen Wei
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China; Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
4
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
5
|
Shao X, Li D, Guo S, Yan J, Qian Y, Wang G. Preparation of diblock copolymer nano-assemblies by ultrasonics assisted ethanol-phase polymerization-induced self-assembly. ULTRASONICS SONOCHEMISTRY 2024; 105:106855. [PMID: 38531733 PMCID: PMC11059131 DOI: 10.1016/j.ultsonch.2024.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Assemblies are widely used in biomedicine, batteries, functional coatings, Pickering emulsifiers, hydrogels, and luminescent materials. Polymerization-induced self-assembly (PISA) is a method for efficiently preparing particles, mainly initiated thermally. However, thermally initiated PISA usually requires a significant amount of time and energy. Here, we demonstrate the preparation of nano-assemblies with controllable morphologies and size using ultrasound (20 kHz) assisted ethanol-phase RAFT-PISA in three hours. Using poly (N, N-dimethylaminoethyl methacrylate) as the macromolecular reversible addition-fragmentation chain transfer agent (PDMA-CTA) to control the nucleating monomer benzyl methacrylate (BzMA), we obtained nano-assemblies with different morphologies. With the length of hydrophobic PBzMA block growth, the morphologies of the assemblies at 15 wt% solid content changed from spheres to vesicles, and finally to lamellae; the morphologies of the assemblies at 30 wt% changed from spheres micelles to short worms, then vesicles, and finally to large compound vesicles. With the same targeted degree of polymerization, nano-assemblies having a 30 wt% solid content display a more evolved morphology. The input of ultrasonic energy makes the system have higher surface free energy, results the mass fraction interval of solventphilic blocks (fhydrophilic) corresponding to the formation of spherical micelles is expanded from fhydrophilic > 45 % to fhydrophilic > 31 % under ultrasound and the fhydrophilic required to form worms, vesicles, and large composite vesicles decreases in turn. It is worth noting that the fhydrophilic interval of worms prepared by ultrasonics assisted PISA gets larger. Overall, the highly green, externally-regulatable and fast method of ultrasonics assisted PISA can be extended to vastly different diblock copolymers, for a wide range of applications.
Collapse
Affiliation(s)
- Xin Shao
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Dan Li
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Jun Yan
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Yongqiang Qian
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Guxia Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
6
|
Zeng Z, Li Z, Li Q, Song G, Huo M. Strong and Tough Nanostructured Hydrogels and Organogels Prepared by Polymerization-Induced Self-Assembly. SMALL METHODS 2023; 7:e2201592. [PMID: 36965093 DOI: 10.1002/smtd.202201592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Indexed: 06/09/2023]
Abstract
In nature, the hierarchical structure of biological tissues endows them with outstanding mechanics and elaborated functions. However, it remains a great challenge to construct biomimetic hydrogels with well-defined nanostructures and good mechanical properties. Herein, polymerization-induced self-assembly (PISA) is for the first time exploited as a general strategy for nanostructured hydrogels and organogels with tailored nanodomains and outstanding mechanical properties. As a proof-of-concept, PISA of BAB triblock copolymer is used to fabricate hydrogels with precisely regulated spherical nanodomains. These nanostructured hydrogels are strong, tough, stretchable, and recoverable, with mechanical properties correlating to their nanostructure. The outstanding mechanical properties are ascribed to the unique network architecture, where the entanglements of the hydrophilic chains act as slip links that transmit the tension to the micellar crosslinkers, while the micellar crosslinkers dissipate the energy via reversible deformation and irreversible detachment of the constituting polymers. The general feasibility of the PISA strategy toward nanostructured gels is confirmed by the successful fabrication of nanostructured hydrogels, alcogels, poly(ethylene glycol) gels, and ionogels with various PISA formulations. This work has provided a general platform for the design and fabrication of biomimetic hydrogels and organogels with tailorable nanostructures and mechanics and will inspire the design of functional nanostructured gels.
Collapse
Affiliation(s)
- Zhong Zeng
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ziyun Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Qili Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Guangjie Song
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Meng Huo
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
7
|
Anderson Bainbridge CW, Hye Lee CE, Broderick N, Jin J. Mechanical modification of RAFT-based living polymer networks by photo-growth with crosslinker. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-0803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
In this work we present a study into the usage of crosslinker growth of Reversible addition-fragmentation chain-transfer polymerization (RAFT)-based Living Polymer Networks (LPNs) for the purpose of mechanical strengthening. Previous work with LPNs has thoroughly covered growth with monomers for various goals, and has touched on using a small amount of crosslinker during growth to retain mechanical strength after growth. Herein, we demonstrate growth with both purely crosslinker and purely monomer for the sake of comparison. We also show this across both symmetries of RAFT agent to see how their different growth behaviors affect the results. The asymmetric RAFT underwent a mesh-filling process during growth which resulted in both crosslinker and monomer strengthening the parent network to a similar degree. However, with the symmetric RAFT agent we saw that the crosslinker and monomer growth caused opposite effects due to their impact on the average crosslinking density; while monomer growth lowered it, growth with crosslinker increased it and strengthened the gel accordingly.
Collapse
Affiliation(s)
- Chris William Anderson Bainbridge
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies , Auckland 1010 , New Zealand
| | - Chloe Eun Hye Lee
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies , Auckland 1010 , New Zealand
| | - Neil Broderick
- Department of Physics , The University of Auckland , Auckland 1010 , New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies , Auckland 1010 , New Zealand
| | - Jianyong Jin
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies , Auckland 1010 , New Zealand
| |
Collapse
|
8
|
Ikkene D, Six JL, Ferji K. Progress in Aqueous Dispersion RAFT PISA. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Wu J, Wu B, Xiong J, Sun S, Wu P. Entropy‐Mediated Polymer–Cluster Interactions Enable Dramatic Thermal Stiffening Hydrogels for Mechanoadaptive Smart Fabrics. Angew Chem Int Ed Engl 2022; 61:e202204960. [DOI: 10.1002/anie.202204960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jia Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology & Center for Advanced Low-dimension Materials Donghua University Shanghai 201620 China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich Lichtenbergstr. 1 85748 Garching Germany
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology & Center for Advanced Low-dimension Materials Donghua University Shanghai 201620 China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology & Center for Advanced Low-dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
10
|
Wu J, Wu B, Xiong J, Sun S, Wu P. Entropy‐Mediated Polymer‐Cluster Interactions Enable Dramatic Thermal Stiffening Hydrogels for Mechanoadaptive Smart Fabrics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia Wu
- Donghua University Chemistry CHINA
| | - Baohu Wu
- Forschungszentrum Julich ICG: Forschungszentrum Julich GmbH JCNS GERMANY
| | - Jiaqing Xiong
- Donghua University Innovation Center for Textile Science and Technology CHINA
| | | | - Peiyi Wu
- Fudan University Department of Macromolecular Science Handan Road 220 200433 Shanghai CHINA
| |
Collapse
|
11
|
Zhou P, Shi B, Liu Y, Li P, Wang G. Exploration of the modification-induced self-assembly (MISA) technique and the preparation of nano-objects with a functional poly(acrylic acid) core. Polym Chem 2022. [DOI: 10.1039/d2py00666a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hydrolysis-based post-polymerization modification method was introduced into the self-assembly process and a modification-induced self-assembly (MISA) technique was presented.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuang Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Penghan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Ida S, Okuno T, Morimura M, Suzuki K, Takeshita H, Oyama M, Nakajima K, Kanaoka S. Structure–property correlation of crosslinked domain hydrogels exhibiting thermoresponsive mechanical toughening and hybridization with photoluminescent carbon dots. Polym Chem 2022. [DOI: 10.1039/d2py00423b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A smart gel material exhibiting a simultaneous change in mechanical properties and photoluminescence is developed.
Collapse
Affiliation(s)
- Shohei Ida
- Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| | - Takahiro Okuno
- Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| | - Miki Morimura
- Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| | - Kazumasa Suzuki
- Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| | - Hiroki Takeshita
- Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| | - Masatoshi Oyama
- Industrial Research Center of Shiga Prefecture, 232 Kamitoyama, Ritto, Shiga 520-3004, Japan
| | - Keiji Nakajima
- Industrial Research Center of Shiga Prefecture, 232 Kamitoyama, Ritto, Shiga 520-3004, Japan
| | - Shokyoku Kanaoka
- Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| |
Collapse
|
13
|
Zhao L, Tian Y, Wang X, Liu D, Xie Y, Hu J, Zou G. A polymerization-induced gelation process visualized by nontraditional clustering-triggered emission. Polym Chem 2022. [DOI: 10.1039/d1py01651b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A kind of organogel with distinct CTE properties was synthesized via a PISA process. Fluorescence variation could be employed to realize the visualization of the PISA process according to the CTE mechanism.
Collapse
Affiliation(s)
- Liyang Zhao
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Yuan Tian
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Xiangnan Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Dingdong Liu
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Yifan Xie
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Jingang Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Gang Zou
- Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
14
|
He J, Lin D, Chen Y, Zhang L, Tan J. One-Step Preparation of Thermo-Responsive Poly(N-isopropylacrylamide)-Based Block Copolymer Nanoparticles by Aqueous Photoinitiated Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2021; 42:e2100201. [PMID: 34145660 DOI: 10.1002/marc.202100201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Indexed: 12/18/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) is an important thermo-responsive polymer that finds applications in many areas. However, the preparation of PNIPAM-based block copolymer nanoparticles with higher-order morphologies at high solids is challenging. Herein, aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) of N-isopropylacrylamide (NIPAM) using an asymmetrical cross-linker is developed for one-step preparation of PNIPAM-based block copolymer nanoparticles with various morphologies (spheres, worms, and vesicles). It is demonstrated that reaction temperature has a great effect on both polymerization kinetics and morphologies of block copolymer nanoparticles. Reversible addition-fragmentation chain transfer (RAFT) reactive groups embedded inside the PNIPAM core provide a landscape for further functionalization. PNIPAM-based block copolymer nanoparticles with different surface properties are prepared by seeded photo-PISA at room temperature. Finally, these block copolymer nanoparticles are also used as additives to tune mechanical properties of hydrogels via covalent cross-linking.
Collapse
Affiliation(s)
- Jun He
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dongni Lin
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|