1
|
Wan H, Liu D, Shao L, Sheng Z, Liu N, Wu Z, Luo W, Zhan P, Zhang L. Simple and scalable preparation of lignin based porous carbon coated nano-clay composites and their efficient removal for the diversified iodine. Int J Biol Macromol 2024; 270:132091. [PMID: 38718990 DOI: 10.1016/j.ijbiomac.2024.132091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/14/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
Here, lignin and nano-clay were used to prepare novel composite adsorbents by one-step carbonization without adding activators for radioactive iodine capture. Specially, 1D nano-clay such as halloysite (Hal), palygorskite (Pal) and sepiolite (Sep) were selected as skeleton components, respectively, enzymatic hydrolysis lignin (EHL) as carbon source, lignin based porous carbon/nano-clay composites (ELC-X) were prepared through ultrasonic impregnation, freeze drying, and carbonization. Characterization results indicated lignin based porous carbon (ELC) well coated on the surface of nano-clay, and made its surface areas increase to 252 m2/g. These composites appeared the micro-mesoporous hierarchical structure, considerable N doping and good chemical stability. Results of adsorption experiments showed that the introduction of ELC could well promote iodine vapor uptake of nano-clay, and up to 435.0 mg/g. Meanwhile, the synergistic effect between lignin based carbon and nano-clay was very significant for the adsorption of iodine/n-hexane and iodine ions, their capacity were far exceed those of a single material, respectively. The relevant adsorption kinetic and thermodynamics, and mechanism of ELC-X composites were clarified. This work provided a class of low-cost and environmentally friendly adsorbents for radioactive iodine capture, and opened up ideas for the comprehensive utilization of waste lignin and natural clay minerals.
Collapse
Affiliation(s)
- Huan'ai Wan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dandan Liu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Zhiyuan Sheng
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Na Liu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weihua Luo
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Taheri N, Dinari M, Ramezanzade V. Fabrication of Polysulfone Beads Containing Covalent Organic Polymer as a Versatile Platform for Efficient Iodine Capture. ACS OMEGA 2024; 9:19071-19076. [PMID: 38708203 PMCID: PMC11064206 DOI: 10.1021/acsomega.3c09869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
Radioactive iodine poses a significant risk to human health, particularly with regard to reproductive and metabolic functions. Designing and developing highly efficient adsorbent materials for radioactive substances remain a significant challenge. This study aimed to address this issue by the fabricating polymeric beads containing covalent organic polymer (COP) as an effective method for removing iodine vapor. To achieve this, a COP was first synthesized via the Friedel-Crafts reaction catalyzed by anhydrous aluminum chloride. Then, COP-loaded polysulfone (PSf) (COP@PSf) and PSf beads were prepared using a phase separation method. The beads produced in this research have exhibited remarkable proficiency in adsorbing iodine vapor, showing an adsorption capacity of up to 216 wt % within just 420 min, which is higher than that of most other similar beads reported in the literature.
Collapse
Affiliation(s)
- Nazanin Taheri
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Vahid Ramezanzade
- Department of Chemistry, Isfahan University of Technology, Isfahan 8415683111, Iran
| |
Collapse
|
3
|
Yao S, Zhu Q, Xianyu Y, Liu D, Xu E. Polymorphic nanostarch-mediated assembly of bioactives. Carbohydr Polym 2024; 324:121474. [PMID: 37985040 DOI: 10.1016/j.carbpol.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Starch as an edible, biosafe, and functional biopolymer, has been tailored at nanoscale to deliver bioactive guests. Nanostarches fabricated in various morphologies including nanosphere, nanorod, nanoworm, nanovesicle, nanopolyhedron, nanoflake, nanonetwork etc., enable them to assemble different kinds of bioactives due to structural particularity and green modification. Previous studies have reviewed nanostarch for its preparation and application in food, however, no such work has been done for the potential of delivery system via polymorphic nanostarches. In this review, we focus on the merits of nanostarch empowered by multi-morphology for delivery system, and also conclude the assembly strategies and corresponding properties of nanostarch-based carrier. Additionally, the advantages, limitations, and future perspectives of polymorphic nanostarch are summarized to better understand the micro/nanostarch architectures and their regulation for the compatibility of bioactive molecules. According to the morphology of carrier, nanostarch effectively captures bioactives on the surface and/or inside core to form tight complexes, which maintains their stability in the human microenvironment. It improves the bioavailability of bioactive guests by different assembly approaches of carrier/guest surface combination, guest@carrier embedment, and nanostarch-mediated encapsulation. Targeted release of delivery systems is stimulated by the microenvironment conditions based on the complex structure of nanostarch loaded with bioactives.
Collapse
Affiliation(s)
- Siyu Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
4
|
Shreeraj G, Sah A, Sarkar S, Giri A, Sahoo A, Patra A. Structural Modulation of Nitrogen-Rich Covalent Organic Frameworks for Iodine Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16069-16078. [PMID: 37847043 DOI: 10.1021/acs.langmuir.3c02215] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Developing efficient adsorbent materials for iodine scavenging is essential to mitigate the threat of radioactive iodine causing adverse effects on human health and the environment. In this context, we explored N-rich two-dimensional covalent organic frameworks (COFs) with diverse functionalities for iodine capture. The pyridyl-hydroxyl-functionalized triazine-based novel 5,5',5″-(1,3,5-triazine-2,4,6-triyl)tris(pyridine-2-amine) (TTPA)-COF possesses high crystallinity (crystalline domain size: 24.4 ± 0.6 nm) and high porosity (specific BET surface area: 1000 ± 90 m2 g-1). TTPA-COF exhibits superior vapor-phase iodine adsorption (4.43 ± 0.01 g g-1) compared to analogous COF devoid of pyridinic moieties, 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT)-COF. The high iodine capture by TTPA-COF is due to the enhanced binding affinity conferred by the extra pyridinic active sites. Furthermore, the crucial role of long-range order in porous adsorbents has been experimentally evidenced by comparing the performance of iodine vapor capture of TTPA-COF with an amorphous network polymer having identical functionalities. We have also demonstrated the high iodine scavenging ability of TTPA-COF from the organic and aqueous phases. The mechanism of iodine adsorption by the heteroatom-rich framework is elucidated through FTIR, XPS, and Raman spectral analyses. The present study highlights the need for structural tweaking of the building blocks toward the rational construction of advanced functional porous materials for a task-specific application.
Collapse
Affiliation(s)
- G Shreeraj
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Ajay Sah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Suprabhat Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Aniket Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
5
|
Shetty S, Baig N, Wahed SA, Hassan A, Das N, Alameddine B. Iodine and Nickel Ions Adsorption by Conjugated Copolymers Bearing Repeating Units of Dicyclopentapyrenyl and Various Thiophene Derivatives. Polymers (Basel) 2023; 15:4153. [PMID: 37896396 PMCID: PMC10611155 DOI: 10.3390/polym15204153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The synthesis of three conjugated copolymers TPP1-3 was carried out using a palladium-catalyzed [3+2] cycloaddition polymerization of 1,6-dibromopyrene with various dialkynyl thiophene derivatives 3a-c. The target copolymers were obtained in excellent yields and high purity, as confirmed by instrumental analyses. TPP1-3 were found to divulge a conspicuous iodine adsorption capacity up to 3900 mg g-1, whereas the adsorption mechanism studies revealed a pseudo-second-order kinetic model. Furthermore, recyclability tests of TPP3, the copolymer which revealed the maximum iodine uptake, disclosed its efficient regeneration even after numerous adsorption-desorption cycles. Interestingly, the target copolymers proved promising nickel ions capture efficiencies from water with a maximum equilibrium adsorption capacity (qe) of 48.5 mg g-1.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Sk Abdul Wahed
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
6
|
Synthesis and Iodine Adsorption Properties of Organometallic Copolymers with Propeller-Shaped Fe(II) Clathrochelates Bridged by Different Diaryl Thioether and Their Oxidized Sulfone Derivatives. Polymers (Basel) 2022; 14:polym14224818. [PMID: 36432945 PMCID: PMC9697507 DOI: 10.3390/polym14224818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Three organometallic copolymers, ICP1-3, containing iron(II) clathrochelate units with cyclohexyl lateral groups and interconnected by various thioether derivatives were synthesized. The reaction of the latter into their corresponding OICP1-3 sulfone derivatives was achieved quantitatively using mild oxidation reaction conditions. The target copolymers, ICP1-3 and OICP1-3, were characterized by various instrumental analysis techniques, and their iodine uptake studies disclosed excellent iodine properties, reaching a maximum of 360 wt.% (qe = 3600 mg g-1). The adsorption mechanisms of the copolymers were explored using pseudo-first-order and pseudo-second-order kinetic models. Furthermore, regeneration tests confirmed the efficiency of the target copolymers for their iodine adsorption even after several adsorption-desorption cycles.
Collapse
|
7
|
Baig N, Shetty S, Habib SS, Husain AA, Al-Mousawi S, Alameddine B. Synthesis of Iron(II) Clathrochelate-Based Poly(vinylene sulfide) with Tetraphenylbenzene Bridging Units and Their Selective Oxidation into Their Corresponding Poly(vinylene sulfone) Copolymers: Promising Materials for Iodine Capture. Polymers (Basel) 2022; 14:polym14183727. [PMID: 36145872 PMCID: PMC9504420 DOI: 10.3390/polym14183727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
The development of a simple and efficient synthetic methodology to engineer functional polymer materials for gas adsorption is necessary due to its relevance for various applications. Herein, we report the synthesis of metalorganic poly(vinylene sulfide) copolymers CTP1-3 with iron(II) clathrochelate of various side groups connected by tetraphenylbenzene units. CTP1-3 were subsequently oxidized into their respective poly(vinylene sulfone) copolymers CTP4-6 under green reaction conditions. The target copolymers CTP1-6 were characterized using various instrumental analysis techniques. Examination of the iodine adsorption properties of the copolymers revealed high iodine uptake properties, reaching 2360 mg g−1 for CTP2, and whose reusability tests proved its efficient regeneration, thus proving the importance of iron(II) clathrochelate polymers in iodine capture.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
| | - Sameh S. Habib
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Ali A. Husain
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Saleh Al-Mousawi
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
- Correspondence: (S.A.-M.); (B.A.); Tel.: +965-2530-7111 (B.A.)
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
- Correspondence: (S.A.-M.); (B.A.); Tel.: +965-2530-7111 (B.A.)
| |
Collapse
|
8
|
Yang M, Shi W, Liu S, Xu K. Multifunctional diphenyl ether-based, cross-linked polyisocyanide for efficient iodine capture and NO2-/SO32- electrochemical probing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|