1
|
Aswale S, Kang H, Mohanty AK, Kim H, Jang Y, Kim M, Jeon HB, Cho HY, Paik HJ. Various Topological Poly(tert-butyl acrylate)s and Their Impacts on Thermal and Solution Properties. Macromol Rapid Commun 2025:e2401043. [PMID: 40096512 DOI: 10.1002/marc.202401043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/22/2025] [Indexed: 03/19/2025]
Abstract
This study reports the synthesis of acrylate-based polymers with diverse topologies, including cyclic and 8-shaped structures, using a combination of atom transfer radical polymerization (ATRP) and click coupling reactions. The linear and tetra-arm poly(tert-butyl acrylate) (PtBA) polymers with similar molar masses are synthesized via the activators regenerated by electron transfer atom transfer radical polymerization. These polymers are further transformed into cyclic and 8-shaped topologies, respectively, through a click reaction. All topologies possessed similar molar mass are confirmed using 1H NMR, FT-IR, SEC, and MALDI-TOF mass spectrometry. The influence of macromolecular topology on intrinsic viscosity and glass transition temperature (Tg) is systematically investigated. The findings show that within the PtBA topology series, Tg increases with structural compactness, with cyclic polymers exhibiting higher Tg than their precursors. Additionally, intrinsic viscosity decreases as compactness increases across the various topological macromolecules. These observations highlight the potential of topology as a tool for fine-tuning polymer properties, facilitating the development of advanced materials with specific behaviors in solution and bulk properties.
Collapse
Affiliation(s)
- Suraj Aswale
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyerin Kang
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Aruna Kumar Mohanty
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hanyoung Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Yerin Jang
- Department of Chemistry, Kwangwoon University, Seoul, 01897, South Korea
| | - Minsung Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Heung Bae Jeon
- Department of Chemistry, Kwangwoon University, Seoul, 01897, South Korea
| | - Hong Y Cho
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangnwon, 25457, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Republic of Korea
| |
Collapse
|
2
|
Pagnacco CA, Alvarez‐Fernandez A, Maestro A, González de San Román E, Lund R, Barroso‐Bujans F. Varying the Core Topology in All-Glycidol Hyperbranched Polyglycerols: Synthesis and Physical Characterization. Macromol Rapid Commun 2025; 46:e2400791. [PMID: 39501609 PMCID: PMC11841663 DOI: 10.1002/marc.202400791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 02/21/2025]
Abstract
In the present study, low molecular weight cyclic polyglycidol is used as a macroinitiator for hypergrafting glycidol and producing cyclic graft hyperbranched polyglycerol (cPG-g-hbPG) in the molecular weight range of 103-106 g mol-1. Linear graft hyperbranched polyglycerol (linPG-g-hbPG) and hyperbranched polyglycerol (hbPG) are prepared as reference samples. This creates a family of hbPG structures with cyclic, linear, and star cores, allowing to evaluate their properties in solution and in bulk. The morphology study of the high molecular weight structures using atomic force microscopy revealed a spherical shape for cPG-g-hbPG and hbPG, and a cylindrical shape for linPG-g-hbPG in the nanometric range. Small angle X-ray scattering confirmed the compact particle-like structure of this family of hbPG architectures. Interestingly, the glass transition temperature showed a structure dependence, with cPG-g-hbPG having the highest values and hbPG having the lowest values for the same molecular weight. This study is a step forward in the generation of water-soluble polymers with tailored structure and functionality for advanced applications.
Collapse
Affiliation(s)
- Carlo Andrea Pagnacco
- Donostia International Physics Center (DIPC)Paseo Manuel Lardizábal 4Donostia−San Sebastián20018Spain
- Materials Physics CenterCSIC‐UPV/EHUPaseo Manuel Lardizábal 5Donostia−San Sebastián20018Spain
- PMASFaculty of ChemistryUniversity of the Basque Country (UPV/EHU)Paseo Manuel Lardizábal 3Donostia−San Sebastián20018Spain
| | | | - Armando Maestro
- Materials Physics CenterCSIC‐UPV/EHUPaseo Manuel Lardizábal 5Donostia−San Sebastián20018Spain
- IKERBASQUE – Basque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | | | - Reidar Lund
- Department of ChemistryUniversity of OsloPostboks 1033BlindernOslo0315Norway
- Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloPostboks 1033BlindernOslo0315Norway
| | - Fabienne Barroso‐Bujans
- Donostia International Physics Center (DIPC)Paseo Manuel Lardizábal 4Donostia−San Sebastián20018Spain
- Materials Physics CenterCSIC‐UPV/EHUPaseo Manuel Lardizábal 5Donostia−San Sebastián20018Spain
- IKERBASQUE – Basque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| |
Collapse
|
3
|
Kang G, Lu M, Zhou K, Yu C, Wei H. The Preparation of Cyclic Binary Block Polymer Using Bimolecular Homodifunctional Coupling Reaction and Characterization of Its Performance as a Drug Carrier. Molecules 2025; 30:599. [PMID: 39942703 PMCID: PMC11820105 DOI: 10.3390/molecules30030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
There is relatively little research on cyclic amphiphilic block polymers, having both hydrophilic and hydrophobic segments placed in the ring and thus resulting in a higher degree of topological restriction, as drug vehicles. Cyclic amphiphilic binary block polymer is synthesized by the click coupling reaction of bimolecular homodifunctional precursors. The results indicate that cyclization between linear polymer precursors is successful if the trace linear by-products generated are ignored, which also suggests that the small molecule bifunctional terminating agent applied in traditional bimolecular homodifunctional ring-closure process can be extended to large molecule. Moreover, the study on the self-assembly behavior of polymers shows that, compared with linear counterparts, the stability and drug loading capacity of micelles based on the resultant cyclic polymer are not significantly improved due to the influence of topological structure and linear impurities. Nevertheless, drug loaded micelles formed by the obtained cyclic polymers still exhibit superior cellular uptake ability. It can be seen that topological effects do play an irreplaceable role in the application performance of polymers. Therefore, the construction and synthesis of cyclic and its derivative polymers with moderate topological confinement and high purity may be a key direction for future exploration of polymer drug delivery carriers.
Collapse
Affiliation(s)
- Guiying Kang
- College of Chemical engineering and Technology, Tianshui Normal University, Tianshui 741001, China;
- China PetroChina Lanzhou Lubricating Oil R & D Institute, Lanzhou 730060, China;
| | - Muxin Lu
- College of Chemical engineering and Technology, Tianshui Normal University, Tianshui 741001, China;
| | - Kang Zhou
- China PetroChina Lanzhou Lubricating Oil R & D Institute, Lanzhou 730060, China;
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China;
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China;
| |
Collapse
|
4
|
Mizuguchi M, Umeda K, Mizumoto H, Terao K. Solution characterization of a hyperbranched polysaccharide carbamate derivative and specific phase separation behavior due to chain branching. SOFT MATTER 2023; 19:7781-7786. [PMID: 37791582 DOI: 10.1039/d3sm01074k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A hyperbranched polymer consisting of rigid helical part chains was prepared as highly branched cyclic dextrin tris(phenylcarbamate) (HTPC) with the weight-average molar masses of 880 and 590 kg mol-1. Small-angle X-ray scattering (SAXS) measurement and viscometry were performed on the samples in good and poor solvents to determine the dimensional and hydrodynamic properties in solution. The HTPC molecule has a much more compact conformation than the linear chain with the same molar mass as expected for the hyperbranched architecture. While the corresponding linear polymer is soluble in methyl acetate (MEA) over a wide temperature range, HTPC is only soluble in the solvent at low temperatures. A typical LCST-type phase diagram was observed for the HTPC-MEA system, indicating that the interactions between the polymer segment of HTPC and the MEA molecules are substantially different from those of the linear chains. This is most likely due to the bending helical chains near the branching point of HTPC having different interactions with solvent molecules.
Collapse
Affiliation(s)
- Madoka Mizuguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Keisuke Umeda
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Hisato Mizumoto
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
5
|
Kuriata A, Sikorski A. Structure of adsorbed linear and cyclic block copolymers: A computer simulation study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Zhou J, Wang Y, Li L. Regulating the Flow-Driven Translocation of Macromolecules through Nanochannels by Interfacial Physical Adsorption. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Jianing Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiren Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Vagias A, Nelson A, Wang P, Reitenbach J, Geiger C, Kreuzer LP, Saerbeck T, Cubitt R, Benetti EM, Müller-Buschbaum P. The Topology of Polymer Brushes Determines Their Nanoscale Hydration. Macromol Rapid Commun 2023; 44:e2300035. [PMID: 36815590 DOI: 10.1002/marc.202300035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Time-of-flight neutron reflectometry (ToF-NR) performed under different relative humidity conditions demonstrates that polymer brushes constituted by hydrophilic, cyclic macromolecules exhibit a more compact conformation with lower roughness as compared to linear brush analogues, due to the absence of dangling chain ends extending at the polymer-vapor interface. In addition, cyclic brushes feature a larger swelling ratio and an increased solvent uptake with respect to their linear counterparts as a consequence of the increased interchain steric repulsions. It is proposed that differences in swelling ratios between linear and cyclic brushes come from differences in osmotic pressure experienced by each brush topology. These differences stem from entropic constraints. The findings suggest that to correlate the equilibrium swelling ratios at different relative humidity for different topologies a new form of the Flory-like expression for equilibrium thicknesses of grafted brushes is needed.
Collapse
Affiliation(s)
- Apostolos Vagias
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Andrew Nelson
- ANSTO, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - Peixi Wang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Julija Reitenbach
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Christina Geiger
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Lucas Philipp Kreuzer
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany.,Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Thomas Saerbeck
- Institut Laue Langevin (ILL), 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Robert Cubitt
- Institut Laue Langevin (ILL), 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Edmondo Maria Benetti
- Polymer Surfaces Group, Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35122, Italy.,Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland
| | - Peter Müller-Buschbaum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany.,Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
8
|
Xu J, Liang W, Zhang J, Dong Z, Lei C. Synthesis of Side-Chain Functional Poly(ε-caprolactone) via the Versatile and Robust Organo-Promoted Esterification Reaction. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Yang J, Chen L, Zhu M, Ishaq MW, Chen S, Li L. Investigation of the Multimer Cyclization Effect during Click Step-Growth Polymerization of AB-Type Macromonomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinxian Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lunliang Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mo Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Waqas Ishaq
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shengqi Chen
- Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Zhu Y, Liu P, Zhang J, Hu J, Zhao Y. Facile synthesis of monocyclic, dumbbell-shaped and jellyfish-like copolymers using a telechelic multisite hexablock copolymer. Polym Chem 2022. [DOI: 10.1039/d2py00824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterofunctional hexablock copolymer comprising alternating reactive and non-reactive blocks is designed to generate cyclic, dumbbell-shaped and jellyfish-like copolymers.
Collapse
Affiliation(s)
- Yingsheng Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiaman Hu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|