1
|
Tagliazucchi M, Müller M. Morphology-Transport Coupling and Dissipative Structures in PEO-PS+LiTFSI Electrolytes In-Operando Conditions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9278-9288. [PMID: 39881633 PMCID: PMC11826895 DOI: 10.1021/acsami.4c18838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO-PS) block copolymers with added lithium salt. Blocking of the anion fluxes by the electrodes in-operando conditions polarizes the cells and results in an inhomogeneous salt-concentration profile. This gradient of salt concentration triggers lamellae-to-disorder and disorder-to-lamellae transitions near the electrodes, in good agreement with previous experimental observations. The effects of the selectivity of the electrode surface, the salt concentration and the voltage applied to the cell are systematically studied. For PEO-selective surfaces, the lamellae parallel to the electrode that forms at low applied potentials transition to a bicontinuous morphology at high applied potentials in order to allow ion transport through the insulating PS layers. The formation of this dissipative structure, which is unexpected considering the equilibrium behavior of the material, is in line with the principle of maximum entropy production. In summary, the transport and morphology in PEO-PS electrolytes are strongly coupled: ionic currents influence self-assembly, which in turn modulates the ionic fluxes in the cell.
Collapse
Affiliation(s)
- Mario Tagliazucchi
- Departamento
de Química Inorgánica Analítica y Química
Física, Ciudad Universitaria, Facultad
de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, C1428EGA Buenos Aires, Argentina
- Instituto
de Química de los Materiales, Ambiente y Energía (INQUIMAE), Ciudad Universitaria, CONICET, Facultad de Ciencias
Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Marcus Müller
- Institute
for Theoretical Physics, Georg-August University
of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Chen M, Bustillo KC, Patel V, Savitzky BH, Sternlicht H, Maslyn JA, Loo WS, Ciston J, Ophus C, Jiang X, Balsara NP, Minor AM. Direct Imaging of the Crystalline Domains and Their Orientation in the PS- b-PEO Block Copolymer with 4D-STEM. Macromolecules 2024; 57:5629-5638. [PMID: 38948181 PMCID: PMC11210284 DOI: 10.1021/acs.macromol.3c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 07/02/2024]
Abstract
The arrangement of crystalline domains in semicrystalline polymers is key to understanding how to optimize the nanostructured morphology for enabling better properties. For example, in polystyrene-b-poly(ethylene oxide) (PS-b-PEO), the degree of crystallinity and arrangement of the crystallites within the PEO phase plays a crucial role in determining the physical properties of the electrolyte. Here, we used four-dimensional scanning transmission electron microscopy to directly visualize the crystal domains within the PEO-rich region of the PS-b-PEO block copolymer and show the relative angle of the domain with respect to the PEO-PS interface. As demonstrated here, our analysis method is applicable to other electron-beam sensitive materials, especially semicrystalline polymers, to unveil their local phase condition and distribution.
Collapse
Affiliation(s)
- Min Chen
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C. Bustillo
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Vivaan Patel
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Benjamin H. Savitzky
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hadas Sternlicht
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jacqueline A. Maslyn
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Whitney S. Loo
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - Jim Ciston
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Colin Ophus
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xi Jiang
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Nitash P. Balsara
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Andrew M. Minor
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Materials
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Wu R, Paulsen BD, Ma Q, McCulloch I, Rivnay J. Quantitative Composition and Mesoscale Ion Distribution in p-Type Organic Mixed Ionic-Electronic Conductors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326843 DOI: 10.1021/acsami.3c04449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding the ionic composition and distribution in organic mixed ionic-electronic conductors (OMIECs) is crucial for understanding their structure-property relationships. Despite this, direct measurements of OMIEC ionic composition and distribution are not common. In this work, we investigated the ionic composition and mesoscopic structure of three typical p-type OMIEC materials: an ethylene glycol-treated crosslinked OMIEC with a large excess fixed anionic charge (EG/GOPS-PEDOT:PSS), an acid-treated OMIEC with a tunable fixed anionic charge (crys-PEDOT:PSS), and a single-component OMIEC without any fixed anionic charge (pg2T-TT). A combination of X-ray fluorescence (XRF) and X-ray photoelectron spectroscopies, gravimetry, coulometry, and grazing incidence small-angle X-ray scattering (GISAXS) techniques was employed to characterize these OMIECs following electrolyte exposure and electrochemical cycling. In particular, XRF provided quantitative ion-to-monomer compositions for these OMIECs from passive ion uptake following aqueous electrolyte exposure and potential-driven ion uptake/expulsion following electrochemical doping and dedoping. Single-ion (cation) transport in EG/GOPS-PEDOT:PSS due to Donnan exclusion was directly confirmed, while significant fixed anion concentrations in crys-PEDOT:PSS doping and dedoping were shown to occur through mixed anion and cation transport. Controlling the fixed anionic (PSS-) charge density in crys-PEDOT:PSS mapped the strength of Donnan exclusion in OMIEC systems following a Donnan-Gibbs model. Anion transport dominated pg2T-TT doping and dedoping, but a surprising degree of anionic charge trapping (∼1020 cm-3) was observed. GISAXS revealed minimal ion segregation both between PEDOT- and PSS-rich domains in EG/GOPS-PEDOT:PSS and between amorphous and semicrystalline domains in pg2T-TT but showed significant ion segregation in crys-PEDOT:PSS at length scales of tens of nm, ascribed to inter-nanofibril void space. These results bring new clarity to the ionic composition and distribution of OMIECs which are crucial for accurately connecting the structure and properties of these materials.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Qing Ma
- DND-CAT, Synchrotron Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Grundy LS, Fu S, Galluzzo MD, Balsara NP. The Effect of Annealing on the Grain Structure and Ionic Conductivity of Block Copolymer Electrolytes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Lorena S. Grundy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Sean Fu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
| | - Michael D. Galluzzo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
5
|
Ion Correlations and Partial Ionicities in the Lamellar Phases of Block Copolymeric Ionic Liquids. ACS Macro Lett 2022; 11:1265-1271. [DOI: 10.1021/acsmacrolett.2c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Grundy LS, Fu S, Hoffman ZJ, Balsara NP. Electrochemical Characterization of PEO/LiTFSI Electrolytes Near the Solubility Limit. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lorena S. Grundy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Sean Fu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
| | - Zach J. Hoffman
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
7
|
Grundy LS, Galluzzo MD, Loo WS, Fong AY, Balsara NP, Takacs CJ. Inaccessible Polarization-Induced Phase Transitions in a Block Copolymer Electrolyte: An Unconventional Mechanism for the Limiting Current. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lorena S. Grundy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael D. Galluzzo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Anthony Y. Fong
- SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research (JCESR), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Takacs
- SSRL Materials Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- SLAC National Accelerator Laboratory, Joint Center for Energy Storage Research (JCESR), Menlo Park, California 94025, United States
| |
Collapse
|