1
|
Kim M, Park H, Kim E, Chung M, Oh JH. Photo-crosslinkable organic materials for flexible and stretchable electronics. MATERIALS HORIZONS 2025. [PMID: 40202255 DOI: 10.1039/d4mh01757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
As technology advances to enhance human perceptual experiences of the surrounding environment, significant research on stretchable electronics is actively progressing, spanning from the synthesis of materials to their applications in fully integrated devices. A critical challenge lies in developing materials that can maintain their electrical properties under substantial stretching. Photo-crosslinkable organic materials have emerged as a promising solution due to their ability to be precisely modified with light to achieve desired properties, such as enhanced durability, stable conductivity, and micropatterning. This review examines recent research on photo-crosslinkable organic materials, focusing on their components and integration within stretchable electronic devices. We explore the essential characteristics required for each device component (insulators, semiconductors, and conductors) and explain how photo-crosslinking technology addresses these needs through its principles and implementation. Additionally, we discuss the integration and utilization of these components in real-world applications, including physical sensors, organic field-effect transistors (OFETs), and organic solar cells (OSCs). Finally, we offer a concise perspective on the future directions and potential challenges in ongoing research on photo-crosslinkable organic materials.
Collapse
Affiliation(s)
- Minsung Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hayeong Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Eunjin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Minji Chung
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Bai Y, Li S, Wang Q, Chen Q, Zhang Z, Meng S, Zang Y, Fu H, Xue L, Ye L, Zhang ZG. Simultaneous enhancement of efficiency, stability and stretchability in binary polymer solar cells with a three-dimensional aromatic-core tethered tetrameric acceptor. Natl Sci Rev 2025; 12:nwaf019. [PMID: 39981025 PMCID: PMC11841366 DOI: 10.1093/nsr/nwaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/14/2024] [Accepted: 01/19/2025] [Indexed: 02/22/2025] Open
Abstract
Polymer solar cells (PSCs) leverage blend films from polymer donors and small-molecule acceptors (SMAs), offering promising opportunities for flexible power sources. However, the inherent rigidity and crystalline nature of SMAs often embrittle the polymer donor films in the constructed bulk heterojunction structure. To address this challenge, we improved the stretchability of the blend films by designing and synthesizing a tethered giant tetrameric acceptor (GTA) with increased molecular weight that promotes entanglement of individual SMA units. The key to this design is using tetraphenylmethane as the linking core to create a three-dimensional and high C2 symmetry structure, which successfully regulates their aggregation and relaxation behavior. With GTA as the acceptor, its blend films with polymer donor PM6 exhibit significantly improved stretchability, with nearly a 150% increase in crack onset strain value compared to PM6:Y6. Moreover, the PSCs achieve an increased efficiency of up to 18.71% and demonstrate outstanding photostability, maintaining >90% of their initial power conversion efficiency after operating for over 1000 hours. Our findings demonstrate that by specifically designing three-dimensional tethered SMAs and aligning their molecular weights more closely with those of polymer counterparts, we can achieve enhanced stretchability without compromising morphological stability or device efficiency.
Collapse
Affiliation(s)
- Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Saimeng Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ze Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shixin Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Zang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingwei Xue
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan 467000, China
| | - Long Ye
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Ma J, Xu M, Zhuo Z, Wang K, Li Q, Li H, Feng Q, Chen W, Yu N, Li M, Xie L, Lin J. Plasticizer Design Principle of "Like Dissolves Like": Semiconductor Fluid Plasticized Stretchable Fully π-Conjugated Polymers Films for Uniform Large-Area and Flexible Deep-Blue Polymer Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411449. [PMID: 39543791 DOI: 10.1002/adma.202411449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Physical blending of fully π-conjugated polymers (FπCPs) is an effective strategy to achieve intrinsically stretchable films for the fabrication of flexible optoelectronic devices, but easily causes phase separation, nonuniform morphology and uncontrollable photo-electronic processing. This may cause low efficiency, unstable and nonuniform emission, and poor color purity, which are undesirable for deep-blue flexible polymer light-emitting diodes (FPLEDs). Herein, a "Like Dissolves Like" design principle to prepare semiconductor fluid plasticizers (SFPs) is established and intrinsically stretchable FπCPs films via external plasticization for high-performance deep-blue FPLEDs are developed. Three fundamental requirements are proposed, "similar conjugated skeleton, similar molecular polarity, and similar electronic structures," to prepare model-matched nonpolar M1 and polar M2 plasticizers for poly(9,9-dioctylfluorene) (PFO). Large-area plasticized PFO films exhibit an efficient, narrowband, and stable ultra-deep-blue electroluminescence (FWHM < 40 nm, CIE: 0.12, 0.04), uniform morphology, and excellent intrinsic stretchability (fracture strain >20% and crack-onset strain >120%). Efficient and uniform deep-blue FPLEDs based on stretchable PFO films are fabricated with a high brightness of ≈3000 cd cm-2. Finally, blended PFO films exhibit outstanding stretch-deformation cycling stability of their deep-blue electroluminescent behavior, confirming the effectiveness of the "Like Dissolves Like" principle to design matched SFPs for stretchable FπCP films in flexible electronics.
Collapse
Affiliation(s)
- Jingyao Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Kuande Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qianyi Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quanyou Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wenyu Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengyuan Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
4
|
Kim SH, Park S, Chung S, Ok E, Kim BJ, Jang JD, Kang B, Cho K. Multiscale Analyses of Strain-Enhanced Charge Transport in Conjugated Polymers. ACS NANO 2024; 18:31332-31348. [PMID: 39491542 DOI: 10.1021/acsnano.4c10775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The advancement of flexible and wearable electronics relies on semiconducting polymers that can endure mechanical deformation while maintaining high electrical performance under strain. In this study, we demonstrate that fine-tuning backbone rigidity through the molecular design of donor moieties significantly enhances both the mechanical and charge transport properties of diketopyrrolopyrrole (DPP)-based polymers. Specifically, the flexible DPP-4T (quaterthiophene) exhibited a persistence length of 20.4 nm in solution, while DPP-DTT (dithienothiophene) showed a longer persistence length of 32.8 nm due to its stiff backbone, as confirmed by small-angle neutron scattering and Monte Carlo simulations. This flexibility enabled DPP-4T to achieve a crack-onset strain exceeding 100% via the film-on-elastomer method and a fracture strain of over 30% in quasi-free-standing films. Additionally, DPP-4T demonstrated a 180% increase in hole mobility at 80% strain, driven by strain-induced chain alignment and backbone planarization. Utilizing a range of characterization techniques, including ultraviolet-visible (UV-vis) spectroscopy, grazing incidence X-ray diffraction (XRD), and Raman spectroscopy, we characterized structural changes at multiple length scales under applied tensile strain. Notably, strain induced a transformation in chain conformation from a twisted to a flat structure, reducing the hopping energy barrier and enhancing charge transport. These structural rearrangements are crucial for sustaining efficient charge transport and ensuring the reliability of electronic performance under mechanical stress.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sangsik Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunsol Ok
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Byeong Jin Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, and Department of Semiconductor Convergence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Chen W, Yu N, Gong H, Li M, Xu W, Zhuo Z, Sun Z, Ni M, Huang W, Yang J, Lin Y, Wang L, Li H, Liang X, Sun N, Sun L, Bai L, Han Y, Tao Y, Xu M, Yin C, An X, Lin J, Huang W. Elastic-Plastic Fully π-Conjugated Polymer with Excellent Energy Dissipation Capacity for Ultra-Deep-Blue Flexible Polymer Light-Emitting Diodes with CIE y = 0.04. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402708. [PMID: 38837440 DOI: 10.1002/adma.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Emerging intrinsically flexible fully π-conjugated polymers (FπCPs) are a promising functional material for flexible optoelectronics, attributed to their potential interchain interpenetration and entanglement. However, the challenge remains in obtaining elastic-plastic FπCPs with intrinsic robust optoelectronic property and excellent long-term and cycling deformation stability simultaneously for applications in deep-blue flexible polymer light-emitting diodes (PLEDs). This study, demonstrates a series of elastic-plastic FπCPs (P1-P4) with an excellent energy dissipation capacity via side-chain internal plasticization for the ultra-deep-blue flexible PLEDs. First, the freestanding P1 film exhibited a maximum fracture strain of 34.6%. More interestingly, the elastic behavior is observed with a low strain (≤10%), and the stretched film with a high deformation (>10%) attributed to plastic processing revealed the robust capacity to realize energy absorption and release. The elastic-plastic P1 film exhibits outstanding ultra-deep-blue emission, with an efficiency of 56.38%. Subsequently, efficient PLEDs are fabricated with an ultra-deep-blue emission of CIE (0.16, 0.04) and a maximum external quantum efficiency of 1.73%. Finally, stable and efficient ultra-deep-blue electroluminescence are obtained from PLEDs based on stretchable films with different strains and cycling deformations, suggesting excellent elastic-plastic behavior and deformation stability for flexible electronics.
Collapse
Affiliation(s)
- Wenyu Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Huaqiang Gong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengyuan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Weifeng Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhiyang Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mingjian Ni
- The Institute of Flexible Electronics, (IFE Future Technologies), Xiamen University(XMU), 422 Siming South Road, Xiamen, Fujian, 361005, China
| | - Wenxin Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jing Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yingru Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xinyu Liang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ning Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lili Sun
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Shenzhen, 518107, China
| | - Lubing Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Youtian Tao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chengrong Yin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 66 Gongchang Road, Shenzhen, 518107, China
| |
Collapse
|
6
|
Wang Y, Li Z, Niu K, Xia W, Giuntoli A. A Molecular Dynamics Study of Mechanical and Conformational Properties of Conjugated Polymer Thin Films. Macromolecules 2024; 57:5130-5142. [PMID: 38882199 PMCID: PMC11171455 DOI: 10.1021/acs.macromol.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Understanding and predicting the mechanical and conformational properties of conjugated polymer (CP) thin films are a central focus in flexible electronic device research. Employing molecular dynamics simulations with an architecture-transferable chemistry-specific coarse-grained (CG) model of poly(3-alkylthiophene)s (P3ATs), developed by using an energy renormalization approach, we investigate the mechanical and conformational behavior of P3AT thin films during deformation. The density profiles and measures of local mobility identify a softer interfacial layer for all films, the thickness of which does not depend on M w or side-chain length. Remarkably, Young's modulus measured via nanoindentation is more sensitive to M w than for tensile tests, which we attribute to distinct deformation mechanisms. High-M w thin films show increased toughness, whereas longer side-chain lengths of P3AT resulted in lower Young's modulus. Fractures in low-M w thin films occur through chain pullout due to insufficient chain entanglement and crazing in the plastic region. Importantly, stretching promoted both chain alignment and longer conjugation lengths of P3AT, potentially enhancing its electronic properties. For instance, at room temperature, stretching P3HT thin films to 150% increases the conjugated length of P3HT thin films from 2.7 nm to 4.7 nm, aligning with previous experimental findings and all-atom simulation results. Furthermore, high-M w thin films display elevated friction forces due to the chain accumulation on the indenter, with negligible variations in the friction coefficient across all thin film systems. These findings offer valuable insights that enhance our understanding and guide the rational design of CP thin films in flexible electronics.
Collapse
Affiliation(s)
- Yang Wang
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaofan Li
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Andrea Giuntoli
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
7
|
Wang S, Zhao K, Li J, Yu X, Zhang Q, Han Y. Microstructural Evolution of P(NDI2OD-T2) Films with Different Molecular Weight during Stretching Deformation. Macromol Rapid Commun 2024; 45:e2300624. [PMID: 38018318 DOI: 10.1002/marc.202300624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Conjugated polymers exhibit excellent electrical and mechanical properties when their molecular weight (Mw) is above the critical molecular weight (Mc). The microstructural changes of polymers under strain are crucial to establish a structure-performance relationship. Herein, the tensile deformation of P(NDI2OD-T2) is visualized, and cracks are revealed either along the (100) crystal plane of side chain packing or along the main chain direction which depends on the Mw is below or above the Mc. When Mw < Mc, the film cracks along the (100) plane under small strains. When Mw > Mc, the polymer chains first undergo stretch-induced orientation and then fracture along the main chain direction at large strains. This is attributed to the fact that the low Mw film exhibits large crystalline domains and the absence of interdomain connectivity, which are vulnerable to mechanical stress. In contrast, the high Mw film displays a nearly amorphous morphology with adequate entanglements, the molecular chains can endure stresses in the stretching direction to release substantial strain energy under greater mechanical deformation. Therefore, the film with Mw > Mc exhibits the optimal electrical and mechanical performances simultaneously, i.e., the electron mobility is retained under 100% strain and after 100 stretching-releasing cycles.
Collapse
Affiliation(s)
- Sichun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Junhang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
8
|
Zhao Q, Li D, Peng J. Meticulous Molecular Engineering of Crystal Orientation and Morphology in Conjugated Polymer Thin Films for Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9098-9107. [PMID: 38319877 DOI: 10.1021/acsami.3c16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The ability to precisely tailor molecular packing and film morphology in conjugated polymers offers a robust means to control their optoelectronic properties. This, however, remains a grand challenge. Herein, we report the dependency of molecular packing of an important conjugated polymer, poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), on a set of intrinsic parameters and unveil the correlation between their crystalline structures and charge transport characteristics. Specifically, a family of PBTTT with varying side chains (i.e., hexyl, octyl, decyl, dodecyl, tetradecyl, and hexadecyl referred to as C6, C8, C10, C12, C14, and C16, respectively) and molecular weights (MWs) with a focus on C14 are judiciously designed and synthesized. Various crystalline structures are yielded by tuning the alkyl chain and MW of PBTTT together with thermal annealing. It reveals that extending the alkyl chain length of PBTTT to C14, along with a larger MW and heating at 180 °C, promotes the formation of edge-on crystallites with significantly improved orientation and ordering. Furthermore, these distinct crystalline structures greatly impact their charge mobilities. This study sheds light on the tailored design of crystalline structures in PBTTT through a synergetic approach, which paves the way for potential applications of PBTTT and other conjugated polymers in optoelectronic devices with enhanced performance.
Collapse
Affiliation(s)
- Qingqing Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dingke Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Zhang J, Mao H, Zhou K, Zhang L, Luo D, Wang P, Ye L, Chen Y. Polymer-Entangled Spontaneous Pseudo-Planar Heterojunction for Constructing Efficient Flexible Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309379. [PMID: 37901965 DOI: 10.1002/adma.202309379] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Indexed: 10/31/2023]
Abstract
Flexible organic solar cells (FOSCs) have attracted considerable attention from researchers as promising portable power sources for wearable electronic devices. However, insufficient power conversion efficiency (PCE), intrinsic stretchability, and mechanical stability of FOSCs remain severe obstacles to their application. Herein, an entangled strategy is proposed for the synergistic optimization of PCE and mechanical properties of FOSCs through green sequential printing combined with polymer-induced spontaneous gradient heterojunction phase separation morphology. Impressively, the toughened-pseudo-planar heterojunction (Toughened-PPHJ) film exhibits excellent tensile properties with a crack onset strain (COS) of 11.0%, twice that of the reference bulk heterojunction (BHJ) film (5.5%), which is among the highest values reported for the state-of-the-art polymer/small molecule-based systems. Finite element simulation of stress distribution during film bending confirms that Toughened-PPHJ film can release residual stress well. Therefore, this optimal device shows a high PCE (18.16%) with enhanced (short-circuit current density) JSC and suppressed energy loss, which is a significant improvement over the conventional BHJ device (16.99%). Finally, the 1 cm2 flexible Toughened-PPHJ device retains more than 92% of its initial PCE (13.3%) after 1000 bending cycles. This work provides a feasible guiding idea for future flexible portable power supplies.
Collapse
Affiliation(s)
- Jiayou Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Houdong Mao
- Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Kangkang Zhou
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China
| | - Lifu Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Dou Luo
- Department of Electrical & Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Wang
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Long Ye
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| |
Collapse
|
10
|
Huang W, Liu X, Ding Z, Wang Z, Xu C, Li R, Wang S, Wu Y, Qin R, Han Y, Geng Y, Liu SF, Han Y, Zhao K. Aligned Conjugated Polymer Nanofiber Networks in an Elastomer Matrix for High-Performance Printed Stretchable Electronics. NANO LETTERS 2024; 24:441-449. [PMID: 38109494 DOI: 10.1021/acs.nanolett.3c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Conjugated polymer films are promising in wearable X-ray detection. However, achieving optimal film microstructure possessing good electrical and detection performance under large deformation via scalable printing remains challenging. Herein, we report bar-coated high-performance stretchable films based on a conjugated polymer P(TDPP-Se) and elastomer SEBS blend by optimizing the solution-processing conditions. The moderate preaggregation in solution and prolonged growth dynamics from a solvent mixture with limited dissolving capacity is critical to forming aligned P(TDPP-Se) chains/crystalline nanofibers in the SEBS phase with enhanced π-π stacking for charge transport and stress dissipation. The film shows a large elongation at break of >400% and high mobilities of 5.29 cm2 V-1 s-1 at 0% strain and 1.66 cm2 V-1 s-1 over 500 stretch-release cycles at 50% strain, enabling good X-ray imaging with a high sensitivity of 1501.52 μC Gyair-1 cm-2. Our work provides a morphology control strategy toward high-performance conjugated polymer film-based stretchable electronics.
Collapse
Affiliation(s)
- Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xinmei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhongli Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Chenhui Xu
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shumei Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ru Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yang Han
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Yanhou Geng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
11
|
Qin R, Wu Y, Ding Z, Zhang R, Yu J, Huang W, Liu D, Lu G, Liu SF, Zhao K, Han Y. Highly Stretchable Conjugated Polymer/Elastomer Blend Films with Sandwich Structure. Macromol Rapid Commun 2024; 45:e2300240. [PMID: 37289949 DOI: 10.1002/marc.202300240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The physical blending of high-mobility conjugated polymers with ductile elastomers provides a simple way to realize high-performance stretchable films. However, how to control the morphology of the conjugated polymer and elastomer blend film and its response to mechanical fracture processes during stretching are not well understood. Herein, a sandwich structure is constructed in the blend film based on a conjugated polymer poly[(5-fluoro-2,1,3-benzothiadiazole-4,7-diyl)(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b″]dithiophene-2,6-diyl)(6-fluoro-2,1,3-benzothiadiazole-4,7-diyl)(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b″]dithiophene-2,6-diyl)] (PCDTFBT) and an elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS). The sandwich structure is composed of a PCDTFBT:SEBS mixed layer laminated with a PCDTFBT-rich layer at both the top and bottom surfaces. During stretching, the external strain energy can be effectively dissipated by the deformation of the crystalline PCDTFBT domains and amorphous SEBS phases and the recrystallization of the PCDTFBT chains. This endows the blend film with excellent ductility, with a large crack onset strain exceeding 1100%, and minimized the electrical degradation of the blend film at a large strain. This study indicates that the electrical and mechanical performance of conjugated polymer/elastomer blend films can be improved by manipulating their microstructure.
Collapse
Affiliation(s)
- Ru Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Jifa Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Dongle Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
12
|
Guan C, Xiao C, Liu X, Hu Z, Wang R, Wang C, Xie C, Cai Z, Li W. Non-Covalent Interactions between Polyvinyl Chloride and Conjugated Polymers Enable Excellent Mechanical Properties and High Stability in Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202312357. [PMID: 37702544 DOI: 10.1002/anie.202312357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
The incorporation of insulating polymers into conjugated polymers has been widely explored as a strategy to improve mechanical properties of flexible organic electronics. However, phase separation due to the immiscibility of these polymers has limited their effectiveness. In this study, we report the discovery of multiple non-covalent interactions that enhances the miscibility between insulating and conjugated polymers, resulting in improved mechanical properties. Specifically, we have added polyvinyl chloride (PVC) into the conjugated polymer PM6 and observed a significant increase in solution viscosity, indicative of favorable miscibility between these two polymers. This phenomenon has been rarely observed in other insulating/conjugated polymer composites. Thin films of PM6/PVC exhibit a much-improved crack-onset strain of 19.35 %, compared to 10.12 % for pristine PM6 films. Analysis reveal that a "cyclohexyl-like" structure formed through dipole-dipole interactions and hydrogen bonding between PVC and PM6 acted as a cross-linking site in the thin films, leading to improved mechanical properties. Moreover, PM6/PVC blend films have demonstrated excellent thermal and bending stability when applied as an electron donor in organic solar cells. These findings provide new insights into non-covalent interactions that can be utilized to enhance the properties of conjugated polymers and may have potential applications in flexible organic electronics.
Collapse
Affiliation(s)
- Chong Guan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhijie Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruoyao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziqi Cai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
13
|
Qi L, Du G, Zhu G, Wang Y, Yang L, Zhang J. Enhanced Interface Compatibility by Ionic Dendritic Molecules To Achieve Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41109-41120. [PMID: 37590128 DOI: 10.1021/acsami.3c07539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Poly(3-hexylthiophene) (P3HT) represents a promising hole transport material for emerging perovskite solar cells (PSCs) due to its appealing merits of high thermal stability and appropriate hydrophobicity. Nonetheless, large energy losses at the P3HT/perovskite interface lead to unsatisfied efficiency and stability of the devices. Herein, two ionic dendritic molecules, 3,3'-(2,7-bis(3,6-bis(bis(4-methoxyphenyl)amino)-9H-carbazol-9-yl)-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylpropan-1-aminium) iodide and 3,3'-(2,7-bis(bis(4-(bis(4-methoxyphenyl)amino)phenyl)amino)-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylpropan-1-aminium) iodide, namely, MPA-Cz-FAI and MPA-PA-FAI, are rationally designed as the interlayer to enhance interfacial compatibility. The dendritic backbone with conjugated structure endows the hole transport layer with high conductivity, derived from the more ordered microstructure with larger crystallization and higher connectivity of domain zones. Besides, a better energy level alignment is established between P3HT and perovskite, which enhances the charge extraction and transport yield. In addition, the peripheral methoxy groups enable effective defect passivation at the interface to suppress nonradiative recombination and the quaternary ammonium iodide serving as side chains enable efficient interfacial hole extraction contributing to enhanced charge collection yield. As a result, the dopant-free P3HT-based PSCs modified with MPA-Cz-PAI deliver a champion efficiency of 19.7%, significantly higher than that of the control devices (15.4%). More encouragingly, the unencapsulated devices demonstrate competitive environmental stability by retaining over 85% of its initial efficiency after 1500 h of storage under humid conditions (70% relative humidity). This work provides an effective molecular design strategy for interface engineering, envisaging a bright prospect for the further development of efficient and stable perovskite solar cells.
Collapse
Affiliation(s)
- Lianlian Qi
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Guozheng Du
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Guojie Zhu
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Yang Wang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Li Yang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jinbao Zhang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
14
|
Zhang L, Li H, Zhao K, Zhang T, Liu D, Wang S, Wu F, Zhang Q, Han Y. Achieving the high charge mobility of conjugated polymers under cyclic stretching by changing the interaction parameter between solvent and sidechain. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
15
|
Jaiswal S, Sahoo S, Thakur S. Particle-based mesoscopic model for phase separation in a binary fluid mixture. Phys Rev E 2023; 107:055303. [PMID: 37328993 DOI: 10.1103/physreve.107.055303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/20/2023] [Indexed: 06/18/2023]
Abstract
A mesoscopic simulation model to study the phase separation in a binary fluid mixture in three dimensions (3D) is presented here by augmenting the existing particle-based multiparticle collision dynamics (MPCD) algorithm. The approach describes the nonideal equation of the fluid state by incorporating the excluded-volume interaction between the two components within the framework of stochastic collision, which depends on the local fluid composition and velocity. Calculating the nonideal contribution to the pressure both from simulation and analytics shows the model to be thermodynamically consistent. A phase diagram to explore the range of parameters that give rise to phase separation in the model is investigated. The interfacial width and phase growth obtained from the model agree with the literature for a wide range of temperatures and parameters.
Collapse
Affiliation(s)
- Surabhi Jaiswal
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Soudamini Sahoo
- Department of Physics, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
16
|
Snyder Y, Jana S. Elastomeric Trilayer Substrates with Native-like Mechanical Properties for Heart Valve Leaflet Tissue Engineering. ACS Biomater Sci Eng 2023; 9:1570-1584. [PMID: 36802499 DOI: 10.1021/acsbiomaterials.2c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart valve leaflets have a complex trilayered structure with layer-specific orientations, anisotropic tensile properties, and elastomeric characteristics that are difficult to mimic collectively. Previously, trilayer leaflet substrates intended for heart valve tissue engineering were developed with nonelastomeric biomaterials that cannot deliver native-like mechanical properties. In this study, by electrospinning polycaprolactone (PCL) polymer and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer, we created elastomeric trilayer PCL/PLCL leaflet substrates with native-like tensile, flexural, and anisotropic properties and compared them with trilayer PCL leaflet substrates (as control) to find their effectiveness in heart valve leaflet tissue engineering. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for 1 month in static conditions to produce cell-cultured constructs. The PCL/PLCL substrates had lower crystallinity and hydrophobicity but higher anisotropy and flexibility than PCL leaflet substrates. These attributes contributed to more significant cell proliferation, infiltration, extracellular matrix production, and superior gene expression in the PCL/PLCL cell-cultured constructs than in the PCL cell-cultured constructs. Further, the PCL/PLCL constructs showed better resistance to calcification than PCL constructs. Trilayer PCL/PLCL leaflet substrates with native-like mechanical and flexural properties could significantly improve heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
17
|
Kleinschmidt AT, Chen AX, Ramji RS, Pascal TA, Lipomi DJ. Decoupling Planarizing and Steric Energetics to Accurately Model the Rigidity of π-Conjugated Polymers. J Phys Chem B 2023; 127:2092-2102. [PMID: 36812262 DOI: 10.1021/acs.jpcb.2c08843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The π-conjugated backbone of semiconducting polymers gives rise to both their electronic properties and structural rigidity. However, current computational methods for understanding the rigidity of polymer chains fail in one crucial way. Namely, standard torsional scan (TS) methods do not satisfactorily capture the behavior of polymers exhibiting a high degree of steric hindrance. This deficiency in part stems from the method by which torsional scans decouple energy related to electron delocalization from that related to nonbonded interactions. These methods do so by applying classical corrections of the nonbonded energy to the quantum mechanical (QM) torsional profile for polymers that are highly sterically hindered. These large corrections to the energy from nonbonded interactions can substantially skew the calculated QM energies related to torsion, resulting in an inaccurate or imprecise estimation of the rigidity of a polymer. As a consequence, simulations of the morphology of a highly sterically hindered polymer using the TS method can be highly inaccurate. Here, we describe an alternative, generalizable method by which the delocalization energy can be decoupled from the energy associated with nonbonded interactions─the "isolation of delocalization energy" (DE) method. From torsional energy calculations, we find that the relative accuracy of the DE method is similar to the TS method (within 1 kJ/mol) for two model polymers (P3HT, PTB7) when compared to quantum mechanical calculations. However, the DE method significantly increased the relative accuracy for simulations of PNDI-T, a highly sterically hindered polymer (8.16 kJ/mol). Likewise, we show that comparison of the planarization energy (i.e., backbone rigidity) from torsional parameters is significantly more precise for both PTB7 and PNDI-T when using the DE method as opposed to the TS method. These differences affect the simulated morphology, with the DE method predicting a significantly more planar configuration of PNDI-T.
Collapse
Affiliation(s)
- Andrew T Kleinschmidt
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Alexander X Chen
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Robert S Ramji
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Tod A Pascal
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Darren J Lipomi
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| |
Collapse
|
18
|
Li XC, Yao L, Song W, Liu F, Wang Q, Chen J, Xue Q, Lai WY. Intrinsically Stretchable Electroluminescent Elastomers with Self-Confinement Effect for Highly Efficient Non-Blended Stretchable OLEDs. Angew Chem Int Ed Engl 2023; 62:e202213749. [PMID: 36350657 DOI: 10.1002/anie.202213749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 11/11/2022]
Abstract
Ultra-flexible stretchable organic light-emitting diodes (OLEDs) are emerging as a basic component of flexible electronics and human-machine interfaces. However, the brightness and efficiency of stretchable OLEDs remain still far inferior to their rigid counterparts, owing to the scarcity of satisfactory stretchable electroluminescent materials. Herein, we explore a general concept based on the self-confinement effect to dramatically improve the stretchability of elastomers, without affecting electroluminescent properties. The balanced rigid/flexible chain dynamics under self-confinement significantly reduces the modulus of the elastomers, resulting in the maximum strain reaching 806 %. Ultra-flexible stretchable OLEDs have been constructed based on the resulting ISEEs, achieving unprecedented high-performance non-blended stretchable OLEDs. The results suggest an effective molecular design strategy for highly deformable stretchable displays and flexible electronics.
Collapse
Affiliation(s)
- Xiang-Chun Li
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lanqian Yao
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wan Song
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Fang Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qian Wang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jin Chen
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qian Xue
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wen-Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
19
|
Peng Z, Xian K, Liu J, Zhang Y, Sun X, Zhao W, Deng Y, Li X, Yang C, Bian F, Geng Y, Ye L. Unraveling the Stretch-Induced Microstructural Evolution and Morphology-Stretchability Relationships of High-Performance Ternary Organic Photovoltaic Blends. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207884. [PMID: 36333886 DOI: 10.1002/adma.202207884] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The stretchability and stretch-induced structural evolution of organic solar cells (OSCs) are pivotal for their collapsible, portable, and wearable applications, and they are mainly affected by the complex morphology of active layers. Herein, a highly ductile conjugated polymer P(NDI2OD-T2) is incorporated into the active layers of high-efficiency OSCs based on nonfullerene small molecule acceptors to simultaneously investigate the morphological, mechanical, and photovoltaic properties and structural evolution under stretching of ternary blend films with various acceptor contents. The structural robustness of the blend films is indicated by their stretch-induced structural evolution, which is monitored in real-time by a combination of in situ wide/small angle X-ray scattering. It is found that adding the soft P(NDI2OD-T2) can enhance the stretchability and structural robustness of ternary blend films by more entangled chains and tie chains to dissipate strain. Furthermore, the stretchability of the ternary blends can be superbly predicted by a 3D equivalent box model. This work provides instructive insight and guidance for designing stretchable electronics and predicting the stretchability of multicomponent blends.
Collapse
Affiliation(s)
- Zhongxiang Peng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Kaihu Xian
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Junwei Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Yaowen Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiaokang Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunfeng Deng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yanhou Geng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Long Ye
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
20
|
Wu WN, Tu TH, Pai CH, Cheng KH, Tung SH, Chan YT, Liu CL. Metallo-Supramolecular Rod–Coil Block Copolymer Thin Films for Stretchable Organic Field Effect Transistor Application. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wei-Ni Wu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Chiao-Hsuan Pai
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Kuan-Heng Cheng
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| |
Collapse
|
21
|
The continuous fiber networks with a balanced bimodal orientation of P(NDI2OD-T2) by controlling solution nucleation and face-on and edge-on crystallization rates. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Crystallization of D-A Conjugated Polymers: A Review of Recent Research. Polymers (Basel) 2022; 14:polym14214612. [DOI: 10.3390/polym14214612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
D-A conjugated polymers are key materials for organic solar cells and organic thin-film transistors, and their film structure is one of the most important factors in determining device performance. The formation of film structure largely depends on the crystallization process, but the crystallization of D-A conjugated polymers is not well understood. In this review, we attempted to achieve a clearer understanding of the crystallization of D-A conjugated polymers. We first summarized the features of D-A conjugated polymers, which can affect their crystallization process. Then, the crystallization process of D-A conjugated polymers was discussed, including the possible chain conformations in the solution as well as the nucleation and growth processes. After that, the crystal structure of D-A conjugated polymers, including the molecular orientation and polymorphism, was reviewed. We proposed that the nucleation process and the orientation of the nuclei on the substrate are critical for the crystal structure. Finally, we summarized the possible crystal morphologies of D-A conjugated polymers and explained their formation process in terms of nucleation and growth processes. This review provides fundamental knowledge on how to manipulate the crystallization process of D-A conjugated polymers to regulate their film structure.
Collapse
|
24
|
Wu Y, Ding Z, Zhang Q, Liang X, Yang H, Huang W, Su Y, Zhang Y, Hu H, Han Y, Liu SF, Zhao K. Increasing H-Aggregates via Sequential Aggregation to Enhance the Hole Mobility of Printed Conjugated Polymer Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiao Liang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Hua Yang
- Dongguan Neutron Science Center, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803, China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yueling Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| |
Collapse
|
25
|
Shimomura Y, Igawa K, Sasaki S, Sakakibara N, Goseki R, Konishi G. Flexible Alkylene Bridges as a Tool To Engineer Crystal Distyrylbenzene Structures Enabling Highly Fluorescent Monomeric Emission. Chemistry 2022; 28:e202201884. [PMID: 35817755 PMCID: PMC9544799 DOI: 10.1002/chem.202201884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshimichi Shimomura
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering Kyushu University 6-1 Kasuga-koen, Kasuga 816-8580 Fukuoka Japan
| | - Shunsuke Sasaki
- Université de Nantes CNRS Institut des Matériaux Jean Rouxel IMN F-44000 Nantes France
| | - Noritaka Sakakibara
- Department of Chemistry Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
| | - Raita Goseki
- Department of Applied Chemistry Kogakuin University Nakano-machi, Hachioji-shi 192-0015 Tokyo Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
- PRESTO “Element Strategy” Japan Science and Technology Agency (JST) Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
26
|
Chen W, Lu X, Zhou H. Base‐catalyzed Sulfurative Condensation of 2‐Oxoindoles to Isoindigos Using Elemental Sulfur. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Chen
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Xiao‐Bing Lu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Hui Zhou
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| |
Collapse
|
27
|
Jeon KH, Park JW. Light-Emitting Polymer Blended with Elastomers for Stretchable Polymer Light-Emitting Diodes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun-Hoo Jeon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
28
|
Park JS, Kim GU, Lee S, Lee JW, Li S, Lee JY, Kim BJ. Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201623. [PMID: 35765775 DOI: 10.1002/adma.202201623] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in the power conversion efficiency (PCE) of organic solar cells (OSCs) have greatly enhanced their commercial viability. Considering the technical standards (e.g., mechanical robustness) required for wearable electronics, which are promising application platforms for OSCs, the development of fully stretchable OSCs (f-SOSCs) should be accelerated. Here, a comprehensive overview of f-SOSCs, which are aimed to reliably operate under various forms of mechanical stress, including bending and multidirectional stretching, is provided. First, the mechanical requirements of f-SOSCs, in terms of tensile and cohesion/adhesion properties, are summarized along with the experimental methods to evaluate those properties. Second, essential studies to make each layer of f-SOSCs stretchable and efficient are discussed, emphasizing strategies to simultaneously enhance the photovoltaic and mechanical properties of the active layer, ranging from material design to fabrication control. Key improvements to the other components/layers (i.e., substrate, electrodes, and interlayers) are also covered. Lastly, considering that f-SOSC research is in its infancy, the current challenges and future prospects are explored.
Collapse
Affiliation(s)
- Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geon-U Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
29
|
Pei D, An C, Zhao B, Ge M, Wang Z, Dong W, Wang C, Deng Y, Song D, Ma Z, Han Y, Geng Y. Polyurethane-Based Stretchable Semiconductor Nanofilms with High Intrinsic Recovery Similar to Conventional Elastomers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33806-33816. [PMID: 35849824 DOI: 10.1021/acsami.2c07445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer semiconductors with large elastic recovery (ER) under high strain in thin film state are highly desirable for stretchable electronics. Here we report a type of stretchable semiconductor PU(DPP)x, by copolymerization of oligodiketopyrrolopyrrole-based conjugated block and hydrogenated polybutadiene flexible block via urethane linkage for intermolecular hydrogen bonding. By regulating block ratio, PU(DPP)35 with 35 wt % conjugated block exhibits high intrinsic ER > 80% under 175% strain (ε) in pseudo free-standing thin film state, comparable with commercial elastomers, and crack onset strain (COS) > 300% along with maximum hole mobility of 0.19 cm2 V-1 s-1 in organic thin film transistors to bring it to the best performing block copolymer-type stretchable semiconductors. Enhanced mobility is achieved using PU(DPP)35 as the binder for conjugated polymer PDPPT3. The 25 wt %-PDPPT3 blend displays mobility up to 1.28 cm2 V-1 s-1 along with COS ∼120%, and 10 wt %-PDPPT3 blend exhibits ER of 78% at ε = 150%, COS of ∼230%, modulus of 36.5 MPa, maximum mobility of 0.62 cm2 V-1 s-1 and no obvious degradation of mobility at ε = 150% after 100 cycles of strain. Moreover, the structural similarity enables the blend film uniform and stable microstructure against mechanical and thermal deformation. Notably, PU(DPP)35 and the blend are characterized by high mechanical performance similar to that of commercial elastomers in thin film state, and demonstrate their potential for high performance stretchable electronics.
Collapse
Affiliation(s)
- Dandan Pei
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Chuanbin An
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Bin Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Mengke Ge
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhongli Wang
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Weijia Dong
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Cheng Wang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yunfeng Deng
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Dongpo Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhe Ma
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yang Han
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yanhou Geng
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
30
|
Liu C, Xiao C, Wang J, Liu B, Hao Y, Guo J, Song J, Tang Z, Sun Y, Li W. Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunhui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Wang
- Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yidi Hao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiali Song
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
31
|
When Electronically Inert Polymers Meet Conjugated Polymers: Emerging Opportunities in Organic Photovoltaics. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2762-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Kang SH, Lee D, Choi W, Oh JH, Yang C. Usefulness of Polar and Bulky Phosphonate Chain-End Solubilizing Groups in Polymeric Semiconductors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- So-Huei Kang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Doyoung Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Wonbin Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
33
|
Precise synthesis of α,ω-chain-end-functionalized poly(dimethylsiloxane) with bromoaryl groups for incorporation in naphthalene-diimide-based N-type semiconducting polymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Kukhta NA, Luscombe CK. Gaining control over conjugated polymer morphology to improve the performance of organic electronics. Chem Commun (Camb) 2022; 58:6982-6997. [PMID: 35604084 DOI: 10.1039/d2cc01430k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymers (CPs) are widely used in various domains of organic electronics. However, the performance of organic electronic devices can be variable due to the lack of precise predictive control over the polymer microstructure. While the chemical structure of CPs is important, CP microstructure also plays an important role in determining the charge-transport, optical and mechanical properties suitable for a target device. Understanding the interplay between CP microstructure and the resulting properties, as well as predicting and targeting specific polymer morphologies, would allow current comprehension of organic electronic device performance to be improved and potentially enable more facile device optimization and fabrication. In this Feature Article, we highlight the importance of investigating CP microstructure, discuss previous developments in the field, and provide an overview of the key aspects of the CP microstructure-property relationship, carried out in our group over recent years.
Collapse
Affiliation(s)
- Nadzeya A Kukhta
- Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195-2120, USA
| | - Christine K Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| |
Collapse
|
35
|
|
36
|
Li H, Liu X, Jin T, Zhao K, Zhang Q, He C, Yang H, Chen Y, Huang J, Yu X, Han Y. Optimizing the Intercrystallite Connection of Donor-Acceptor Conjugated Semiconductor Polymer by Controlling the Crystallization Rate via Temperature. Macromol Rapid Commun 2022; 43:e2200084. [PMID: 35339116 DOI: 10.1002/marc.202200084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Indexed: 11/10/2022]
Abstract
The charge carrier transport of conjugated polymer thin film is mainly decided by the crystalline domain and intercrystallite connection. High density tie-chain can provide an effective bridge between crystalline domains. Herein, the tie-chain connection behavior is optimized by decreasing the crystal region length (lc ) and increasing the crystallization rate. Poly[4-(4,4-bis(2-octyldodecyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]-thiadiazolo[3,4-c]pyridine] (PCDTPT-ODD) is dissolved in nonpolar solvent isooctane and high ordered rod-like aggregations are formed. As the temperature increases, the changes of solution state and crystallization behavior lead to three different chain arrangement morphologies in the films: (1) at 25°C, large and separated crystal regions are formed; (2) at 55°C, small and well-connected crystal regions are formed due to faster crystallization rate and smaller nucleus size; (3) at 90°C, the amorphous film is formed. Further results show that the film prepared at 55°C has a smaller crystal region length (lc , 7.6 nm) and higher tie-chains content. Thus, the film exhibits the best device mobility of 2.3 × 10-3 cm2 V-1 s-1 . This result shows the great influence of crystallization kinetics on the microstructure of conjugated polymer films and provides an effective way for the optimization of the intercrystallite tie-chain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Tianya Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chunyong He
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Hua Yang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianyao Huang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
37
|
Wang S, Li H, Zhao K, Zhang L, Zhang Q, Yu X, Tian H, Han Y. Increasing the Charge Transport of P(NDI2OD-T2) by Improving the Polarization of the NDI2OD Unit along the Backbone Direction and Preaggregation via H-Bonding. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sichun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
38
|
Zheng Y, Zhang S, Tok JBH, Bao Z. Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. J Am Chem Soc 2022; 144:4699-4715. [PMID: 35262336 DOI: 10.1021/jacs.2c00072] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stretchable polymer semiconductors have advanced rapidly in the past decade as materials required to realize conformable and soft skin-like electronics become available. Through rational molecular-level design, stretchable polymer semiconductor films are now able to retain their electrical functionalities even when subjected to repeated mechanical deformations. Furthermore, their charge-carrier mobilities are on par with the best flexible polymer semiconductors, with some even exceeding that of amorphous silicon. The key advancements are molecular-design concepts that allow multiple strain energy-dissipation mechanisms, while maintaining efficient charge-transport pathways over multiple length scales. In this perspective article, we review recent approaches to confer stretchability to polymer semiconductors while maintaining high charge carrier mobilities, with emphasis on the control of both polymer-chain dynamics and thin-film morphology. Additionally, we present molecular design considerations toward intrinsically elastic semiconductors that are needed for reliable device operation under reversible and repeated deformation. A general approach involving inducing polymer semiconductor nanoconfinement allows for incorporation of several other desired functionalities, such as biodegradability, self-healing, and photopatternability, while enhancing the charge transport. Lastly, we point out future directions, including advancing the fundamental understanding of morphology evolution and its correlation with the change of charge transport under strain, and needs for strain-resilient polymer semiconductors with high mobility retention.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Song Zhang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
39
|
Incorporating Se atoms to organoboron polymer electron acceptors to tune opto-electronic properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Fernandes M, Wrasse EO, Kawata Koyama CJ, Günther FS, Coutinho DJ. Unrevealing the interaction between O 2 molecules and poly(3-hexylthiophene-2,5-diyl) (P3HT). RSC Adv 2022; 12:18578-18584. [PMID: 35799921 PMCID: PMC9221349 DOI: 10.1039/d2ra02969c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Stability of π-conjugated organic materials remains a critical issue for applications in which these materials and devices based on them are exposed to ambient conditions. Particularly, the initial steps of the reversible and irreversible degradation by molecular oxygen exposure are still not fully explored. Here we present a theoretical study using density functional theory (DFT) to investigate the oxygen effects on the electronic properties of poly(3-hexylthiophene-2,5-diyl) (P3HT). Our results show that trap-states are introduced in the energy gap between the highest occupied and the lowest unoccupied molecular orbitals by the O2 molecule and both singlet and triplet states can be formed irrespectively of the existence of chain defects. A crossing between the potential energy surfaces of singlet and triplet states was observed for smaller distances of the oxygen molecule to the nearest thiophene ring, which was identified as being the first step towards irreversible degradation. Stability of π-conjugated organic materials remains a critical issue for applications in which these materials and devices based on them are exposed to ambient conditions.![]()
Collapse
Affiliation(s)
- Marcelo Fernandes
- Federal University of Technology – Paraná (UTFPR), 85902-490 Toledo-PR, Brazil
| | | | | | - Florian Steffen Günther
- São Carlos Institute of Physics, University of São Paulo, P. O. Box 369, 13560-970 São Carlos-SP, Brazil
| | | |
Collapse
|
41
|
Zou Y, Wang D, Guo J, Yang J, Pu Y, Chen JF. Synthesis of poly(9,9-dioctylfluorene) in a rotating packed bed with enhanced performance for polymer light-emitting diode. Polym Chem 2022. [DOI: 10.1039/d2py00297c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most suitable methods for synthesizing conjugated polymers is the Suzuki cross-coupling reaction because of high tolerance and stability. Herein, we report an improved strategy to synthesize conjugated...
Collapse
|
42
|
Xie C, Xiao C, Jiang X, Liang S, Liu C, Zhang Z, Chen Q, Li W. Miscibility-Controlled Mechanical and Photovoltaic Properties in Double-Cable Conjugated Polymer/Insulating Polymer Composites. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xudong Jiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chunhui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
43
|
Liu D, Ding Z, Wu Y, Liu SF, Han Y, Zhao K. In Situ Study of Molecular Aggregation in Conjugated Polymer/Elastomer Blends toward Stretchable Electronics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongle Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
| |
Collapse
|
44
|
Liu C, Xiao C, Xie C, Zhu Q, Chen Q, Ma W, Li W. Insulating Polymers as Additives to Bulk-Heterojunction Organic Solar Cells: The Effect of Miscibility. Chemphyschem 2021; 23:e202100725. [PMID: 34791762 DOI: 10.1002/cphc.202100725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Indexed: 11/06/2022]
Abstract
Adding insulating polymers to conjugated polymers is an efficient strategy to tailor their mechanical properties for flexible organic electronics. In this work, we selected two insulating polymers as additives for high-performance photoactive layers and investigated the mechanical and photovoltaic properties in organic solar cells (OSCs). The insulating polymers were found to reduce the electron mobilities in the photoactive layers, and hence the power conversion efficiencies were significantly decreased. More importantly, we found that the insulating polymers exhibited negative effect on the mechanical properties of the photoactive layers, with reduced Young's modulus and low crack onset strains. Further studies revealed that the insulating polymers had poor miscibility with the photoactive layers, providing large domains and more cavities in blend thin films, which act as negative effect for the tensile test. The studies indicate that rational selection of insulating polymers, especially enhancing the non-covalent interaction with the photoactive layers, will be critically important for the stretchable OSCs.
Collapse
Affiliation(s)
- Chunhui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qinglian Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
45
|
Li H, Yang H, Zhang L, Wang S, Chen Y, Zhang Q, Zhang J, Tian H, Han Y. Optimizing the Crystallization Behavior and Film Morphology of Donor–Acceptor Conjugated Semiconducting Polymers by Side-Chain–Solvent Interaction in Nonpolar Solvents. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hua Yang
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Sichun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
46
|
Choudhary K, Chen AX, Pitch GM, Runser R, Urbina A, Dunn TJ, Kodur M, Kleinschmidt AT, Wang BG, Bunch JA, Fenning DP, Ayzner AL, Lipomi DJ. Comparison of the Mechanical Properties of a Conjugated Polymer Deposited Using Spin Coating, Interfacial Spreading, Solution Shearing, and Spray Coating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51436-51446. [PMID: 34677936 DOI: 10.1021/acsami.1c13043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanical properties of π-conjugated (semiconducting) polymers are a key determinant of the stability and manufacturability of devices envisioned for applications in energy and healthcare. These properties─including modulus, extensibility, toughness, and strength─are influenced by the morphology of the solid film, which depends on the method of processing. To date, the majority of work done on the mechanical properties of semiconducting polymers has been performed on films deposited by spin coating, a process not amenable to the manufacturing of large-area films. Here, we compare the mechanical properties of thin films of regioregular poly(3-heptylthiophene) (P3HpT) produced by three scalable deposition processes─interfacial spreading, solution shearing, and spray coating─and spin coating (as a reference). Our results lead to four principal conclusions. (1) Spray-coated films have poor mechanical robustness due to defects and inhomogeneous thickness. (2) Sheared films show the highest modulus, strength, and toughness, likely resulting from a decrease in free volume. (3) Interfacially spread films show a lower modulus but greater fracture strain than spin-coated films. (4) The trends observed in the tensile behavior of films cast using different deposition processes held true for both P3HpT and poly(3-butylthiophene) (P3BT), an analogue with a higher glass transition temperature. Grazing incidence X-ray diffraction and ultraviolet-visible spectroscopy reveal many notable differences in the solid structures of P3HpT films generated by all four processes. While these morphological differences provide possible explanations for differences in the electronic properties (hole mobility), we find that the mechanical properties of the film are dominated by the free volume and surface topography. In field-effect transistors, spread films had mobilities more than 1 magnitude greater than any other films, likely due to a relatively high proportion of edge-on texturing and long coherence length in the crystalline domains. Overall, spread films offer the best combination of deformability and charge-transport properties.
Collapse
Affiliation(s)
- Kartik Choudhary
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Alexander X Chen
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Gregory M Pitch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Rory Runser
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Armando Urbina
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Tim J Dunn
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Moses Kodur
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Andrew T Kleinschmidt
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Benjamin G Wang
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Jordan A Bunch
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - David P Fenning
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Alexander L Ayzner
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Darren J Lipomi
- Department of Nanoengineering and Chemical Engineering Program, University of California, San Diego, 9500 Gilman Dr. Mail Code 0448, La Jolla, California 92093-0448, United States
| |
Collapse
|
47
|
Zhao K, Zhang T, Zhang L, Li J, Li H, Wu F, Chen Y, Zhang Q, Han Y. Role of Molecular Weight in Microstructural Transition and Its Correlation to the Mechanical and Electrical Properties of P(NDI2OD-T2) Thin Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Junhang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Fan Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
48
|
Zhao B, Pei D, Jiang Y, Wang Z, An C, Deng Y, Ma Z, Han Y, Geng Y. Simultaneous Enhancement of Stretchability, Strength, and Mobility in Ultrahigh-Molecular-Weight Poly(indacenodithiophene-co-benzothiadiazole). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Bin Zhao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Dandan Pei
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yu Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Zhongli Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Chuanbin An
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Zhe Ma
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
49
|
Liu X, Yan Y, Zhang Q, Zhao K, Han Y. n-Type D-A Conjugated Polymers: Relationship Between Microstructure and Electrical/Mechanical Performance. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1269-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|