1
|
Lei Y, Wang S, Jiang Y, Li Z, Liu N, Xu Y, Yu J, Cui M, Li Y, Zhao L. A robust triphenylamine-based monolithic polymer network for selective sieving of CO 2 and PM from flue gas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174463. [PMID: 38964385 DOI: 10.1016/j.scitotenv.2024.174463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The increasingly urgent issue of climate change is driving the development of carbon dioxide (CO2) capture and separation technologies in flue gas after combustion. The monolithic adsorbent stands out in practical adsorption applications for its simplified powder compaction process while maintaining the inherent balance between energy consumption for regeneration and selectivity for adsorption. However, optimizing the adsorption capacity and selectivity of CO2 separation materials remains a significant challenge. Herein, we synthesized monolithic polymer networks (N-CMPs) with triphenylamine adsorption sites, acid-base environment tolerance, and precise narrow microchannel pore systems for the selective sieving of CO2 and particulate matter (PM) in flue gas. The inherent continuous covalent bonding of N-CMPs, along with their highly delocalized π-π conjugated porous framework, ensures the stability of the monolithic polymer network's adsorption and separation capabilities under wet and acid-base conditions. Specifically, under the conditions of 1 bar at 273 K, the CO2 adsorption capacity of N-CMP-1 is 3.35 mmol/g. Attributed to the highly polar environment generated by triphenylamine and the inherent high micropore/mesopore ratio, N-CMPs exhibit an excellent ideal adsorbed solution theory (IAST) selectivity for CO2/N2 under simulated flue gas conditions (CO2/N2 = 15:85). Dynamic breakthrough experiments further visualize the high separation efficiency of N-CMPs in practical adsorption applications. Moreover, under acid-base conditions, N-CMPs achieve a capture efficiency exceeding 99.76 % for PM0.3, enabling the selective separation of CO2 and PM in flue gas. In fact, the combined capture of hazardous PM and CO2 from the exhaust gases produced by the combustion of fossil fuels will play a pivotal role in mitigating climate change and environmental issues until low-carbon and alternative energy technologies are widely adopted.
Collapse
Affiliation(s)
- Yang Lei
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Shaozhen Wang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanli Jiang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Nana Liu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuan Xu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiao Yu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Mengjiao Cui
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Li Zhao
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
2
|
Mohamed MG, Su BX, Kuo SW. Robust Nitrogen-Doped Microporous Carbon via Crown Ether-Functionalized Benzoxazine-Linked Porous Organic Polymers for Enhanced CO 2 Adsorption and Supercapacitor Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40858-40872. [PMID: 39039025 PMCID: PMC11311139 DOI: 10.1021/acsami.4c05645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Nitrogen-doped carbon materials, characterized by abundant microporous and nitrogen functionalities, exhibit significant potential for carbon dioxide capture and supercapacitors. In this study, a class of porous organic polymer (POP) were successfully synthesized by linking Cr-TPA-4BZ-Br4 and tetraethynylpyrene (Py-T). The model benzoxazine monomers of Cr-TPA-4BZ and Cr-TPA-4BZ-Br4 were synthesized using the traditional three-step method [involving CH═N formation, reduction by NaBH4, and Mannich condensation]. Subsequently, the Sonogashira coupling reaction connected the Cr-TPA-4BZ-Br4 and Py-T monomers, forming Cr-TPA-4BZ-Py-POP. The successful synthesis of Cr-TPA-4BZ-Br4 and Cr-TPA-4BZ-Py-POP was confirmed through various analytical techniques. After verifying the successful synthesis of Cr-TPA-4BZ-Py-POP, carbonization and KOH activation procedures were conducted. These crucial steps led to the formation of poly(Cr-TPA-4BZ-Py-POP)-800, a carbon material with a structure akin to graphite. In practical applications, poly(Cr-TPA-4BZ-Py-POP)-800 exhibited a noteworthy CO2 adsorption capacity of 4.4 mmol/g, along with specific capacitance values of 397.2 and 159.2 F g-1 at 0.5 A g-1 (measured in a three-electrode cell) and 1 A g-1 (measured in a symmetric coin cell), respectively. These exceptional dual capabilities stem from the optimal ratio of heteroatom doping. The outstanding performance of poly(Cr-TPA-4BZ-Py-POP)-800 microporous carbon holds significant promise for addressing contemporary energy and environmental challenges, making substantial contributions to both sectors.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department
of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Chemistry
Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Bo-Xuan Su
- Department
of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Department
of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Zhao L, Wang S, Li Z, Jiang Y, Liu X, Ouyang H, Xiong Z, Guo Y, Li Y, Lei Y. Ultra-stable hollow nanotube conjugated microporous polymer incorporating fluorenyl moieties for Co-capture of PM and CO 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133826. [PMID: 38377916 DOI: 10.1016/j.jhazmat.2024.133826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Conjugated microporous polymers have a highly delocalized π-π conjugated porous skeleton connected by covalent bonds, which can combine their excellent stability with high adsorption, in order to be applied to the study of co-capture of harmful particulate matter (PM) and carbon dioxide (CO2) under high temperature and high humidity conditions. In this paper, fluorene-based coupled conjugated microporous polymers (D-CMPs) with functionalized hollow nanotubes and abundant microporous structures were proposed. Through mechanism exploration and molecular electrostatic potential (MESP) calculation, the capture efficiency, adsorption capacity and selectivity of PM and CO2 in the waste gas stream of carbon-based combustion were analyzed. The results indicate that D-CMPs, with their rigid carbon-based π-conjugated framework, exhibit excellent tolerance under prolonged high-humidity conditions, with a capture efficiency exceeding 99.87% for PM0.3 and exceeding 99.99% for PM2.5. Meanwhile, based on its chemical/thermal stability, it can realize the recycling of adsorption-regeneration. On this basis, the "slip effect" induced by the open three-dimensional hierarchical porous structure of D-CMPs significantly enhances airflow dispersion and improves gas throughput (with a minimal permeation resistance of only 15 Pa). At a pressure of 1 bar and a temperature of 273.15 K, D-CMP-2 exhibited a CO2 adsorption capacity of up to 2.69 mmol g-1. The fitting results of three isothermal adsorption models demonstrate that D-CMPs exhibit an outstanding equilibrium selectivity towards CO2. Therefore, prior to the widespread adoption of low-carbon and clean energy technologies, porous solid materials exhibiting excellent structural stability, equilibrium selectivity, environmental tolerance, and high adsorption capacity emerge as optimal candidates for the treatment of industrial waste gases.
Collapse
Affiliation(s)
- Li Zhao
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shaozhen Wang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanli Jiang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xinrui Liu
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hang Ouyang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhengshao Xiong
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yu Guo
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Lei
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Karatayeva U, Al Siyabi SA, Brahma Narzary B, Baker BC, Faul CFJ. Conjugated Microporous Polymers for Catalytic CO 2 Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308228. [PMID: 38326090 PMCID: PMC11005716 DOI: 10.1002/advs.202308228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 02/09/2024]
Abstract
Rising carbon dioxide (CO2) levels in the atmosphere are recognized as a threat to atmospheric stability and life. Although this greenhouse gas is being produced on a large scale, there are solutions to reduction and indeed utilization of the gas. Many of these solutions involve costly or unstable technologies, such as air-sensitive metal-organic frameworks (MOFs) for CO2 capture or "non-green" systems such as amine scrubbing. Conjugated microporous polymers (CMPs) represent a simpler, cheaper, and greener solution to CO2 capture and utilization. They are often easy to synthesize at scale (a one pot reaction in many cases), chemically and thermally stable (especially in comparison with their MOF and covalent organic framework (COF) counterparts, owing to their amorphous nature), and, as a result, cheap to manufacture. Furthermore, their large surface areas, tunable porous frameworks and chemical structures mean they are reported as highly efficient CO2 capture motifs. In addition, they provide a dual pathway to utilize captured CO2 via chemical conversion or electrochemical reduction into industrially valuable products. Recent studies show that all these attractive properties can be realized in metal-free CMPs, presenting a truly green option. The promising results in these two fields of CMP applications are reviewed and explored here.
Collapse
|
5
|
Mahdy A, Aly KI, Mohamed MG. Construction novel polybenzoxazine coatings exhibiting corrosion protection of mild steel at different concentrations in a seawater solution. Heliyon 2023; 9:e17977. [PMID: 37539112 PMCID: PMC10395360 DOI: 10.1016/j.heliyon.2023.e17977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
In this work, a new and effective polymeric coating is used to improve mild steel's corrosion resistance. The coating incorporates a Schiff base moiety into a benzoxazine (BZ) precursor, resulting in improved protection against corrosion. The SF-Tol-BZ polymerization behavior and thermal properties were studied using differential scanning calorimetry (DSC) and thermalgravimetric analysis (TGA), respectively, at different curing temperatures. The poly(SF-Tol-BZ) cured at 240 °C had a Td10 value of 604 °C and a Tg of 225 °C. The efficacy of poly(SF-Tol-BZ) coatings in protecting mild steel (MS) from corrosion in a NaCl (3.5%) solution at room temperature was evaluated using various corrosion measurements, including open circuit potential (OCP), and electrochemical impedance spectroscopy (EIS). The results showed that increasing the poly(SF-Tol-BZ) concentration led to a corresponding increase in its protective efficiency, reaching a maximum of 92% at a concentration of 300 g/L. The coatings also exhibited a 24-fold increase in Rct values and a one-order-of-magnitude reduction in CPE compared to the bare mild steel. Finally, the poly(SF-Tol-BZ) precursors demonstrated a CO2 uptake of 23 mg g-1 (measured at 298 K).
Collapse
Affiliation(s)
- Abdulsalam Mahdy
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Chemistry Department, Faculty of Education & Science, Rada’a Albaydha University, Al-Baydha 38018, Yemen
| | - Kamal I. Aly
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Gamal Mohamed
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
6
|
Mousa AO, Lin ZI, Chuang CH, Chen CK, Kuo SW, Mohamed MG. Rational Design of Bifunctional Microporous Organic Polymers Containing Anthracene and Triphenylamine Units for Energy Storage and Biological Applications. Int J Mol Sci 2023; 24:ijms24108966. [PMID: 37240313 DOI: 10.3390/ijms24108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we synthesized two conjugated microporous polymers (CMPs), An-Ph-TPA and An-Ph-Py CMPs, using the Suzuki cross-coupling reaction. These CMPs are organic polymers with p-conjugated skeletons and persistent micro-porosity and contain anthracene (An) moieties linked to triphenylamine (TPA) and pyrene (Py) units. We characterized the chemical structures, porosities, thermal stabilities, and morphologies of the newly synthesized An-CMPs using spectroscopic, microscopic, and N2 adsorption/desorption isotherm techniques. Our results from thermogravimetric analysis (TGA) showed that the An-Ph-TPA CMP displayed better thermal stability with Td10 = 467 °C and char yield of 57 wt% compared to the An-Ph-Py CMP with Td10 = 355 °C and char yield of 54 wt%. Furthermore, we evaluated the electrochemical performance of the An-linked CMPs and found that the An-Ph-TPA CMP had a higher capacitance of 116 F g-1 and better capacitance stability of 97% over 5000 cycles at 10 A g-1. In addition, we assessed the biocompatibility and cytotoxicity of An-linked CMPs using the MTT assay and a live/dead cell viability assay and observed that they were non-toxic and biocompatible with high cell viability values after 24 or 48 h of incubation. These findings suggest that the An-based CMPs synthesized in this study have potential applications in electrochemical testing and the biological field.
Collapse
Affiliation(s)
- Aya Osama Mousa
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mohamed Gamal Mohamed
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
7
|
Yang L, Niu C, Cao X, Wang Y, Zhu Z, Sun H, Liang W, Li J, Li A. Mechanically robust conjugated microporous polymer membranes prepared using polyvinylpyrrolidone (PVP) electrospun nanofibers as a template for efficient PM capture. J Colloid Interface Sci 2023; 637:305-316. [PMID: 36706726 DOI: 10.1016/j.jcis.2023.01.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Air pollution has become a challenging environmental problem worldwide due to rapid industrial development and excessive emissions of vehicle exhaust. Herein, we report a preparation of conjugated microporous polymer membranes (CMPM) with a hierarchical porous structure by electrospun polyvinylpyrrolidone (PVP) nanofibers as a template for effective removal of PM from airborne and vehicle exhaust. CMP membranes have hierarchical holes, where the macropores are from electrospun nanofiber membranes and the mesopores are from polymer synthesis. Taking advantage of its inherent physicochemical and thermal stability and hierarchical hole characteristics, the CMPM-based filter can work continuously for up to 36 h and still maintains a high removal efficiency (>99.56%), and also has a high filtration efficiency in the treatment of vehicle exhausts, with 95.18% for PM0.3, 98% for PM0.5 and >99% for PM2.5-10.0. The superior mechanical properties of CMPM allow the filter to be cleaned and reused. After three cycles, the filtration effectiveness of CMPM is still 94.83% for respirable particulate matter. Under high humidity (RH ≥ 95%) conditions, the CMPM-based filter showed higher than 95.37% filtration of PM0.3-10, and the oil adsorption rate could be maintained at 284% at high speed, proving the great potential of CMPM to clean air in complex situations.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Cheng Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Xiaoyin Cao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Yunjia Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China.
| |
Collapse
|
8
|
Chung WT, Mekhemer IM, Mohamed MG, Elewa AM, EL-Mahdy AF, Chou HH, Kuo SW, Wu KCW. Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Aly KI, Amer AA, Mahross MH, Belal MR, Soliman AM, Mohamed MG. Construction of novel polybenzoxazine coating precursor exhibiting excellent anti-corrosion performance through monomer design. Heliyon 2023; 9:e15976. [PMID: 37215883 PMCID: PMC10192533 DOI: 10.1016/j.heliyon.2023.e15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
In this study, we utilized salicylaldehyde (SA) and p-toluidine (Tol-NH2) to synthesize 2-(Z)[(4-methylphenyl)imino]methylphenol (SA-Tol-SF), which was then reduced to 2-[(4-methylphenyl)amino]methylphenol, producing SA-Tol-NH. SA-Tol-NH was further reacted with formaldehyde to create SA-Tol-BZ monomer. Poly(SA-Tol-BZ) was produced by thermally curing it at 210 °C, after synthesizing it from SA-Tol-BZ. The chemical structure of SA-Tol-BZ was analyzed using various analytical techniques such as FT-IR, 1H NMR spectroscopy, and 13C NMR spectroscopy TGA, SEM, DSC, and X-ray analyses. Afterward, we applied the obtained poly(SA-Tol-BZ) onto mild steel (MS) using thermal curing and spray coating techniques. To examine the anticorrosion attributes of MS coated with poly(SA-Tol-BZ), electrochemical characterization was employed. The study proved that poly(SA-Tol-BZ) coating had a high level of effectiveness in preventing corrosion on MS, with an efficacy of 96.52%, and also exhibited hydrophobic properties.
Collapse
Affiliation(s)
- Kamal I. Aly
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Amer A. Amer
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mahmoud H. Mahross
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mostafa R. Belal
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Ahmed M.M. Soliman
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mohamed Gamal Mohamed
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
10
|
Mousa AO, Mohamed MG, Chuang CH, Kuo SW. Carbonized Aminal-Linked Porous Organic Polymers Containing Pyrene and Triazine Units for Gas Uptake and Energy Storage. Polymers (Basel) 2023; 15:polym15081891. [PMID: 37112038 PMCID: PMC10146094 DOI: 10.3390/polym15081891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Porous organic polymers (POPs) have plenteous exciting features due to their attractive combination of microporosity with π-conjugation. Nevertheless, electrodes based on their pristine forms suffer from severe poverty of electrical conductivity, precluding their employment within electrochemical appliances. The electrical conductivity of POPs may be significantly improved and their porosity properties could be further customized by direct carbonization. In this study, we successfully prepared a microporous carbon material (Py-PDT POP-600) by the carbonization of Py-PDT POP, which was designed using a condensation reaction between 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PDA-4NH2) and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl)tetrabenzaldehyde (Py-Ph-4CHO) in the presence of dimethyl sulfoxide (DMSO) as a solvent. The obtained Py-PDT POP-600 with a high nitrogen content had a high surface area (up to 314 m2 g-1), high pore volume, and good thermal stability based on N2 adsorption/desorption data and a thermogravimetric analysis (TGA). Owing to the good surface area, the as-prepared Py-PDT POP-600 showed excellent performance in CO2 uptake (2.7 mmol g-1 at 298 K) and a high specific capacitance of 550 F g-1 at 0.5 A g-1 compared with the pristine Py-PDT POP (0.24 mmol g-1 and 28 F g-1).
Collapse
Affiliation(s)
- Aya Osama Mousa
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Ultrastable Two-Dimensional Fluorescent Conjugated Microporous Polymers Containing Pyrene and Fluorene Units for Metal Ion Sensing and Energy Storage. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
12
|
Li Q, Xiang S, Fu F, Liu X, Zhao S. Co‐catalytic system design for deriving reactive diluent to construct robust benzoxazine resin with microphase‐separated structure. J Appl Polym Sci 2023. [DOI: 10.1002/app.53718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Qing Li
- College of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Shuangfei Xiang
- Laboratory of Functional Fiber Surface Zhejiang Provincial Innovation Center of Advanced Textile Technology Shaoxing China
| | - Feiya Fu
- College of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Xiangdong Liu
- College of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Shujun Zhao
- College of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
13
|
Yang Y, Lu Y, Zhang K. A highly thermally stable benzoxazine resin derived from norbornene and natural renewable tyramine and furfurylamine. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
14
|
Fang Z, Deng Q, Zhou Y, Fu X, Yi J, Wu L, Dai Q, Yang Y. Pendant Length-Dependent Electrochemical Performances for Conjugated Organic Polymers as Solid-State Polymer Electrolytes in Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5283-5292. [PMID: 36691802 DOI: 10.1021/acsami.2c20127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of solid-state polymer electrolytes (SPEs) has been plagued by poor ionic conductivity, low ionic transference number, and limited electrochemical potential window. The exploitation of ionized SPEs is a feasible avenue to solve this problem. Herein, conjugated organic polymers (COPs) with excellent designability and rich pore structures have been selected as platforms for exploration. Three cationic COPs with different chain lengths of quaternary ammonium salts (CbzT@Cx, x = 4, 6, 9) are designed and applied to SPEs for the first time. Meanwhile, the effects of chain lengths on their electrochemical performances are compared. Especially, CbzT@C9 shows the most attractive electrochemical performance due to its high specific surface area of 212.3 m2 g-1. The larger specific surface area allows more exposure of the long-chain quaternary ammonium cation groups, which is more favorable for the dissociation of lithium salts. Moreover, the flexible long-chain structure increases the compatibility with poly(ethylene oxide) (PEO) and reduces the crystallinity of PEO to some extent. The richer pore structure can accommodate more PEO, further disrupting the crystallinity of PEO and creating more channels for the ether-oxygen chain to transport lithium ions. At 60 °C, the SPE (CbzTM@C9) presents an excellent ionic conductivity (σ) of 8.00 × 10-4 S cm-1. CbzTM@C9 has a lithium-ion transference number (tLi+) of 0.48. Thus, the assembled Li/CbzTM@C9/LiFePO4 battery provides a good discharge capacity of 158.8 mAh g-1 at 0.1C. After 70 cycles, the capacity retention rate is 93.8% with a Coulombic efficiency of 98%. The excellent flexibility brings stable power supply capability under various bending angles to the assembled Li/CbzTM@C9/LiFePO4 soft-packed battery. The project uses conjugated organic polymers in SPEs and creates an avenue to develop flexible energy storage equipment.
Collapse
Affiliation(s)
- Zhao Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Yang Zhou
- The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing401120, P. R. China
| | - Xiaolong Fu
- Xi'an Modern Chemistry Research Institute, Xi'an710065, Shannxi, P. R. China
| | - Jiacheng Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Lizhi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Qingyang Dai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| |
Collapse
|
15
|
Wang K, Geng T, Xu H. The synthesis of triazine‐based conjugated microporous polymers via nucleophilic substitution reactions for fluorescence sensing to
o
‐nitrophenol. J Appl Polym Sci 2023. [DOI: 10.1002/app.53707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kang Wang
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| | - Tong‐Mou Geng
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| | - Heng Xu
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| |
Collapse
|
16
|
Design Hybrid Porous Organic/Inorganic Polymers Containing Polyhedral Oligomeric Silsesquioxane/Pyrene/Anthracene Moieties as a High-Performance Electrode for Supercapacitor. Int J Mol Sci 2023; 24:ijms24032501. [PMID: 36768824 PMCID: PMC9916954 DOI: 10.3390/ijms24032501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
We synthesized two hybrid organic-inorganic porous polymers (HPP) through the Heck reaction of 9,10 dibromoanthracene (A-Br2) or 1,3,6,8-tetrabromopyrene (P-Br4)/A-Br2 as co-monomers with octavinylsilsesquioxane (OVS), in order to afford OVS-A HPP and OVS-P-A HPP, respectively. The chemical structures of these two hybrid porous polymers were validated through FTIR and solid-state 13C and 29Si NMR spectroscopy. The thermal stability and porosity of these materials were measured by TGA and N2 adsorption/desorption analyses, demonstrating that OVS-A HPP has higher thermal stability (Td10: 579 °C) and surface area (433 m2 g-1) than OVS-P-A HPP (Td10: 377 °C and 98 m2 g-1) due to its higher cross-linking density. Furthermore, the electrochemical analysis showed that OVS-P-A HPP has a higher specific capacitance (177 F g -1 at 0.5 A F g-1) when compared to OVS-A HPP (120 F g -1 at 0.5 A F g-1). The electron-rich phenyl rings and Faradaic reaction between the π-conjugated network and anthracene moiety may be attributed to their excellent electrochemical performance of OVS-P-A HPP.
Collapse
|
17
|
Mohamed MG, Elsayed MH, Ye Y, Samy MM, Hassan AE, Mansoure TH, Wen Z, Chou HH, Chen KH, Kuo SW. Construction of Porous Organic/Inorganic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxane for Energy Storage and Hydrogen Production from Water. Polymers (Basel) 2022; 15:polym15010182. [PMID: 36616530 PMCID: PMC9824186 DOI: 10.3390/polym15010182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, we used effective and one-pot Heck coupling reactions under moderate reaction conditions to construct two new hybrid porous polymers (named OVS-P-TPA and OVS-P-F HPPs) with high yield, based on silsesquioxane cage nanoparticles through the reaction of octavinylsilsesquioxane (OVS) with different brominated pyrene (P-Br4), triphenylamine (TPA-Br3), and fluorene (F-Br2) as co-monomer units. The successful syntheses of both OVS-HPPs were tested using various instruments, such as X-ray photoelectron (XPS), solid-state 13C NMR, and Fourier transform infrared spectroscopy (FTIR) analyses. All spectroscopic data confirmed the successful incorporation and linkage of P, TPA, and F units into the POSS cage in order to form porous OVS-HPP materials. In addition, the thermogravimetric analysis (TGA) and N2 adsorption analyses revealed the thermal stabilities of OVS-P-F HPP (Td10 = 444 °C; char yield: 79 wt%), with a significant specific surface area of 375 m2 g-1 and a large pore volume of 0.69 cm3 g-1. According to electrochemical three-electrode performance, the OVS-P-F HPP precursor displayed superior capacitances of 292 F g-1 with a capacity retention of 99.8% compared to OVS-P-TPA HPP material. Interestingly, the OVS-P-TPA HPP showed a promising HER value of 701.9 µmol g-1 h-1, which is more than 12 times higher than that of OVS-P-F HPP (56.6 µmol g-1 h-1), based on photocatalytic experimental results.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
- Correspondence: (M.G.M.); (S.-W.K.)
| | - Mohamed Hammad Elsayed
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Yunsheng Ye
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Maha Mohamed Samy
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Ahmed E. Hassan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuei-Hsien Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.G.M.); (S.-W.K.)
| |
Collapse
|
18
|
Liu Y, Yuan L, Liang G, Gu A. Developing intrinsic halogen-free and phosphorus-free flame retardant biobased benzoxazine resins with superior thermal stability and high strength. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Constructing conjugated microporous polymers containing triphenylamine moieties for high-performance capacitive energy storage. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Saravanan Veera Sena V, Arumugam H, Mohamed Mydeen K, Krishnasamy B, Mohamed Iqbal M, Muthukaruppan A. Industrial cutting waste granite dust reinforced cardanol benzoxazine/epoxy resin hybrid composites for high‐voltage electrical insulation applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hariharan Arumugam
- Polymer Engineering Laboratory PSG Institute of Technology and Applied Research Coimbatore India
| | | | - Balaji Krishnasamy
- Polymer Engineering Laboratory PSG Institute of Technology and Applied Research Coimbatore India
| | - Mohamedmustafa Mohamed Iqbal
- Polymer Engineering Laboratory PSG Institute of Technology and Applied Research Coimbatore India
- Department of Electrical and Electronics Engineering PSG Institute of Technology and Applied Research Coimbatore India
| | - Alagar Muthukaruppan
- Polymer Engineering Laboratory PSG Institute of Technology and Applied Research Coimbatore India
| |
Collapse
|
21
|
An Ultrastable Porous Polyhedral Oligomeric Silsesquioxane/Tetraphenylthiophene Hybrid as a High-Performance Electrode for Supercapacitors. Molecules 2022; 27:molecules27196238. [PMID: 36234775 PMCID: PMC9572779 DOI: 10.3390/molecules27196238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we synthesized three hybrid microporous polymers through Heck couplings of octavinylsilsesquioxane (OVS) with 2,5-bis(4-bromophenyl)-1,3,4-oxadiazole (OXD-Br2), tetrabromothiophene (Th-Br4), and 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (TPTh-Br2), obtaining the porous organic–inorganic polymers (POIPs) POSS-OXD, POSS-Th, and POSS-TPTh, respectively. Fourier transform infrared spectroscopy and solid state 13C and 29Si NMR spectroscopy confirmed their chemical structures. Thermogravimetric analysis revealed that, among these three systems, the POSS-Th POIP possessed the highest thermal stability (T5: 586 °C; T10: 785 °C; char yield: 90 wt%), presumably because of a strongly crosslinked network formed between its OVS and Th moieties. Furthermore, the specific capacity of the POSS-TPTh POIP (354 F g−1) at 0.5 A g−1 was higher than those of the POSS-Th (213 F g−1) and POSS-OXD (119 F g−1) POIPs. We attribute the superior electrochemical properties of the POSS-TPTh POIP to its high surface area and the presence of electron-rich phenyl groups within its structure.
Collapse
|
22
|
Liu L, Wang F, Zhu Y, Qi H. Preparation and properties of benzoxazine precursors containing siloxane units and their epoxy copolymers. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221128295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Four siloxane benzoxazines containing different rigid segments were successfully synthesized and characterized herein, including a benzene ring, a biphenyl, a naphthalene ring, and a diphenyl sulfone group. Different rigid segments had different effects on polymer properties. The introduction of the naphthalene ring and sulfone group considerably reduced the curing temperature of benzoxazine. Although the benzoxazine with the naphthalene ring exhibited low heat resistance, all the four samples showed a high char yield at 800°C under nitrogen atmosphere. In addition, during copolymerization with AG-80 epoxy, the introduction of epoxy promoted the curing of the benzoxazines containing the naphthalene ring and sulfone group. The heat resistance of all copolymers was considerably improved, especially for the copolymer containing the naphthalene ring, whose 5% thermal weight loss temperature ( Td5) increased from 248°C to 321°C under nitrogen atmosphere. The copolymer containing the biphenyl structure had the highest glass transition temperature, reaching 259.1°C. Copolymerization with epoxy also considerably improved the tensile strength and elongation at break of the copolymers, which were much higher than those of traditional bisphenol A-aniline based benzoxazine (BA-a). Compared with the neat benzoxazine prepared using siloxane and bisphenol A, the developed copolymers also had better tensile properties, and the copolymer containing the sulfone group showed the greatest improvement (from 49 to 69 MPa, from 3.1% to 9.12%).
Collapse
Affiliation(s)
- Lele Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai, China
| | - Fan Wang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai, China
| | - Yaping Zhu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai, China
| | - Huimin Qi
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai, China
| |
Collapse
|
23
|
Mohamed MG, Hu HY, Madhu M, Ejaz M, Sharma SU, Tseng WL, Samy MM, Huang CW, Lee JT, Kuo SW. Construction of Ultrastable Conjugated Microporous Polymers Containing Thiophene and Fluorene for Metal Ion Sensing and Energy Storage. MICROMACHINES 2022; 13:mi13091466. [PMID: 36144089 PMCID: PMC9505267 DOI: 10.3390/mi13091466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/01/2023]
Abstract
In this study, we have used the one-pot polycondensation method to prepare novel 2D conjugated microporous polymers (Th-F-CMP) containing thiophene (Th) and fluorene (Fl) moieties through the Suzuki cross-coupling reaction. The thermogravimetric analysis (TGA) data revealed that Th-F-CMP (Td10 = 418 °C, char yield: 53 wt%). Based on BET analyses, the Th-F-CMP sample displayed a BET specific surface area of 30 m2 g-1, and the pore size was 2.61 nm. Next, to show the effectiveness of our study, we utilized Th-F-CMP as a fluorescence probe for the selective detection of Fe3+ ions at neutral pH with a linear range from 2.0 to 25.0 nM (R2 = 0.9349). Furthermore, the electrochemical experimental studies showed that the Th-F-CMP framework had a superior specific capacity of 84.7 F g-1 at a current density of 0.5 A g-1 and outstanding capacitance retention (88%) over 2000 cycles.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Huan-Yu Hu
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Mohsin Ejaz
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Santosh U Sharma
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Maha Mohamed Samy
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Cheng-Wei Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Jyh-Tsung Lee
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
24
|
Mohamed MG, Chang WC, Kuo SW. Crown Ether- and Benzoxazine-Linked Porous Organic Polymers Displaying Enhanced Metal Ion and CO 2 Capture through Solid-State Chemical Transformation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Wan-Chun Chang
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
25
|
Xie L, Yang R, Li N, Froimowicz P, Zhang K. Competitive Study of Novel Triptycene-Containing Benzoxazine Monomers and a Thermoresponsive Linear Main Chain-Type Benzoxazine Copolymer: Synthesis, Polymerization, and Thermal Properties of Their Thermosets. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Xie
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rui Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nan Li
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pablo Froimowicz
- Design and Chemistry of Macromolecules Group, Institute of Technology in Polymers and Nanotechnology (ITPN), UBA-CONICET, FADU, University of Buenos Aires, Intendente Güiraldes 2160, Pabellón III, Subsuelo, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
26
|
Mohamed MG, Kuo SW. Progress in the self-assembly of organic/inorganic polyhedral oligomeric silsesquioxane (POSS) hybrids. SOFT MATTER 2022; 18:5535-5561. [PMID: 35880446 DOI: 10.1039/d2sm00635a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This Review describes recent progress in the self-assembly of organic/inorganic POSS hybrids derived from mono-, di-, and multi-functionalized POSS cages. We highlight the self-assembled structures and physical properties of giant surfactants and chain-end- and side-chain-type hybrids derived from mono-functionalized POSS cages; main-chain-type hybrids derived from di-functionalized POSS cages; and star-shaped hybrids derived from multi-functionalized POSS cages; with various polymeric attachments, including polystyrene, poly(methyl methacrylate), phenolic, PVPh, and polypeptides.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
27
|
Asad M, Imran Anwar M, Abbas A, Younas A, Hussain S, Gao R, Li LK, Shahid M, Khan S. AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Intra- and Intermolecular Hydrogen Bonding in Miscible Blends of CO2/Epoxy Cyclohexene Copolymer with Poly(Vinyl Phenol). Int J Mol Sci 2022; 23:ijms23137018. [PMID: 35806022 PMCID: PMC9266814 DOI: 10.3390/ijms23137018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, we synthesized a poly(cyclohexene carbonate) (PCHC) through alternative ring-opening copolymerization of CO2 with cyclohexene oxide (CHO) mediated by a binary LZn2OAc2 catalyst at a mild temperature. A two-dimensional Fourier transform infrared (2D FTIR) spectroscopy indicated that strong intramolecular [C–H···O=C] hydrogen bonding (H-bonding) occurred in the PCHC copolymer, thereby weakening its intermolecular interactions and making it difficult to form miscible blends with other polymers. Nevertheless, blends of PCHC with poly(vinyl phenol) (PVPh), a strong hydrogen bond donor, were miscible because intermolecular H-bonding formed between the PCHC C=O units and the PVPh OH units, as evidenced through solid state NMR and one-dimensional and 2D FTIR spectroscopic analyses. Because the intermolecular H-bonding in the PCHC/PVPh binary blends were relatively weak, a negative deviation from linearity occurred in the glass transition temperatures (Tg). We measured a single proton spin-lattice relaxation time from solid state NMR spectra recorded in the rotating frame [T1ρ(H)], indicating full miscibility on the order of 2–3 nm; nevertheless, the relaxation time exhibited a positive deviation from linearity, indicating that the hydrogen bonding interactions were weak, and that the flexibility of the main chain was possibly responsible for the negative deviation in the values of Tg.
Collapse
|
29
|
Triphenylamine-based conjugated microporous polymers as dye adsorbents and supercapacitors. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Zhang S, Li Q, Ye J, Sun H, Liu X. Probing the copolymerization of alkynyl and cyano groups using monocyclic benzoxazine as model compound. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Shi K, Yao H, Wang T, Song Y, Wei Y, Zhang S, Guan S. Crosslinked porous porphyrin-based polyimides based on terminal alkynyl groups for high carbon dioxide selectivity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Yang W, Xie Y, Chen J, Huang C, Xu Y, Lin Y. Metal Ion-Catalyzed Low-Temperature Curing of Urushiol-Based Polybenzoxazine. Front Chem 2022; 10:879605. [PMID: 35572108 PMCID: PMC9096162 DOI: 10.3389/fchem.2022.879605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 12/03/2022] Open
Abstract
In this work, urushiol-based polybenzoxazine is cured by the Lewis acid (FeCl3, AlCl3, and CuCl2) at low temperature instead of high thermal curing temperature. The effect of the Lewis acid on structures and properties of the polymers is revealed. The relating urushiol-based benzoxazine monomer (BZ) was synthesized by natural urushiol, formaldehyde, and n-octylamine. The monomer was reacted with the Lewis acid with a molar ratio of 6:1 (Nmonomer: NMetal) at 80°C to obtain films that can be cured at room temperature. The chemical structures of benzoxazine monomers were identified by Fourier-transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H-NMR). The interaction between the metal ion and the polymers is revealed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance-FTIR (ATR-FTIR). The effect of the Lewis acid on the mechanical properties, wettability, and thermal stability was investigated. The results show that the benzoxazine cured by Cu2+ has a better performance than that cured by Al3+ and Fe3+.
Collapse
Affiliation(s)
- Wen Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Yaofeng Xie
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Jipeng Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
- *Correspondence: Yucai Lin, ; Yanlian Xu, ; Jipeng Chen,
| | - Chunmei Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Yanlian Xu
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou, China
- *Correspondence: Yucai Lin, ; Yanlian Xu, ; Jipeng Chen,
| | - Yucai Lin
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
- *Correspondence: Yucai Lin, ; Yanlian Xu, ; Jipeng Chen,
| |
Collapse
|
33
|
Wu R, Hang Y, Li J, Bao A. Preparation of biomass derived phosphorus‐doped microporous carbon material and its application in dye adsorption and CO
2
capture. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ren Wu
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University Hohhot China
| | - Yongping Hang
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University Hohhot China
| | - Jinhao Li
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University Hohhot China
| | - Agula Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University Hohhot China
| |
Collapse
|
34
|
Mohamed MG, Li CJ, Khan MAR, Liaw CC, Zhang K, Kuo SW. Formaldehyde-Free Synthesis of Fully Bio-Based Multifunctional Bisbenzoxazine Resins from Natural Renewable Starting Materials. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Chemistry Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Chia-Jung Li
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Mo Aqib Raza Khan
- Department of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
35
|
Weng MT, Elsyed AFN, Yang PC, Mohamed MG, Kuo SW, Lin KS. Fluorescent and thermoresponsive tetraphenylethene-based cross-linked poly(N-isopropylacrylamide)s: Synthesis, thermal/AIE properties, and cell viability. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Ranganathan S, Arumugam H, Krishnasamy B, Sathy Srikandan S, Mallaiya K, Alagar M. Bio-based polybenzoxazines as an efficient coatings to protect mild steel surfaces from corrosion. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221085163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
New types of mono and bi-functional benzoxazine monomers were synthesized using cardanol (C) and 4-aminobenzonitrile (abn), p-phenylediamine ( ppda) along with paraformaldehyde. The synthesized benzoxazine monomers structure was elucidated by 1H, 13C-NMR and FTIR spectroscopic techniques. The polymerization temperature (Tp) of C-abn and C- ppda are noticed at 280oC and 237oC, respectively. It was also noticed that bi-functional benzoxazine (C- ppda) possesses lower curing temperature than mono-functional benzoxazine (C-abn). The ring opening polymerization of benzoxazine was confirmed by FTIR spectroscopy. Thermal analyses indicate that, benzoxazine [poly(C- ppda)] possesses higher thermal stability than poly(C-abn). The surface roughness of the benzoxazine coated MS specimen was analysed by atomic force microscope. The values of water contact angles obtained for poly(C-abn) and poly(C- ppda) are 145o and 148o, respectively. It was noticed that the mild steel specimen coated with bio-based benzoxazine C-abn exhibit excellent resistance to corrosion.
Collapse
Affiliation(s)
- Sharanya Ranganathan
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, India
| | - Hariharan Arumugam
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, India
| | - Balaji Krishnasamy
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, India
| | | | | | - Muthukaruppan Alagar
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Coimbatore, India
| |
Collapse
|
37
|
Mohamed MG, Mansoure TH, Samy MM, Takashi Y, Mohammed AAK, Ahamad T, Alshehri SM, Kim J, Matsagar BM, Wu KCW, Kuo SW. Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules 2022; 27:2025. [PMID: 35335388 PMCID: PMC8952824 DOI: 10.3390/molecules27062025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, conjugated microporous polymers (CMPs) have become important precursors for environmental and energy applications, compared with inorganic electrode materials, due to their ease of preparation, facile charge storage process, π-conjugated structures, relatively high thermal and chemical stability, abundance in nature, and high surface areas. Therefore, in this study, we designed and prepared new benzobisthiadiazole (BBT)-linked CMPs (BBT-CMPs) using a simple Sonogashira couplings reaction by reaction of 4,8-dibromobenzo(1,2-c;4,5-c')bis(1,2,5)thiadiazole (BBT-Br2) with ethynyl derivatives of triphenylamine (TPA-T), pyrene (Py-T), and tetraphenylethene (TPE-T), respectively, to afford TPA-BBT-CMP, Py-BBT-CMP, and TPE-BBT-CMP. The chemical structure and properties of BBT-CMPs such as surface areas, pore size, surface morphologies, and thermal stability using different measurements were discussed in detail. Among the studied BBT-CMPs, we revealed that TPE-BBT-CMP displayed high degradation temperature, up to 340 °C, with high char yield and regular, aggregated sphere based on thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Furthermore, the Py-BBT-CMP as organic electrode showed an outstanding specific capacitance of 228 F g-1 and superior capacitance stability of 93.2% (over 2000 cycles). Based on theoretical results, an important role of BBT-CMPs, due to their electronic structure, was revealed to be enhancing the charge storage. Furthermore, all three CMP polymers featured a high conjugation system, leading to improved electron conduction and small bandgaps.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Tharwat Hassan Mansoure
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Maha Mohamed Samy
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Yasuno Takashi
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
| | - Ahmed A. K. Mohammed
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; (T.H.M.); (A.A.K.M.)
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (T.A.); (S.M.A.)
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11362, Saudi Arabia; (T.A.); (S.M.A.)
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Babasaheb M. Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Shiao-Wei Kuo
- Center of Crystal Research, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.G.M.); (M.M.S.); (Y.T.)
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
| |
Collapse
|
38
|
Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors. Int J Mol Sci 2022; 23:ijms23063174. [PMID: 35328595 PMCID: PMC8951433 DOI: 10.3390/ijms23063174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl2) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N2 adsorption–desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406–751 m2·g−1. Furthermore, An-CTF-10-500 had a capacitance of 589 F·g−1, remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO2 adsorption capacity up to 5.65 mmol·g−1 at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO2 uptake.
Collapse
|
39
|
Samy MM, Mohamed MG, Mansoure TH, Meng TS, Khan MAR, Liaw CC, Kuo SW. Solid state chemical transformations through ring-opening polymerization of ferrocene-based conjugated microporous polymers in host–guest complexes with benzoxazine-linked cyclodextrin. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Zhou Z, Si Q, Wan L, Kuo SW, Zhou C, Xin Z. Curing Kinetics of Main-Chain Benzoxazine Polymers Synthesized in Continuous Flow. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhou Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Si
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Wan
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Changlu Zhou
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Xin
- State Key Laboratory of Chemistry Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
41
|
Zhang W, Wu Y, Li Y, Chen S, Fu Y, Zhang Z, Yan T, Wang S, Ma H. Fluorine-functionalized Porous Organic Polymers for Durable F-gas Capture from Semiconductor Etching Exhaust. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yue Wu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yinhui Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Shuhui Chen
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yu Fu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zhonghui Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Tong Yan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Shanshan Wang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
42
|
Kuo SW. Hydrogen bonding interactions in polymer/polyhedral oligomeric silsesquioxane nanomaterials. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02885-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Gao R, Wei XS, Zhao W, Xie A, Dong W. Machine learning-assisted array from fluorescent conjugated microporous polymers for multiple explosives recognition. Anal Chim Acta 2022; 1192:339343. [PMID: 35057934 DOI: 10.1016/j.aca.2021.339343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022]
Abstract
The fluorescent properties of conjugated microporous polyphenylene (CMPs) were tuned through a wide range by inclusion of small amount of comonomer as chromophore in the network. The multi-color CMPs were used for explosives sensing and demonstrated broad sensitivity (ranging from -0.01888 μM-1 to -0.00467 μM-1) and LODs (ranging from 31.0 nM to 125.3 nM) against thirteen explosive compounds including nitroaromatics (NACs), nitramines (NAMs) and nitrogen-rich heterocycles (NRHCs). The CMPs were also developed as a sensor array for discrimination of thirteen explosives, specifically including NT, p-DNB, DNT, TNT, TNP, TNR, RDX, HMX, CL-20, FOX-7, NTO, DABT and DHT. By using classical statistical method "Linear Discriminant Analysis (LDA)", the thirteen explosives at a fixed concentration were completely discriminated and unknown test samples were indentied with 88% classification accuracy. Moreover, explosives in different concentrations and the mixtures of explosives were also successfully classified. Compared with LDA, Machine Learning algorithms have significant advantages in analyzing the array-based sensing data. Different Machine Learning models for pattern recognition have also been implemented and discussed here and much higher accuracy (96% for "neural network") can be achieved in predicting unknown test samples after training.
Collapse
Affiliation(s)
- Ruru Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiu-Shen Wei
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Zhao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Aming Xie
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
44
|
Study of two novel siloxane-containing polybenzoxazines with intrinsic low dielectric constant. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Metal Complexes of the Porphyrin-Functionalized Polybenzoxazine. Polymers (Basel) 2022; 14:polym14030449. [PMID: 35160439 PMCID: PMC8839356 DOI: 10.3390/polym14030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
New porphyrin-functionalized benzoxazine (Por-BZ) in high purity and yield was synthesized in this study based on 1H and 13C NMR and FTIR spectroscopic analyses through the reduction of Schiff base formed from tetrakis(4-aminophenyl)porphyrin (TAPP) and salicylaldehyde and the subsequent reaction with CH2O. Thermal properties of the product formed through ring-opening polymerization (ROP) of Por-BZ were measured using DSC, TGA and FTIR spectroscopy. Because of the rigid structure of the porphyrin moiety appended to the benzoxazine unit, the temperature required for ROP (314 °C) was higher than the typical Pa-type benzoxazine monomer (ca. 260 °C); furthermore, poly(Por-BZ) possessed a high thermal decomposition temperature (Td10 = 478 °C) and char yield (66 wt%) after thermal polymerization at 240 °C. An investigation of the thermal and luminescence properties of metal–porphyrin complexes revealed that the insertion of Ni and Zn ions decreased the thermal ROP temperatures of the Por-BZ/Ni and Por-BZ/Zn complexes significantly, to 241 and 231 °C, respectively. The metal ions acted as the effective promoter and catalyst for the thermal polymerization of the Por-BZ monomer, and also improved the thermal stabilities after thermal polymerization.
Collapse
|
46
|
Zhang Y, Zhang C, Shi W, Zhang Z, Zhao Y, Luo X, Liu X. Pyridine-based conjugated microporous polymers as adsorbents for CO 2 uptake via weak supramolecular interaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj00641c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two pyridine-based conjugated microporous polymers with high micro-porosity exhibited a high CO2 capture value via weak supramolecular interaction.
Collapse
Affiliation(s)
- Yuwei Zhang
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chunyu Zhang
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Wei Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yanning Zhao
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Xiaolong Luo
- Advanced Institute of Materials Science, School of Chemistry and Biology, Changchun University of Technology, Changchun 130012, China
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
47
|
Tian Z, Ye X, Zhou P, Zhu Z, Li J, Sun H, Liang W, Liu Y, Li A. Bifunctional conjugated microporous polymer based filters for highly efficient PM and gaseous iodine capture. Polym Chem 2022. [DOI: 10.1039/d2py00529h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cross-linked conjugated microporous polymers (CMPs) based air filters obtained by a one-step cross-coupling reaction for effective capture of particulate matter and gaseous iodine from dusty air.
Collapse
Affiliation(s)
- Zhuoyue Tian
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Xingyun Ye
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Peilei Zhou
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| | - Yin Liu
- Gansu Research Institute of chemical Industry Co., Ltd., Guchengping Road 1, Lanzhou 730050, P. R. China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China
| |
Collapse
|
48
|
Muraoka M, Goto M, Minami M, Zhou D, Suzuki T, Yajima T, Hayashi J, Sogawa H, Sanda F. Ethynylene-linked multifunctional benzoxazines: effect of ethynylene group and packing on thermal behavior. Polym Chem 2022. [DOI: 10.1039/d2py00840h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzoxazine is a promising next-generation thermosetting resin featuring catalyst-free curing, high thermal stability, and low volume shrinkage upon curing. Mono-, di- and tri-functional benzoxazines, 3-(4-(phenylethynyl)phenyl)-3,4-dihydro-2H-[1,3]benzoxazine (1), 1,4-bis((4-(2H-3(4H)-[1,3]benzoxazinyl)phenyl)ethynyl)benzene (2) and 1,3,5-tris((4-(2H-3(4H)-[1,3]benzoxazinyl)phenyl)ethynyl)benzene...
Collapse
|
49
|
Yang R, Xie L, Li N, Froimowicz P, Zhang K. Synthesis of a triptycene-containing dioxazine benzoxazine monomer and a main-chain triptycene-polydimethysiloxane-benzoxazine copolymer with excellent comprehensive properties. Polym Chem 2022. [DOI: 10.1039/d2py00244b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel triptycene-containing dioxazine benzoxazine monomer and a main-chain benzoxazine copolymer have been synthesized and their corresponding thermosets exhibit excellent thermal stability, low flammability and low dielectric constants.
Collapse
Affiliation(s)
- Rui Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xie
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nan Li
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pablo Froimowicz
- Design and Chemistry of Macromolecules Group, Institute of Technology in Polymers and Nanotechnology (ITPN), UBA-CONICET, FADU, University of Buenos Aires, Intendente Güiraldes 2160, Pabellón III, subsuelo, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
50
|
Mohamed MG, Samy MM, Mansoure TH, Li CJ, Li WC, Chen JH, Zhang K, Kuo SW. Microporous Carbon and Carbon/Metal Composite Materials Derived from Bio-Benzoxazine-Linked Precursor for CO 2 Capture and Energy Storage Applications. Int J Mol Sci 2021; 23:347. [PMID: 35008773 PMCID: PMC8745757 DOI: 10.3390/ijms23010347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
There is currently a pursuit of synthetic approaches for designing porous carbon materials with selective CO2 capture and/or excellent energy storage performance that significantly impacts the environment and the sustainable development of circular economy. In this study we prepared a new bio-based benzoxazine (AP-BZ) in high yield through Mannich condensation of apigenin, a naturally occurring phenol, with 4-bromoaniline and paraformaldehyde. We then prepared a PA-BZ porous organic polymer (POP) through Sonogashira coupling of AP-BZ with 1,3,6,8-tetraethynylpyrene (P-T) in the presence of Pd(PPh3)4. In situ Fourier transform infrared spectroscopy and differential scanning calorimetry revealed details of the thermal polymerization of the oxazine rings in the AP-BZ monomer and in the PA-BZ POP. Next, we prepared a microporous carbon/metal composite (PCMC) in three steps: Sonogashira coupling of AP-BZ with P-T in the presence of a zeolitic imidazolate framework (ZIF-67) as a directing hard template, affording a PA-BZ POP/ZIF-67 composite; etching in acetic acid; and pyrolysis of the resulting PA-BZ POP/metal composite at 500 °C. Powder X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller (BET) measurements revealed the properties of the as-prepared PCMC. The PCMC material exhibited outstanding thermal stability (Td10 = 660 °C and char yield = 75 wt%), a high BET surface area (1110 m2 g-1), high CO2 adsorption (5.40 mmol g-1 at 273 K), excellent capacitance (735 F g-1), and a capacitance retention of up to 95% after 2000 galvanostatic charge-discharge (GCD) cycles; these characteristics were excellent when compared with those of the corresponding microporous carbon (MPC) prepared through pyrolysis of the PA-BZ POP precursors with a ZIF-67 template at 500 °C.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research and Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (M.M.S.); (C.-J.L.)
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Maha Mohamed Samy
- Department of Materials and Optoelectronic Science, Center of Crystal Research and Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (M.M.S.); (C.-J.L.)
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | | | - Chia-Jung Li
- Department of Materials and Optoelectronic Science, Center of Crystal Research and Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (M.M.S.); (C.-J.L.)
| | - Wen-Cheng Li
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan; (W.-C.L.); (J.-H.C.)
| | - Jung-Hui Chen
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan; (W.-C.L.); (J.-H.C.)
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research and Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (M.M.S.); (C.-J.L.)
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|