1
|
Zhang H, Gao J, Xu L, Zhang X. Case studies of radioactivity of drilling mud for in situ leaching uranium mining in China. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 251-252:106982. [PMID: 35964526 DOI: 10.1016/j.jenvrad.2022.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The drilling mud from in situ leaching uranium mining is a type of low-radioactivity waste that contains natural nuclides and other harmful substances. In order to determine whether the drilling mud can meet the requirements of radioactive exemption management standards, field investigations and data simulations were conducted in this study. Two typical uranium mines were selected for onsite investigations. Drilling mud from different layers (i.e., the upper covering layer and ore-bearing layer) and from different stages (e.g., logging stage mud, drilling expansion stage mud, and mixed mud) was sampled. For each sample, the 238U and 226Ra concentrations of the solid components and the U and 226Ra concentrations of the supernatant were analyzed. The results revealed that the highest 238U and 226Ra concentrations of the solid components were 4122 Bq/kg and 4077 Bq/kg, while the 238U and 226Ra concentrations of the mixed drilling mud were all less than 300 Bq/kg. A radioactivity estimation model was established for scenario analysis. Exemption management screening lines of waste drilling mud, which can be used to classify and treat the drilling project according to the deposit's grade and conditions, were proposed for in situ leaching drilling projects.
Collapse
Affiliation(s)
- Hui Zhang
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Beijing, China.
| | - Jie Gao
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Beijing, China
| | - Lechang Xu
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Beijing, China
| | - Xueli Zhang
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Beijing, China
| |
Collapse
|
2
|
Olson RA, Lott ME, Garrison JB, Davidson CLG, Trachsel L, Pedro DI, Sawyer WG, Sumerlin BS. Inverse Miniemulsion Photoiniferter Polymerization for the Synthesis of Ultrahigh Molecular Weight Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rebecca A. Olson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Megan E. Lott
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Cullen L. G. Davidson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Lucca Trachsel
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Diego I. Pedro
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - W. Gregory Sawyer
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
3
|
Plucinski A, Pavlovic M, Clarke M, Bhella D, Schmidt BVKJ. Stimuli-Responsive Aggregation of High Molar Mass Poly(N,N-Diethylacrylamide)-b-Poly(4-Acryloylmorpholine) in Tetrahydrofuran. Macromol Rapid Commun 2022; 43:e2100656. [PMID: 34783099 PMCID: PMC11475301 DOI: 10.1002/marc.202100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Indexed: 02/01/2023]
Abstract
The self-assembly of block copolymers constitutes a timely research area in polymer science with implications for applications like sensing or drug-delivery. Here, the unprecedented aggregation behavior of high molar mass block copolymer poly(N,N-diethylacrylamide)-b-poly(4-acryloylmorpholine) (PDEA-b-PAM) (Mn >400 kg mol-1 ) in organic solvent tetrahydrofuran (THF) is investigated. To elucidate the aggregation, dynamic light scattering, cryo-transmission electron microscopy, and turbidimetry are employed. The aggregate formation is assigned to the unprecedented upper critical solution temperature behavior of PAM in THF at elevated concentrations (> 6 wt.%) and high molar masses. Various future directions for this new thermo-responsive block copolymer are envisioned, for example, in the areas of photonics or templating of inorganic structures.
Collapse
Affiliation(s)
| | - Marko Pavlovic
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 1Potsdam14476Germany
- BioSense InstituteUniversity of Novi SadDr Zorana Djindjica 1, III‐8Novi Sad21000Serbia
| | - Mairi Clarke
- Scottish Centre for Macromolecular ImagingUniversity of GlasgowGlasgowG61 1QHUK
| | - David Bhella
- Scottish Centre for Macromolecular ImagingUniversity of GlasgowGlasgowG61 1QHUK
| | | |
Collapse
|
4
|
Schmidt BVKJ. Multicompartment Hydrogels. Macromol Rapid Commun 2022; 43:e2100895. [PMID: 35092101 DOI: 10.1002/marc.202100895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels belong to the most promising materials in polymer and materials science at the moment. As they feature soft and tissue-like character as well as high water-content, a broad range of applications are addressed with hydrogels, e.g. tissue engineering and wound dressings but also soft robotics, drug delivery, actuators and catalysis. Ways to tailor hydrogel properties are crosslinking mechanism, hydrogel shape and reinforcement, but new features can be introduced by variation of hydrogel composition as well, e.g. via monomer choice, functionalization or compartmentalization. Especially, multicompartment hydrogels drive progress towards complex and highly functional soft materials. In the present review the latest developments in multicompartment hydrogels are highlighted with a focus on three types of compartments, i.e. micellar/vesicular, droplets or multi-layers including various sub-categories. Furthermore, several morphologies of compartmentalized hydrogels and applications of multicompartment hydrogels will be discussed as well. Finally, an outlook towards future developments of the field will be given. The further development of multicompartment hydrogels is highly relevant for a broad range of applications and will have a significant impact on biomedicine and organic devices. This article is protected by copyright. All rights reserved.
Collapse
|
5
|
Esen C, Antonietti M, Kumru B. On the photopolymerization of mevalonic lactone methacrylate: exposing the potential of an overlooked monomer. Polym Chem 2022. [DOI: 10.1039/d1py01497h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This manuscript will exhibit the photopolymerization of mevalonic lactone methacrylate, an overlooked monomer, and how functional polymers with lactone pendant units can be synthesized.
Collapse
Affiliation(s)
- Cansu Esen
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Baris Kumru
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14424 Potsdam, Germany
| |
Collapse
|
6
|
Plucinski A, Schmidt BVKJ. pH sensitive water-in-water emulsions based on the pullulan and poly( N, N-dimethylacrylamide) aqueous two-phase system. Polym Chem 2022. [DOI: 10.1039/d2py00469k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel aqueous two-phase system based on pullulan and poly(N,N-dimethylacrylamide) is presented. Furthermore, it is used for the formation of pH sensitive water-in-water emulsions.
Collapse
|