1
|
Salvia WS, Mantel G, Saha NK, Rajawasam CWH, Konkolewicz D, Hartley CS. Controlling carbodiimide-driven reaction networks through the reversible formation of pyridine adducts. Chem Commun (Camb) 2024; 60:12876-12879. [PMID: 39403777 DOI: 10.1039/d4cc03633f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Carbodiimides and pyridines form reversible adducts that slowly deliver carbodiimide "fuels" to out-of-equilibrium reaction networks, slowing activation kinetics and elongating transient state lifetimes. More-nucleophilic pyridines give more adduct under typical conditions. This approach can be used to extend the lifetimes of transient polymer hydrogels.
Collapse
Affiliation(s)
- William S Salvia
- Department of Chemistry and Biochemistry, Miami University, 651 E. High St., Oxford, OH 45056, USA.
| | - Georgia Mantel
- Department of Chemistry and Biochemistry, Miami University, 651 E. High St., Oxford, OH 45056, USA.
| | - Nirob K Saha
- Department of Chemistry and Biochemistry, Miami University, 651 E. High St., Oxford, OH 45056, USA.
| | - Chamoni W H Rajawasam
- Department of Chemistry and Biochemistry, Miami University, 651 E. High St., Oxford, OH 45056, USA.
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E. High St., Oxford, OH 45056, USA.
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, 651 E. High St., Oxford, OH 45056, USA.
| |
Collapse
|
2
|
Wang H, Wang K, Bai S, Wei L, Gao Y, Zhi K, Guo X, Wang Y. Spatiotemporal control over self-assembly of supramolecular hydrogels through reaction-diffusion. J Colloid Interface Sci 2024; 664:938-945. [PMID: 38503079 DOI: 10.1016/j.jcis.2024.03.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Supramolecular self-assembly is ubiquitous in living system and is usually controlled to proceed in time and space through sophisticated reaction-diffusion processes, underpinning various vital cellular functions. In this contribution, we demonstrate how spatiotemporal self-assembly of supramolecular hydrogels can be realized through a simple reaction-diffusion-mediated transient transduction of pH signal. In the reaction-diffusion system, a relatively faster diffusion of acid followed by delayed enzymatic production and diffusion of base from the opposite site enables a transient transduction of pH signal in the substrate. By coupling such reaction-diffusion system with pH-sensitive gelators, dynamic supramolecular hydrogels with tunable lifetimes are formed at defined locations. The hydrogel fibers show interesting dynamic growing behaviors under the regulation of transient pH signal, reminiscent of their biological counterpart. We further demonstrate a proof-of-concept application of the developed methodology for dynamic information encoding in a soft substrate. We envision that this work may provide a potent approach to enable transient transduction of various chemical signals for the construction of new colloidal materials with the capability to evolve their structures and functionalities in time and space.
Collapse
Affiliation(s)
- Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kainan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lai Wei
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuliang Gao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kangkang Zhi
- Department of Vascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Rajawasam CWH, Tran C, Sparks JL, Krueger WH, Hartley CS, Konkolewicz D. Carbodiimide-Driven Toughening of Interpenetrated Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202400843. [PMID: 38517330 DOI: 10.1002/anie.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Recent work has demonstrated that temporary crosslinks in polymer networks generated by chemical "fuels" afford materials with large, transient changes in their mechanical properties. This can be accomplished in carboxylic-acid-functionalized polymer hydrogels using carbodiimides, which generate anhydride crosslinks with lifetimes on the order of minutes to hours. Here, the impact of the polymer network architecture on the mechanical properties of transiently crosslinked materials was explored. Single networks (SNs) were compared to interpenetrated networks (IPNs). Notably, semi-IPN precursors that give IPNs on treatment with carbodiimide give much higher fracture energies (i.e., resistance to fracture) and superior resistance to compressive strain compared to other network architectures. A precursor semi-IPN material featuring acrylic acid in only the free polymer chains yields, on treatment with carbodiimide, an IPN with a fracture energy of 2400 J/m2, a fourfold increase compared to an analogous semi-IPN precursor that yields a SN. This resistance to fracture enables the formation of macroscopic complex cut patterns, even at high strain, underscoring the pivotal role of polymer architecture in mechanical performance.
Collapse
Affiliation(s)
| | - Corvo Tran
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Jessica L Sparks
- Department of Chemical Paper and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - William H Krueger
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
4
|
Nan M, Guo K, Jia T, Wang G, Liu S. Novel Acid-Driven Bioinspired Self-Resettable Bilayer Hydrogel Actuator Mimicking Natural Muscles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9224-9230. [PMID: 38335011 DOI: 10.1021/acsami.3c16500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Soft robots have great potential applications in manufacturing, disaster rescue, medical treatment, etc. Artificial muscle is one of the most important components of a soft robot. In previous years, hydrogel actuators that can be controllably deformed by the stimuli of external signals have been developed as good candidates for muscle-like materials. In this article, we successfully prepared a chemical fuel-driven self-resettable bilayer hydrogel actuator mimicking natural muscles with the aid of a new negative feedback reaction network. The actuator can temporarily deform upon the addition of H+ (chemical fuel). Subsequently, H+ accelerated the reaction between BrO3- and Fe(CN)64-, which consume H+. It resulted in the spontaneous recovery of the pH as well as the shape of the actuator. Such an actuator exhibits a great similarity with natural muscles in actuation mechanisms and automaticity in the manipulation compared to the widely reported stimuli-responsive hydrogel actuators. This illustrates that fuel-driven self-resettable hydrogel is a promising dynamic material for mimicking the functions of living creatures.
Collapse
Affiliation(s)
- Mengmeng Nan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040 People's Republic of China
| | - Kangle Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040 People's Republic of China
| | - Tao Jia
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040 People's Republic of China
| | - Guangtong Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150080, People's Republic of China
| |
Collapse
|
5
|
Fu H, Cao N, Zeng W, Liao M, Yao S, Zhou J, Zhang W. Pumping Small Molecules Selectively through an Energy-Assisted Assembling Process at Nonequilibrium States. J Am Chem Soc 2024; 146:3323-3330. [PMID: 38273768 DOI: 10.1021/jacs.3c12228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In living organisms, precise control over the spatial and temporal distribution of molecules, including pheromones, is crucial. This level of control is equally important for the development of artificial active materials. In this study, we successfully controlled the distribution of small molecules in the system at nonequilibrium states by actively transporting them, even against the apparent concentration gradient, with high selectivity. As a demonstration, in the aqueous solution of acid orange (AO7) and TMC10COOH, we found that AO7 molecules can coassemble with transient anhydride (TMC10CO)2O to form larger assemblies in the presence of chemical fuel 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC). This led to a decrease in local free AO7 concentration and caused AO7 molecules from other locations in the solution to move toward the assemblies. Consequently, AO7 accumulates at the location where EDC was injected. By continuously injecting EDC, we could maintain a stable high value of the apparent AO7 concentration at the injection point. We also observed that this process which operated at nonequilibrium states exhibited high selectivity.
Collapse
Affiliation(s)
- Huimin Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Nengjie Cao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wang Zeng
- National Centre for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Min Liao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shenglin Yao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
6
|
Chen J, Wang H, Long F, Bai S, Wang Y. Dynamic supramolecular hydrogels mediated by chemical reactions. Chem Commun (Camb) 2023; 59:14236-14248. [PMID: 37964743 DOI: 10.1039/d3cc04353c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Supramolecular self-assembly in a biological system is usually dominated by sophisticated metabolic processes (chemical reactions) such as catalysis of enzymes and consumption of high energy chemicals, leading to groups of biomolecules with unique dynamics and functions in an aqueous environment. In recent years, increasing efforts have been made to couple chemical reactions to molecular self-assembly, with the aim of creating supramolecular materials with lifelike properties and functions. In this feature article, after summarising the work of chemical reaction mediated supramolecular hydrogels, we first focus on a typical example where dynamic self-assembly of molecular hydrogels is activated by in situ formation of a hydrazone bond in water. We discuss how the formation of the hydrazone-based supramolecular hydrogels can be controlled in time and space. After that, we describe transient assembly of supramolecular hydrogels powered by out-of-equilibrium chemical reaction networks regulated by chemical fuels, which show unique properties such as finite lifetime, dynamic structures, and regenerative capabilities. Finally, we provide a perspective on the future investigations that need to be done urgently, which range from fundamental research to real-life applications of dynamic supramolecular hydrogels.
Collapse
Affiliation(s)
- Jingjing Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Feng Long
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
7
|
Chen X, Stasi M, Rodon-Fores J, Großmann PF, Bergmann AM, Dai K, Tena-Solsona M, Rieger B, Boekhoven J. A Carbodiimide-Fueled Reaction Cycle That Forms Transient 5(4 H)-Oxazolones. J Am Chem Soc 2023; 145:6880-6887. [PMID: 36931284 PMCID: PMC10064336 DOI: 10.1021/jacs.3c00273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In life, molecular architectures, like the cytoskeletal proteins or the nucleolus, catalyze the conversion of chemical fuels to perform their functions. For example, tubulin catalyzes the hydrolysis of GTP to form a dynamic cytoskeletal network. In contrast, myosin uses the energy obtained by catalyzing the hydrolysis of ATP to exert forces. Artificial examples of such beautiful architectures are scarce partly because synthetic chemically fueled reaction cycles are relatively rare. Here, we introduce a new chemical reaction cycle driven by the hydration of a carbodiimide. Unlike other carbodiimide-fueled reaction cycles, the proposed cycle forms a transient 5(4H)-oxazolone. The reaction cycle is efficient in forming the transient product and is robust to operate under a wide range of fuel inputs, pH, and temperatures. The versatility of the precursors is vast, and we demonstrate several molecular designs that yield chemically fueled droplets, fibers, and crystals. We anticipate that the reaction cycle can offer a range of other assemblies and, due to its versatility, can also be incorporated into molecular motors and machines.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michele Stasi
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jennifer Rodon-Fores
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Paula F Großmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Alexander M Bergmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kun Dai
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Marta Tena-Solsona
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Bernhard Rieger
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
8
|
Rajawasam CWH, Tran C, Weeks M, McCoy KS, Ross-Shannon R, Dodo OJ, Sparks JL, Hartley CS, Konkolewicz D. Chemically Fueled Reinforcement of Polymer Hydrogels. J Am Chem Soc 2023; 145:5553-5560. [PMID: 36848549 DOI: 10.1021/jacs.3c00668] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Carbodiimide-fueled anhydride bond formation has been used to enhance the mechanical properties of permanently crosslinked polymer networks, giving materials that exhibit transitions from soft gels to covalently reinforced gels, eventually returning to the original soft gels. Temporary changes in mechanical properties result from a transient network of anhydride crosslinks, which eventually dissipate by hydrolysis. Over an order of magnitude increase in the storage modulus is possible through carbodiimide fueling. The time-dependent mechanical properties can be modulated by the concentration of carbodiimide, temperature, and primary chain architecture. Because the materials remain rheological solids, new material functions such as temporally controlled adhesion and rewritable spatial patterns of mechanical properties have been realized.
Collapse
Affiliation(s)
- Chamoni W H Rajawasam
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Corvo Tran
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Michael Weeks
- Instrumentation Laboratory, Miami University, Oxford, Ohio 45056, United States
| | - Kathleen S McCoy
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Robert Ross-Shannon
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Obed J Dodo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Jessica L Sparks
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
9
|
Xu H, Bai S, Gu G, Gao Y, Sun X, Guo X, Xuan F, Wang Y. Bioinspired Self-Resettable Hydrogel Actuators Powered by a Chemical Fuel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43825-43832. [PMID: 36103624 DOI: 10.1021/acsami.2c13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The movements of soft living tissues, such as muscle, have sparked a strong interest in the design of hydrogel actuators; however, so far, typical manmade examples still lag behind their biological counterparts, which usually function under nonequilibrium conditions through the consumption of high-energy biomolecules and show highly autonomous behaviors. Here, we report on self-resettable hydrogel actuators that are powered by a chemical fuel and can spontaneously return to their original states over time once the fuels are depleted. Self-resettable actuation originates from a chemical fuel-mediated transient change in the hydrophilicity of the hydrogel networks. The actuation extent and duration can be programmed by the fuel levels, and the self-resettable actuation process is highly recyclable through refueling. Furthermore, various proof-of-concept autonomous soft robots are created, resembling the movements of soft-bodied creatures in nature. This work may serve as a starting point for the development of lifelike soft robots with autonomous behaviors.
Collapse
Affiliation(s)
- Hao Xu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Shengyu Bai
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Guanyao Gu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Yuliang Gao
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Xun Sun
- Guizhou Aerospace Institute of Measuring and Testing Technology, Guiyang 550009, P. R. China
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Fuzhen Xuan
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Yiming Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| |
Collapse
|
10
|
Hossain MM, Jayalath IM, Baral R, Hartley CS. Carbodiimide‐Induced Formation of Transient Polyether Cages**. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Isuru M. Jayalath
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - Renuka Baral
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
11
|
Panja S, Adams DJ. Chemical crosslinking in 'reactive' multicomponent gels. Chem Commun (Camb) 2022; 58:5622-5625. [PMID: 35438088 DOI: 10.1039/d2cc00919f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We show that the hydrolysis of EDC can be used to construct a reactive system to trigger permanent covalent crosslinking between the components in multicomponent gels comprising gelators with a carboxylic acid and amine group yielding an amide functionalized gel with enhanced mechanical properties.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
12
|
Schwarz PS, Tena-Solsona M, Dai K, Boekhoven J. Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes. Chem Commun (Camb) 2022; 58:1284-1297. [PMID: 35014639 DOI: 10.1039/d1cc06428b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Using molecular self-assembly, supramolecular chemists can create Gigadalton-structures with angstrom precision held together by non-covalent interactions. However, despite relying on the same molecular toolbox for self-assembly, these synthetic structures lack the complexity and sophistication of biological assemblies. Those assemblies are non-equilibrium structures that rely on the constant consumption of energy transduced from the hydrolysis of chemical fuels like ATP and GTP, which endows them with dynamic properties, e.g., temporal and spatial control and self-healing ability. Thus, to synthesize life-like materials, we have to find a reaction cycle that converts chemical energy to regulate self-assembly. We and others recently found that this can be done by a reaction cycle that hydrates carbodiimides. This feature article aims to provide an overview of how the energy transduced from carbodiimide hydration can alter the function of molecules and regulate molecular assemblies. The goal is to offer the reader design considerations for carbodiimide-driven reaction cycles to create a desired morphology or function of the assembly and ultimately to push chemically fueled self-assembly further towards the bottom-up synthesis of life.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Marta Tena-Solsona
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Kun Dai
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748, Garching, Germany
| |
Collapse
|