1
|
Liu Y, Li Y, Waterhouse GIN, Liu C, Jiang X, Zhang Z, Yu L. Smart photo-driven composite system containing thermosensitive P(NIPAM-NVK) and photoactive PANI for the rapid removal of anionic dyes. J Colloid Interface Sci 2025; 690:137310. [PMID: 40112526 DOI: 10.1016/j.jcis.2025.137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
A smart composite system based on thermosensitive polymers and photosensitive polyaniline (PANI) was constructed in this work, enabling efficient photo-driven adsorption and separation of anionic dyes within a short time. Thermosensitive copolymers (P(NIPAM-NVK)) of N-isopropylacrylamide (NIPAM) and N-vinylcarbazole (NVK) with adjustable low critical solution temperatures (LCST) were synthesized via a free radical copolymerization method. PANI was then composited with P(NIPAM-NVK) as a photothermal agent and dye adsorbent. The developed P(NIPAM-NVK)/PANI composite systems showed a rapid temperature increase under visible light irradiation, triggering the transition of P(NIPAM-NVK) from the sol state to a bulk gel state. Simultaneously, PANI and Congo Red (CR) anionic dye were efficiently encapsulated within the gel state of P(NIPAM-NVK) via intermolecular interactions, facilitating the rapid separation of aqueous CR through a direct solid-liquid process to yield clean water. The P(NIPAM-NVK10)/PANI0.5 composite system afforded a removal efficiency > 98 % for CR (80 mg/L) within 5 min under visible light illumination. These findings hold great promise for the eco-friendly treatment of dye-containing wastewater.
Collapse
Affiliation(s)
- Yanhua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuanyue Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | | | - Chenchen Liu
- 248 Geological Brigade of Shandong Nuclear Industry, No.1 Xingguo Road, Licang District, Qingdao City, China
| | - Xiaohui Jiang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhiming Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, and Sanya Oceanographic Laboratory, Sanya 572024, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, and Sanya Oceanographic Laboratory, Sanya 572024, China.
| |
Collapse
|
2
|
Nunziata G, Nava M, Lacroce E, Pizzetti F, Rossi F. Thermo-Responsive Polymer-Based Nanoparticles: From Chemical Design to Advanced Applications. Macromol Rapid Commun 2025; 46:e2401127. [PMID: 39895239 PMCID: PMC12051735 DOI: 10.1002/marc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Thermo-responsive polymers have emerged as a cutting-edge tool in nanomedicine, paving the way for innovative approaches to targeted drug delivery and advanced therapeutic strategies. These "smart" polymers respond to temperature changes, enabling controlled drug release in pathological environments characterized by high temperatures. By exploiting their unique phase transition, occurring at the lower or upper critical solution temperatures (LCST and UCST), these systems ensure localized therapeutic action, minimizing collateral damage to healthy tissues. The integration of these polymers into nanoparticles with hydrophilic shells and hydrophobic cores enhances their stability and biocompatibility. Furthermore, advanced polymer engineering allows precise modulation of LCST and UCST through adjustments in composition and hydrophilic-lipophilic balance, optimizing their responsiveness for specific applications. In addition to drug delivery, thermo-responsive nanoparticles are gaining attention in several fields such as gene therapy and imaging. Therefore, this review explores the chemical and structural diversity of thermo-responsive nanoparticles, emphasizing their ability to encapsulate and release drugs effectively. Second, this review highlights the potential of thermo-responsive nanoparticles to redefine treatment paradigms, providing a comprehensive understanding of their mechanisms, applications, and future perspectives in biomedical research.
Collapse
Affiliation(s)
- Giuseppe Nunziata
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 7Milano20131Italy
| | - Marco Nava
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 7Milano20131Italy
| | - Elisa Lacroce
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 7Milano20131Italy
| | - Fabio Pizzetti
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 7Milano20131Italy
| | - Filippo Rossi
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 7Milano20131Italy
| |
Collapse
|
3
|
Tian S, Chen C, Huang L, Yao X, She A, Su X. The liquid-vapor water generation characteristics of thermo-responsive polymer based on the multi-scale method. iScience 2025; 28:111619. [PMID: 39850361 PMCID: PMC11754082 DOI: 10.1016/j.isci.2024.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 01/25/2025] Open
Abstract
Thermo-responsive polymer is becoming a potential water purification and water harvesting material. To clarify the water diffusion characteristics, the desorption ratio of liquid water and water vapor for a poly (N-isopropylacrylamide) was researched by the multi-scale method. Firstly, macro and micro structures for the hydrogel with different water content were characterized. Second, the dynamic moisture preserving status of the hydrogel during the desorption process were tested. Thirdly, the dynamic liquid-vapor desorption rate was quantified. The macro volume of the polymer is of liner relationship with water content. During the desorption process, free and immobilized water transfers to immobilized and bound water. About 80% of the purified liquid water can be collected directly in closed environment, while the amount decreased to 21%-25% in air convection condition. The results suggested a heating method for improving liquid water collection rate with low energy cost for practical applications.
Collapse
Affiliation(s)
- Shaochen Tian
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| | - Chaoyang Chen
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| | - Lei Huang
- Jiangsu JINYOU New Material Co., Ltd., Nantong, Jiangsu 226151, China
| | - Xueliang Yao
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Anming She
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xing Su
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
4
|
Chittari SS, Dykeman-Bermingham PA, Bogen MP, Knight AS. Structure-Function Insights into Thermoresponsive Copolymers as Lanthanide Precipitants. J Am Chem Soc 2024; 146:33499-33508. [PMID: 39586773 DOI: 10.1021/jacs.4c10427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The synthetic toolbox for stimuli-responsive polymers has broadened to include many tunable variables, making these materials applicable in diverse technologies. However, unraveling the key composition-structure-function relationships to facilitate ground-up design remains a challenge due to the inherent dispersity in sequence and conformations for synthetic polymers. We here present a systematic study of these relationships using a model system of copolymers with a thermoresponsive (N-isopropylacrylamide) backbone in addition to metal-chelating (acrylic acid) and hydrophobic structural comonomers and evaluate their efficiency at isolating technologically critical lanthanide ions. The efficiency of lanthanide ion extraction by precipitation was quantitated with a metallochromic dye to reveal trends relating copolymer hydrophobicity to improved separations. Further, we examined the role of different hydrophobic comonomers in dictating the solution-phase conformation of the polymer in the presence and absence of lanthanide ions, and we correlated key features of the hydrophobic comonomer to extraction efficiency. Finally, we identified how the local proximity of thermoresponsive, chelating, and hydrophobic subunits facilitates metal extraction by manipulating the copolymer sequence with multiblock polymerization. Through mechanistic analysis, we propose a binding-then-assembly process through which metal ions are coprecipitated with macromolecular chelators.
Collapse
Affiliation(s)
- Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew P Bogen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Dhamankar S, Webb MA. Asymmetry in Polymer-Solvent Interactions Yields Complex Thermoresponsive Behavior. ACS Macro Lett 2024; 13:818-825. [PMID: 38874369 DOI: 10.1021/acsmacrolett.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
We introduce a lattice framework that incorporates elements of Flory-Huggins solution theory and the q-state Potts model to study the phase behavior of polymer solutions and single-chain conformational characteristics. Without empirically introducing temperature-dependent interaction parameters, standard Flory-Huggins theory describes systems that are either homogeneous across temperatures or exhibit upper critical solution temperatures. The proposed Flory-Huggins-Potts framework extends these capabilities by predicting lower critical solution temperatures, miscibility loops, and hourglass-shaped spinodal curves. We particularly show that including orientation-dependent interactions, specifically between monomer segments and solvent particles, is alone sufficient to observe such phase behavior. Signatures of emergent phase behavior are found in single-chain Monte Carlo simulations, which display heating- and cooling-induced coil-globule transitions linked to energy fluctuations. The framework also capably describes a range of experimental systems. Importantly, and by contrast to many prior theoretical approaches, the framework does not employ any temperature- or composition-dependent parameters. This work provides new insights regarding the microscopic physics that underpin complex thermoresponsive behavior in polymers.
Collapse
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Gola A, Pietrańczyk R, Musiał W. Synthesis and Physicochemical Properties of Thermally Sensitive Polymeric Derivatives of N-vinylcaprolactam. Polymers (Basel) 2024; 16:1917. [PMID: 39000772 PMCID: PMC11244384 DOI: 10.3390/polym16131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Six derivatives of poly-N-vinylcaprolactam (PNVCL) P1-P6 were synthesized via surfactant-free precipitation polymerization (SFPP) at 70 °C, with potassium persulfate (KPS) as the initiator. P5 and P6 were synthesized using the cross-linker N,N'-Methylenebisacrylamide (MBA). The conductivity was measured to monitor the polymerization process. The hydrodynamic diameters (HDs) and polydispersity indexes (PDIs) of aqueous dispersions of P1-P6 were determined using dynamic light scattering (DLS) and zeta potential (ZP) using electrophoretic mobilities. At 18 °C for P1-P6, the HDs (nm) were 428.32 ± 81.30 and PDI 0.31 ± 0.19, 528.60 ± 84.70 (PDI 0.42 ± 0,04), 425.96 ± 115.42 (PDI 0.56 ± 0.08), 440.34 ± 106.40 (PDI 0.52 ± 0.09), 198.39 ± 225.35 (PDI 0.40 ± 0.19), and 1201.52 ± 1318.05 (PDI 0.71 ± 0.30), the and ZPs were (mV) 0.90 ± 3.23, -4.46 ± 1.22, -6.44 ± 1.82, 0.22 ± 0.48, 0.18 ± 0.79, and -0.02 ± 0.39 for P1-P6, respectively. The lower critical solution temperature ranged from 27 to 29 °C. The polymers were characterized using the ATR-FTIR method. The study concluded that the physicochemical properties of the product were significantly affected by the initial reaction parameters. Polymers P1-P4 and P6 have potential for use as drug carriers for skin applications.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.G.); (R.P.)
| |
Collapse
|
7
|
Makri K, Pispas S. Block and Statistical Copolymers of Methacrylate Monomers with Dimethylamino and Diisopropylamino Groups on the Side Chains: Synthesis, Chemical Modification and Self-Assembly in Aqueous Media. Polymers (Basel) 2024; 16:1284. [PMID: 38732753 PMCID: PMC11085793 DOI: 10.3390/polym16091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The synthesis of amphiphilic diblock and statistical (random) copolymers of poly(dimethylamino ethyl methacrylate) and poly((2-(diisopropylamino) ethyl methacrylate) using the reversible addition-fragmentation chain transfer polymerization technique (RAFT polymerization) is reported. The precursor copolymers were chemically modified to create derivative copolymers of polyelectrolyte and polyampholyte nature with novel solution properties. Moreover, their molecular and physicochemical characteristics, as well as their self-assembly in aqueous media as a function of molecular architecture and composition, are investigated by using size exclusion chromatography, spectroscopic characterization techniques and light scattering techniques. Furthermore, the behavior and properties of the obtained micelles and aggregates were studied, depending on the pH, temperature and ionic strength of the aqueous solutions. The response of the systems to changes in these parameters shows interesting behavior and new properties that are useful for their utilization as nanocarriers of pharmaceutical compounds.
Collapse
Affiliation(s)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
8
|
Linn JD, Rodriguez FA, Calabrese MA. Cosolvent incorporation modulates the thermal and structural response of PNIPAM/silyl methacrylate copolymers. SOFT MATTER 2024; 20:3322-3336. [PMID: 38536224 PMCID: PMC11095640 DOI: 10.1039/d4sm00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Polymers functionalized with inorganic silane groups have been used in wide-ranging applications due to the silane reactivity, which enables formation of covalently-crosslinked polymeric structures. Utilizing stimuli-responsive polymers in these hybrid systems can lead to smart and tunable behavior for sensing, drug delivery, and optical coatings. Previously, the thermoresponsive polymer poly(N-isopropyl acrylamide) (PNIPAM) functionalized with 3-(trimethoxysilyl)propyl methacrylate (TMA) demonstrated unique aqueous self-assembly and optical responses following temperature elevation. Here, we investigate how cosolvent addition, particularly ethanol and N,N-dimethyl formamide (DMF), impacts these transition temperatures, optical clouding, and structure formation in NIPAM/TMA copolymers. Versus purely aqueous systems, these solvent mixtures can introduce additional phase transitions and can alter the two-phase region boundaries based on temperature and solvent composition. Interestingly, TMA incorporation strongly alters phase boundaries in the water-rich regime for DMF-containing systems but not for ethanol-containing systems. Cosolvent species and content also alter the aggregation and assembly of NIPAM/TMA copolymers, but these effects depend on polymer architecture. For example, localizing the TMA towards one chain end in 'blocky' domains leads to formation of uniform micelles with narrow dispersities above the cloud point for certain solvent compositions. In contrast, polydisperse aggregates form in random copolymer and PNIPAM homopolymer solutions - the size of which depends on solvent composition. The resulting optical responses and thermoreversibility also depend strongly on cosolvent content and copolymer architecture. Cosolvent incorporation thus increases the versatility of inorganic-functionalized responsive polymers for diverse applications by providing a simple way to tune the structure size and optical response.
Collapse
Affiliation(s)
- Jason D Linn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Fabian A Rodriguez
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Papadopoulou-Fermeli N, Lagopati N, Gatou MA, Pavlatou EA. Biocompatible PANI-Encapsulated Chemically Modified Nano-TiO 2 Particles for Visible-Light Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:642. [PMID: 38607176 PMCID: PMC11013180 DOI: 10.3390/nano14070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Polyaniline (PANI) constitutes a very propitious conductive polymer utilized in several biomedical, as well as environmental applications, including tissue engineering, catalysis, and photocatalysis, due to its unique properties. In this study, nano-PANI/N-TiO2 and nano-PANI/Ag-TiO2 photocatalytic composites were fabricated via aniline's oxidative polymerization, while the Ag-and N-chemically modified TiO2 nanopowders were synthesized through the sol-gel approach. All produced materials were fully characterized. Through micro-Raman and FT-IR analysis, the co-existence of PANI and chemically modified TiO2 particles was confirmed, while via XRD analysis the composites' average crystallite size was determined as ≈20 nm. The semi-crystal structure of polyaniline exhibits higher photocatalytic efficiency compared to that of other less crystalline forms. The spherical-shaped developed materials are innovative, stable (zeta potential in the range from -26 to -37 mV), and cost-effective, characterized by enhanced photocatalytic efficiency under visible light (energy band gaps ≈ 2 eV), and synthesized with relatively simple methods, with the possibility of recycling and reusing them in potential future applications in industry, in wastewater treatment as well as in biomedicine. Thus, the PANI-encapsulated Ag and N chemically modified TiO2 nanocomposites exhibit high degradation efficiency towards Rhodamine B dye upon visible-light irradiation, presenting simultaneously high biocompatibility in different normal cell lines.
Collapse
Affiliation(s)
- Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece (M.-A.G.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece (M.-A.G.)
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece (M.-A.G.)
| |
Collapse
|
10
|
Smagin AV, Sadovnikova NB. Hygroscopy as an Indicator of Specific Surface Area in Polymer Materials. Polymers (Basel) 2024; 16:593. [PMID: 38475277 DOI: 10.3390/polym16050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Specific surface area (SSA) is an integral characteristic of the interfacial surface in poly-disperse systems, widely used for the assessment of technological properties in polymer materials and composites. Hygroscopic water content (Wh) is an obligate indicator of dispersed materials prior to any analysis of their chemical composition. This study links both indicators for the purpose of the express assessment of SSA using widely available Wh data, on the example of natural (starch, cellulose) and synthetic (acrylic hydrogels) polymer materials. The standard BET analysis of SSA using water vapor desorption was chosen as a reference method. In contrast to the known empirical correlations, this study is based on the fundamental thermodynamic theory of the disjoining water pressure for the connection of the analyzed quantities. The statistical processing of the results for the new methodology and the standard BET method showed their good compliance in a wide range of SSA from 200 to 900 m2/g. The most important methodological conclusion is the possibility of an accurate physically based calculation of hydrophilic SSA in polymer materials using their Wh data at a known relative humidity in the laboratory.
Collapse
Affiliation(s)
- Andrey V Smagin
- Soil Science Department and Eurasian Center for Food Security, GSP-1, Leninskie Gory, 119991 Moscow, Russia
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, 143030 Uspenskoe, Moscow Region, Russia
| | - Nadezhda B Sadovnikova
- Soil Science Department and Eurasian Center for Food Security, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
11
|
Chen R, Wang H, Doucet M, Browning JF, Su X. Thermo-Electro-Responsive Redox-Copolymers for Amplified Solvation, Morphological Control, and Tunable Ion Interactions. JACS AU 2023; 3:3333-3344. [PMID: 38155652 PMCID: PMC10751769 DOI: 10.1021/jacsau.3c00486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 12/30/2023]
Abstract
Electro-responsive metallopolymers can possess highly specific and tunable ion interactions, and have been explored extensively as electrode materials for ion-selective separations. However, there remains a limited understanding of the role of solvation and polymer-solvent interactions in ion binding and selectivity. The elucidation of ion-solvent-polymer interactions, in combination with the rational design of tailored copolymers, can lead to new pathways for modulating ion selectivity and morphology. Here, we present thermo-electrochemical-responsive copolymer electrodes of N-isopropylacrylamide (NIPAM) and ferrocenylpropyl methacrylamide (FPMAm) with tunable polymer-solvent interactions through copolymer ratio, temperature, and electrochemical potential. As compared to the homopolymer PFPMAm, the P(NIPAM0.9-co-FPMAm0.1) copolymer ingressed 2 orders of magnitude more water molecules per doping ion when electrochemically oxidized, as measured by electrochemical quartz crystal microbalance. P(NIPAM0.9-co-FPMAm0.1) exhibited a unique thermo-electrochemically reversible response and swelled up to 83% after electrochemical oxidation, then deswelled below its original size upon raising the temperature from 20 to 40 °C, as measured through spectroscopic ellipsometry. Reduced P(NIPAM0.9-co-FPMAm0.1) had an inhomogeneous depth profile, with layers of low solvation. In contrast, oxidized P(NIPAM0.9-co-FPMAm0.1) displayed a more uniform and highly solvated depth profile, as measured through neutron reflectometry. P(NIPAM0.9-co-FPMAm0.1) and PFPMAm showed almost a fivefold difference in selectivity for target ions, evidence that polymer hydrophilicity plays a key role in determining ion partitioning between solvent and the polymer interface. Our work points to new macromolecular engineering strategies for tuning ion selectivity in stimuli-responsive materials.
Collapse
Affiliation(s)
- Raylin Chen
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hanyu Wang
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mathieu Doucet
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James F. Browning
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Barman R, Mukherjee A, Nag A, Rajdev P, Ghosh S. Hierarchical assembly of foldable polymers and applications in organic optoelectronics and antibacterial or antiviral materials. Chem Commun (Camb) 2023; 59:13951-13961. [PMID: 37937399 DOI: 10.1039/d3cc04855a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Aggregation of amphiphilic polymers in block-selective solvents produces different nanostructures, which have been studied extensively for wide-ranging applications. Nevertheless, such immiscibility-driven aggregation does not endow them with the desired structural precision, predictability or surface functional group exposure, which significantly impact their functional applications. More recently, biomimetic folded structures of synthetic macromolecules (mostly oligomers) have come to the fore, but such studies have been limited to probe the secondary structures. In this article, we have collated hierarchical structures of foldamers, especially highlighting our recent contribution to the field of chain-folding regulated assembly of segmented polyurethanes (PUs) and their functional applications. A series of such PUs have been discussed, which contain a segmented hydrocarbon backbone and alternately placed pendant solvophilic groups. In either water or highly non-polar solvents (TCE, MCH), depending on the nature of the pendant group, they exhibit folded structures stabilized by intra-chain H-bonding. Hierarchical assembly of such folded chains by inter-chain H-bonding and/or π-stacking leads to the formation of well-defined nanostructures with functional applications ranging from organic optoelectronics to biomaterials. For example, a segmented PU with appended naphthalene-diimide (NDI) chromophores showed a pleated structure in MCH, which helped in organization of the NDI chromophores within π-stacking distance. Such folded polymer chains eventually produced nanotubular structures with excellent electron mobility. They also showed efficient intercalation of the pyrene (Py) donor by NDI-Py charge-transfer interaction and in this case the mixed nanotubular structure exhibited prominent room-temperature ferroelectricity. On the other hand, having cationic functionalities as the pendant groups such chain-folding regulated assembly produced unilamellar polymersomes with excellent antibacterial activity with very low minimum inhibitory concentrations (<10 μg mL-1). Replacing the pendant amine functionality with sulphate groups made these polyurethanes highly potent antiviral materials. In the absence of the alternating connectivity of the solvophobic and solvophilic segments or rigid hydrocarbon backbone, such folding propensity is destroyed, leading to structural collapse. While significant efforts have been made in correlating primary structures of wide-ranging polymers with their functional applications, this article demonstrates the direct correlation between the secondary structures of polymers and their functional properties.
Collapse
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Atish Nag
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
13
|
Xu X, Eatmon YL, Christie KSS, McGaughey AL, Guillomaitre N, Datta SS, Ren ZJ, Arnold C, Priestley RD. Tough and Recyclable Phase-Separated Supramolecular Gels via a Dehydration-Hydration Cycle. JACS AU 2023; 3:2772-2779. [PMID: 37885595 PMCID: PMC10598558 DOI: 10.1021/jacsau.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Hydrogels are compelling materials for emerging applications including soft robotics and autonomous sensing. Mechanical stability over an extensive range of environmental conditions and considerations of sustainability, both environmentally benign processing and end-of-life use, are enduring challenges. To make progress on these challenges, we designed a dehydration-hydration approach to transform soft and weak hydrogels into tough and recyclable supramolecular phase-separated gels (PSGs) using water as the only solvent. The dehydration-hydration approach led to phase separation and the formation of domains consisting of strong polymer-polymer interactions that are critical for forming PSGs. The phase-separated segments acted as robust, physical cross-links to strengthen PSGs, which exhibited enhanced toughness and stretchability in its fully swollen state. PSGs are not prone to overswelling or severe shrinkage in wet conditions and show environmental tolerance in harsh conditions, e.g., solutions with pH between 1 and 14. Finally, we demonstrate the use of PSGs as strain sensors in air and aqueous environments.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Yannick L. Eatmon
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Kofi S. S. Christie
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Allyson L. McGaughey
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Néhémie Guillomaitre
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Sujit S. Datta
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Zhiyong Jason Ren
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Craig Arnold
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Rodney D. Priestley
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
14
|
Zhang Y, Wang F, Yu Y, Wu J, Cai Y, Shi J, Morikawa H, Zhu C. Multi-bioinspired hierarchical integrated hydrogel for passive fog harvesting and solar-driven seawater desalination. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 466:143330. [PMID: 37193347 PMCID: PMC10162477 DOI: 10.1016/j.cej.2023.143330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
In recent years, with the outbreak and epidemic of the novel coronavirus in the world, how to obtain clean water from the limited resources has become an urgent issue of concern to all mankind. Atmospheric water harvesting technology and solar-driven interfacial evaporation technology have shown great potential in seeking clean and sustainable water resources. Here, inspired by a variety of organisms in nature, a multi-functional hydrogel matrix composed of polyvinyl alcohol (PVA), sodium alginate (SA) cross-linked by borax as well as doped with zeolitic imidazolate framework material 67 (ZIF-67) and graphene owning macro/micro/nano hierarchical structure has successfully fabricated for producing clean water. The hydrogel not only can reach the average water harvesting ratio up to 22.44 g g-1 under the condition of fog flow after 5 h, but also be capable of desorbing the harvested water with water release efficiency of 1.67 kg m-2 h-1 under 1 sun. In addition to excellent performance in passive fog harvesting, the evaporation rate over 1.89 kg m-2 h-1 is attained under 1 sun on natural seawater during long-term. This hydrogel indicates its potential in producing clean water resources in multiple scenarios in different dry or wet states, and which holds great promise for flexible electronic materials and sustainable sewage or wastewater treatment applications.
Collapse
Affiliation(s)
- Yi Zhang
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Feifei Wang
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yongtao Yu
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Jiajia Wu
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yingying Cai
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Jian Shi
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Hideaki Morikawa
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Chunhong Zhu
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
15
|
Forero-Martinez NC, Cortes-Huerto R, Ward L, Ballone P. Water Harvesting by Thermoresponsive Ionic Liquids: A Molecular Dynamics Study of the Water Absorption Kinetics and of the Role of Nanostructuring. J Phys Chem B 2023. [PMID: 37267503 DOI: 10.1021/acs.jpcb.3c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ionic liquids (ILs) whose water solutions are thermoresponsive provide an appealing route to harvest water from the atmosphere at an energy cost that can be accessed by solar heating. IL/water solutions that present a lower critical solution temperature (LCST), i.e., demix upon increasing temperature, represent the most promising choice for this task since they could absorb vapor during the night when its saturation is highest and release liquid water during the day. The kinetics of water absorption at the surface and the role of nanostructuring in this process have been investigated by atomistic molecular dynamics simulations for the ionic liquid tetrabutyl phosphonium 2,4-dimethylbenzenesulfonate whose LCST in water occurs at Tc = 36 °C for solutions of 50-50 wt % composition. The simulation results show that water molecules are readily adsorbed on the IL and migrate along the surface to form thick three-dimensional islands. On a slightly longer time scale, ions crawl on these islands, covering water and recreating the original surface whose free energy is particularly low. At a high deposition rate, this mechanism allows the fast incorporation of large amounts of water, producing subsurface water pockets that eventually merge into the populations of water-rich and IL-rich domains in the nanostructured bulk. Simulation results suggest that strong nanostructuring could ease the separation of water and water-contaminated IL phases even before macroscopic demixing.
Collapse
Affiliation(s)
- Nancy C Forero-Martinez
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Lainey Ward
- School of Physics, University College Dublin, UCD Belfield Campus, D04V1W8 Dublin 4, Ireland
| | - Pietro Ballone
- School of Physics, University College Dublin, UCD Belfield Campus, D04V1W8 Dublin 4, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, UCD Belfield Campus, D04V1W8 Dublin 4, Ireland
| |
Collapse
|
16
|
Li D, Qian X, Huang R, Li C. Preparation of PNIPAM-Azo by RAFT polymerization and their application in thermo- and light-responsive hydrogel. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
17
|
Xu X, Guillomaitre N, Christie KSS, Bay RK, Bizmark N, Datta SS, Ren ZJ, Priestley RD. Quick-Release Antifouling Hydrogels for Solar-Driven Water Purification. ACS CENTRAL SCIENCE 2023; 9:177-185. [PMID: 36844496 PMCID: PMC9951281 DOI: 10.1021/acscentsci.2c01245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 06/18/2023]
Abstract
Hydrogels are promising soft materials for energy and environmental applications, including sustainable and off-grid water purification and harvesting. A current impediment to technology translation is the low water production rate well below daily human demand. To overcome this challenge, we designed a rapid-response, antifouling, loofah-inspired solar absorber gel (LSAG) capable of producing potable water from various contaminated sources at a rate of ∼26 kg m-2 h-1, which is sufficient to meet daily water demand. The LSAG-produced at room temperature via aqueous processing using an ethylene glycol (EG)-water mixture-uniquely integrates the attributes of poly(N-isopropylacrylamide) (PNIPAm), polydopamine (PDA), and poly(sulfobetaine methacrylate) (PSBMA) to enable off-grid water purification with enhanced photothermal response and the capacity to prevent oil fouling and biofouling. The use of the EG-water mixture was critical to forming the loofah-like structure with enhanced water transport. Remarkably, under sunlight irradiations of 1 and 0.5 sun, the LSAG required only 10 and 20 min to release ∼70% of its stored liquid water, respectively. Equally important, we demonstrate the ability of LSAG to purify water from various harmful sources, including those containing small molecules, oils, metals, and microplastics.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Néhémie Guillomaitre
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Kofi S. S. Christie
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - R. Ko̅nane Bay
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Navid Bizmark
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Sujit S. Datta
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Zhiyong Jason Ren
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| | - Rodney D. Priestley
- Department
of Chemical and Biological Engineering, Department of Mechanical and Aerospace
Engineering, Princeton Materials Institute, Department of Civil and Environmental Engineering, and Andlinger Center
for Energy and the Environment, Princeton
University, Princeton, New Jersey 08540, United States
| |
Collapse
|
18
|
Hermosillo‐Ochoa E, Cortez‐Lemus NA. End‐group controlling aqueous solution properties in star‐shaped poly(2‐hydroxyethyl acrylate) and poly(2‐hydroxyethyl acrylate)‐
b
‐poly(
N
‐isopropylacrylamide) polymers. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Eduardo Hermosillo‐Ochoa
- Centro de Graduados e Investigación en Química Tecnológico Nacional de México/Instituto Tecnológico de Tijuana Tijuana Mexico
| | - Norma A. Cortez‐Lemus
- Centro de Graduados e Investigación en Química Tecnológico Nacional de México/Instituto Tecnológico de Tijuana Tijuana Mexico
| |
Collapse
|
19
|
Smagin AV, Sadovnikova NB, Belyaeva EA, Krivtsova VN, Shoba SA, Smagina MV. Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping. Polymers (Basel) 2022; 14:polym14235131. [PMID: 36501525 PMCID: PMC9739259 DOI: 10.3390/polym14235131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
The article summarizes multivariate field trials of gel-forming soil conditioners for agriculture and urban landscaping in various climatic conditions from arid (O.A.E., Uzbekistan) to humid (Moscow region, Russia). The field test program included environmental monitoring of weather data, temperature, water-air regimes, salinity, alkalinity, and biological activity of various soils (sandy and loamy sandy Arenosols, Retisols, loamy Serozems), productivity and yield of plants (lawns, vegetables) and their quality, including pathogen infestation. The evolutionary line of polymer superabsorbents from radiation-crosslinked polyacrylamide (1995) to the patented "Aquapastus" material (2014-2020) with amphiphilic fillers and biocidal additives demonstrated not only success, but also the main problems of using hydrogels in soils (biodegradation, osmotic collapse, etc.), as well as their technological solutions. Along with innovative materials, our know-how consisted in the intelligent soil design of capillary barriers for water accumulation and antipathogenic and antielectrolyte protection of the rhizosphere. Gel-forming polymer conditioners and new technologies of their application increase the productivity of plant crops and the quality of biomass by 30-50%, with a 1.3-2-fold saving of water resources and reliable protection of the topsoil from pathogens and secondary salinization. The results can be useful to a wide range of specialists from chemical technologists to agronomists and landscapers.
Collapse
Affiliation(s)
- Andrey V. Smagin
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, 143030 Uspenskoe, Russia
- Correspondence: ; Tel.: +7-(495)-916-917-79-48
| | - Nadezhda B. Sadovnikova
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Elena A. Belyaeva
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, 143030 Uspenskoe, Russia
| | - Victoria N. Krivtsova
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Sergey A. Shoba
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Marina V. Smagina
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, 143030 Uspenskoe, Russia
| |
Collapse
|
20
|
Zhang L, Wang X, Xu X, Yang J, Xiao J, Bai B, Wang Q. A Janus solar evaporator with photocatalysis and salt resistance for water purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Ayazbayeva AY, Shakhvorostov AV, Gussenov IS, Seilkhanov TM, Aseyev VO, Kudaibergenov SE. Temperature and Salt Responsive Amphoteric Nanogels Based on N-Isopropylacrylamide, 2-Acrylamido-2-methyl-1-propanesulfonic Acid Sodium Salt and (3-Acrylamidopropyl) Trimethylammonium Chloride. NANOMATERIALS 2022; 12:nano12142343. [PMID: 35889568 PMCID: PMC9320390 DOI: 10.3390/nano12142343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023]
Abstract
Polyampholyte nanogels based on N-isopropylacrylamide (NIPAM), (3-acrylamidopropyl) trimethylammonium chloride (APTAC) and 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) were synthesized via conventional redox-initiated free radical copolymerization. The resultant nanogels of various compositions, specifically [NIPAM]:[APTAC]:[AMPS] = 90:5:5; 90:7.5:2.5; 90:2.5:7.5 mol.%, herein abbreviated as NIPAM90-APTAC5-AMPS5, NIPAM90-APTAC7.5-AMPS2.5 and NIPAM90-APTAC2.5-AMPS7.5, were characterized by a combination of 1H NMR and FTIR spectroscopy, TGA, UV-Vis, DLS and zeta potential measurements. The temperature and salt-responsive properties of amphoteric nanogels were studied in aqueous and saline solutions in a temperature range from 25 to 60 °C and at ionic strengths (μ) of 10-3 to 1M NaCl. Volume phase transition temperatures (VPTT) of the charge-balanced nanogel were found to reach a maximum upon the addition of salt, whereas the same parameter for the charge-imbalanced nanogels exhibited a sharp decrease at higher saline concentrations. A wide bimodal distribution of average hydrodynamic sizes of nanogel particles had a tendency to transform to a narrow monomodal peak at elevated temperatures and higher ionic strengths. According to the DLS results, increasing ionic strength results in the clumping of nanogel particles.
Collapse
Affiliation(s)
- Aigerim Ye. Ayazbayeva
- Laboratory of Functional Polymers, Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan; (A.V.S.); (I.S.G.)
- Department of Chemical and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
- Correspondence: (A.Y.A.); (S.E.K.)
| | - Alexey V. Shakhvorostov
- Laboratory of Functional Polymers, Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan; (A.V.S.); (I.S.G.)
| | - Iskander Sh. Gussenov
- Laboratory of Functional Polymers, Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan; (A.V.S.); (I.S.G.)
- Department of Chemical and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
| | - Tulegen M. Seilkhanov
- Laboratory of NMR-Spectroscopy, Sh. Ualikhanov University, Kokshetau 020000, Kazakhstan;
| | - Vladimir O. Aseyev
- Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland;
| | - Sarkyt E. Kudaibergenov
- Laboratory of Functional Polymers, Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan; (A.V.S.); (I.S.G.)
- Correspondence: (A.Y.A.); (S.E.K.)
| |
Collapse
|