1
|
Tufano F, Galotto MV, D'Elia A, Santulli F, Mazzeo M, Lamberti M. Recyclable, Biobased Polycarbonates and Polyesters by Naphthoxy-Imine Zinc and Magnesium Complexes. Chemistry 2025:e202501271. [PMID: 40347219 DOI: 10.1002/chem.202501271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/22/2025] [Accepted: 05/07/2025] [Indexed: 05/12/2025]
Abstract
Naphthoxy-imine pyridine zinc and magnesium complexes were synthesized and fully characterized by nuclear magnetic resonance (NMR). In the presence of an alcohol as initiator, both complexes promoted the ring-opening polymerization (ROP) of L-lactide (L-LA), ε-caprolactone (ε-CL), β-butyrolactone (β-BL), trimethylene carbonate (TMC), and 1-methyl trimethylene carbonate (Me-TMC), which was purposely synthesized from CO2 and the appropriate diol. The zinc complex exhibited notably high activity, particularly in the polymerization of lactide and TMC, and was subsequently employed in the synthesis of polytrimethylene carbonate-based diblock and random copolymers with both ε-CL and L-LA. Furthermore, the zinc complex demonstrated its ability to close the life cycle of the synthesized materials by successfully depolymerizing both polytrimethylene carbonate (PTMC) and its copolymers.
Collapse
Affiliation(s)
- Federica Tufano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Maria Vittoria Galotto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Alfredo D'Elia
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Federica Santulli
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
- CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, Bari, BA, 70126, Italy
| | - Marina Lamberti
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
- CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, Bari, BA, 70126, Italy
| |
Collapse
|
2
|
Tian J, Hadjichristidis N, Wang X, Zhang Z. A General and Mild Two-Step Strategy Using Bioderived Diols and CO 2 for Chemically Recyclable Polycarbonates and Closed-Loop CO 2 Fixation. Angew Chem Int Ed Engl 2025; 64:e202423162. [PMID: 40040379 DOI: 10.1002/anie.202423162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 03/06/2025]
Abstract
Developing chemically recyclable polymers using CO2 and sustainable co-feedstocks is an important strategy for achieving carbon-neutral production of new polymers and mitigating plastic pollution. Herein, a series of six-membered cyclic carbonate monomers with different alkyl α-substituents were synthesized using CO2 and bioderived 1,3-alkanediol as raw materials at room temperature and atmospheric pressure. The organocatalytic ring-opening polymerization was systematically studied using a range of common and readily available organocatalysts. Phosphazene base (t-BuP2) was identified as the most effective catalyst, offering excellent control over the entire polymerization. The regioselectivity of the synthesized polycarbonates, ranged from 0.74 to 0.99, with the highest value achieved when the side group was isopropyl (highest steric hindrance). Notably, the α-substituent in the monomers reduced the ring strains, allowing the resulting polycarbonates to be fully recycled to the monomers without decarboxylation. The recycling process effectively traps CO2 in a closed loop between monomers and polymers, preventing its release into the atmosphere. The alkyl side groups enhanced the hydrophobicity of the polycarbonates, thereby reducing the likelihood of CO2 release through hydrolysis during their lifecycle, achieving a robust CO2 closed-loop fixation. The utility of CO2-based aliphatic polycarbonates as adhesives and the ability of copolymerization with l-lactide were explored.
Collapse
Affiliation(s)
- Jiaming Tian
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xin Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Schüttner S, Lu Y, Frey H, Coates GW. Stereoregular Poly(Phenyl Glycidyl Ethers): In Situ Formation of a Polyether Stereocomplex from a Racemic Monomer Mixture. Angew Chem Int Ed Engl 2025; 64:e202413643. [PMID: 39294106 DOI: 10.1002/anie.202413643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Polymer stereocomplex formation represents a promising research area as it can improve thermal and mechanical properties of co-crystallized polymer strands of opposite chirality. Polymers that form stereocomplexes commonly feature high stereoregularity and usually require sourcing from enantiopure monomer building blocks. Herein, we report the in situ polyether stereocomplex formation from racemic epoxide monomers, i.e., substituted methyl phenyl glycidyl ethers. The bio-renewable glycidyl ethers were explored in both enantio- and isoselective ring-opening polymerizations (ROPs), resulting in isotactic poly(phenyl glycidyl ether). While the enantioselective ROP selectively resolves a single enantiomeric, isotactic polyether stereoisomer ([mm]P≥78 %), the isoselective ROP leads to the concurrent formation of both isotactic (R)- and (S)-poly(phenyl glycidyl ether) stereoisomers ([mm]P≥92 %) and thus results directly in a stereoisomer blend, which forms a stereocomplex. This is one of only a few polymer stereocomplexes generated directly during polymerization from a racemic monomer mixture. Stereocomplexes of the different poly(phenyl glycidyl ether)s show an increase in melting temperature of up to 76 °C, relative to the enantiopure parent polymers. The position of the methyl group at the phenyl ring determines both stereocomplex formation and the thermal properties of the resulting materials.
Collapse
Affiliation(s)
- Sandra Schüttner
- Department of Chemistry, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Yiye Lu
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Tufano F, Napolitano C, Mazzeo M, Grisi F, Lamberti M. CO 2-Based Polycarbonates through Ring-Opening Polymerization of Cyclic Carbonates Promoted by a NHC-Based Zinc Complex. Biomacromolecules 2024; 25:4523-4534. [PMID: 38916862 DOI: 10.1021/acs.biomac.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A backbone-substituted N-heterocyclic carbene (NHC) zinc complex, in combination with alcohol initiators, has been shown to be an effective catalyst for the ring-opening polymerization (ROP) of trimethylene carbonate (TMC) to poly(trimethylene carbonate) (PTMC) devoid of oxetane linkages. The ROP of TMC proceeded in solution to give PTMC, possessing controlled molecular mass (2500 < Mn < 10000) and low dispersity (Đ ∼ 1.2). Changing the alcohol initiators, PTMCs with different end-groups were obtained, included a telechelic polymer. The results of MALDI-ToF and NMR analysis confirmed the controlled/living nature of the present ROP catalytic system, where side reactions, such as inter- and intramolecular transesterifications, were minimized during the polymerization. Solution studies in different solvents demonstrated the polymerization reaction to proceed via a mechanism first order in monomer and in catalyst. The zinc complex was also able to convert substituted cyclic carbonates, which were purposely synthesized from renewable feedstocks such as CO2 and 1,3-diols. For the asymmetric 2-Me TMC monomer, good regioselectivity was observed (Xreg up to 0.92). The excellent control of the polymerization process was finally brought to light through the preparation of polycarbonate/polyether triblock copolymers by using polyethylene glycol (PEG) as a macroinitiator and of well-defined di- and triblock polycarbonate/polylactide copolymers by sequential ROP of TMC and L-LA.
Collapse
Affiliation(s)
- Federica Tufano
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 Bari, BA, Italy
| | - Claudia Napolitano
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 Bari, BA, Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 Bari, BA, Italy
| | - Fabia Grisi
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 Bari, BA, Italy
| | - Marina Lamberti
- Department of Chemistry and Biology "Adolfo Zambelli" University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Interuniversity Consortium Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 Bari, BA, Italy
| |
Collapse
|
5
|
Chae JH, Choi M, Son S, Ko SM, Lee IH. Living Cationic Ring-Opening Polymerization of Hetero Diels-Alder Adducts to Give Multifactor-Controlled and Fast-Photodegradable Vinyl Polymers. Angew Chem Int Ed Engl 2023; 62:e202305414. [PMID: 37259631 DOI: 10.1002/anie.202305414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Precise control of multiple structural parameters associated with vinyl polymers is important for producing materials with the desired properties and functions. While the development of living polymerization methods has provided a way to control the various structural parameters of vinyl polymers, the concomitant control of their sequence and regioregularity remains a challenging task. To overcome this challenge, herein, we report the living cationic ring-opening polymerization of hetero Diels-Alder adducts. The scalable and modular synthesis of the cyclic monomers was achieved by a one-step protocol using readily available vinyl precursors. Subsequently, living polymerization of the cyclic monomers was examined, allowing the synthesis of vinyl polymers while controlling multiple factors, including molecular weight, dispersity, alternating sequence, head-to-head regioregularity, and end-group functionality. The living characteristics of the developed method were further demonstrated by block copolymerization. The synthesized vinyl polymers exhibited unique thermal properties and underwent fast photodegradation even under sunlight.
Collapse
Affiliation(s)
- Ju-Hyung Chae
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Minyeong Choi
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Semin Son
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Su-Min Ko
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - In-Hwan Lee
- Department of Chemistry, Ajou University, 16499, Suwon, Republic of Korea
| |
Collapse
|
6
|
Wu YC, Fan HZ, Zhang W, Wang MY, Cai Z, Zhu JB. Biobased Bifunctional Monomers toward Functionalizable Polycarbonates and Poly(cyclic olefin)s with Tunable Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan-Chen Wu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Wei Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Meng-Yuan Wang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| |
Collapse
|
7
|
Popowski Y, Lu Y, Coates GW, Tolman WB. Stereocomplexation of Stereoregular Aliphatic Polyesters: Change from Amorphous to Semicrystalline Polymers with Single Stereocenter Inversion. J Am Chem Soc 2022; 144:8362-8370. [PMID: 35476538 DOI: 10.1021/jacs.2c02981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereocomplexation is a useful strategy for the enhancement of polymer properties by the co-crystallization of polymer strands with opposed chirality. Yet, with the exception of PLA, stereocomplexes of biodegradable polyesters are relatively underexplored and the relationship between polymer microstructure and stereocomplexation remains to be delineated, especially for copolymers comprising two different chiral monomers. In this work, we resolved the two enantiomers of a non-symmetric chiral anhydride (CPCA) and prepared a series of polyesters from different combinations of racemic and enantiopure epoxides and anhydrides, via metal-catalyzed ring-opening copolymerization (ROCOP). Intriguingly, we found that only specific chiral combinations between the epoxide and anhydride building blocks result in the formation of semicrystalline polymers, with a single stereocenter inversion inducing a change from amorphous to semicrystalline copolymers. Stereocomplexes of the latter were prepared by mixing an equimolar amount of the two enantiomeric copolymers, yielding materials with increased melting temperatures (ca. 20 °C higher) compared to their enantiopure constituents. Following polymer structure optimization, the stereocomplex of one specific copolymer combination exhibits a particularly high melting temperature (Tm = 238 °C).
Collapse
Affiliation(s)
- Yanay Popowski
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| | - Yiye Lu
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
8
|
Miyake R, Maehara A, Chanthaset N, Ajiro H. Thermal Property Control by Copolymerization of Trimethylene Carbonate and Its Derivative Bearing Triphenylmethyl Group. ChemistrySelect 2022. [DOI: 10.1002/slct.202104326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rikyu Miyake
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Akari Maehara
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Nalinthip Chanthaset
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroharu Ajiro
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
- Data Science Center Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|
9
|
Shen Y, Yang X, Song Y, Tran DK, Wang H, Wilson J, Dong M, Vazquez M, Sun G, Wooley KL. Complexities of Regioselective Ring-Opening vs Transcarbonylation-Driven Structural Metamorphosis during Organocatalytic Polymerizations of Five-Membered Cyclic Carbonate Glucose Monomers. JACS AU 2022; 2:515-521. [PMID: 35253000 PMCID: PMC8889557 DOI: 10.1021/jacsau.1c00545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Rigorous investigations of the organobase-catalyzed ring-opening polymerizations (ROPs) of a series of five-membered cyclic carbonate monomers derived from glucose revealed that competing transcarbonylation reactions scrambled the regiochemistries of the polycarbonate backbones. Regioirregular poly(2,3-α-d-glucose carbonate) backbone connectivities were afforded by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-catalyzed ROPs of three monomers having different cyclic acetal protecting groups through the 4- and 6-positions. Small molecule studies conducted upon isolated unimers and dimers indicated a preference for Cx-O2 vs Cx-O3 bond cleavage from tetrahedral intermediates along the pathways of addition-elimination mechanisms when the reactions were performed at room temperature. Furthermore, treatment of isolated 3-unimer or 2-unimer, having the carbonate linkage in the 3- or 2-position as obtained from either Cx-O2 or Cx-O3 bond cleavage, respectively, gave the same 74:26 (3-unimer:2-unimer) ratio, confirming the occurrence of transcarbonylation reactions with a preference for 3-unimer vs. 2-unimer formation in the presence of organobase catalyst at room temperature. In contrast, unimer preparation at -78 °C favored Cx-O3 bond cleavage to afford a majority of 2-unimer, presumably due to a lack of transcarbonylation side reactions. Computational studies supported the experimental findings, enhancing fundamental understanding of the regiochemistry resulting from the ring-opening and subsequent transcarbonylation reactions during ROP of glucose carbonates. These findings are expected to guide the development of advanced carbohydrate-derived polymer materials by an initial monomer design via side chain acetal protecting groups, with the ability to evolve the properties further through later-stage structural metamorphosis.
Collapse
Affiliation(s)
- Yidan Shen
- Department
of Materials Science & Engineering, Department of Chemistry, and Department of
Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Xin Yang
- Department
of Materials Science & Engineering, Department of Chemistry, and Department of
Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
- High
Performance
Research Computing − Laboratory for Molecular Simulation, Texas A&M University, College Station, Texas 77842, United States
| | - Yue Song
- Department
of Materials Science & Engineering, Department of Chemistry, and Department of
Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - David K. Tran
- Department
of Materials Science & Engineering, Department of Chemistry, and Department of
Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Hai Wang
- Department
of Materials Science & Engineering, Department of Chemistry, and Department of
Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Jaye Wilson
- Department
of Materials Science & Engineering, Department of Chemistry, and Department of
Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Mei Dong
- Department
of Materials Science & Engineering, Department of Chemistry, and Department of
Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Mariela Vazquez
- Department
of Materials Science & Engineering, Department of Chemistry, and Department of
Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Guorong Sun
- Department
of Materials Science & Engineering, Department of Chemistry, and Department of
Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Karen L. Wooley
- Department
of Materials Science & Engineering, Department of Chemistry, and Department of
Chemical Engineering, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
10
|
Zhang W, Dai J, Wu YC, Chen JX, Shan SY, Cai Z, Zhu JB. Highly Reactive Cyclic Carbonates with a Fused Ring toward Functionalizable and Recyclable Polycarbonates. ACS Macro Lett 2022; 11:173-178. [PMID: 35574765 DOI: 10.1021/acsmacrolett.1c00653] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monomer design plays an important role in the development of polymers with desired thermal properties and chemical recyclability. Here we prepared a class of seven-membered ring carbonates containing trans-cyclohexyl fused rings. These monomers showed excellent activity for ring-opening polymerization (ROP) with turnover frequency (TOF) up to 6 × 105 h-1 and catalyst loading down to 50 ppm, which yielded high-molecular-weight polycarbonates (Mn up to 673 kg/mol) with great thermostability (Td > 300 °C). Ultimately, the resulting polycarbonates can completely depolymerize into their corresponding cyclic dimers that can repolymerize to synthesize the starting polymers in moderate yields, demonstrating a potential route to achieve chemical recycling. Postfunctionalization of the unsaturated polycarbonate was conducted through cross-linking reaction and "click" reaction under UV irradiation.
Collapse
Affiliation(s)
- Wei Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jiang Dai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Yan-Chen Wu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jia-Xuan Chen
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Si-Yi Shan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|