1
|
Nunziata G, Nava M, Lacroce E, Pizzetti F, Rossi F. Thermo-Responsive Polymer-Based Nanoparticles: From Chemical Design to Advanced Applications. Macromol Rapid Commun 2025; 46:e2401127. [PMID: 39895239 PMCID: PMC12051735 DOI: 10.1002/marc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Thermo-responsive polymers have emerged as a cutting-edge tool in nanomedicine, paving the way for innovative approaches to targeted drug delivery and advanced therapeutic strategies. These "smart" polymers respond to temperature changes, enabling controlled drug release in pathological environments characterized by high temperatures. By exploiting their unique phase transition, occurring at the lower or upper critical solution temperatures (LCST and UCST), these systems ensure localized therapeutic action, minimizing collateral damage to healthy tissues. The integration of these polymers into nanoparticles with hydrophilic shells and hydrophobic cores enhances their stability and biocompatibility. Furthermore, advanced polymer engineering allows precise modulation of LCST and UCST through adjustments in composition and hydrophilic-lipophilic balance, optimizing their responsiveness for specific applications. In addition to drug delivery, thermo-responsive nanoparticles are gaining attention in several fields such as gene therapy and imaging. Therefore, this review explores the chemical and structural diversity of thermo-responsive nanoparticles, emphasizing their ability to encapsulate and release drugs effectively. Second, this review highlights the potential of thermo-responsive nanoparticles to redefine treatment paradigms, providing a comprehensive understanding of their mechanisms, applications, and future perspectives in biomedical research.
Collapse
Affiliation(s)
- Giuseppe Nunziata
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 7Milano20131Italy
| | - Marco Nava
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 7Milano20131Italy
| | - Elisa Lacroce
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 7Milano20131Italy
| | - Fabio Pizzetti
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 7Milano20131Italy
| | - Filippo Rossi
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milanovia Mancinelli 7Milano20131Italy
| |
Collapse
|
2
|
Zhou J, Yuan W, Qing Y, Du G, Li Q. A Coordinating Small Organic Molecule with Tunable Lower Critical Solution Temperature for Efficient Management of Solar Radiation. Macromol Rapid Commun 2024; 45:e2400167. [PMID: 38847293 DOI: 10.1002/marc.202400167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Indexed: 08/09/2024]
Abstract
Structurally well-defined small molecules with lower critical solution temperature (LCST) behavior offer enormous prospects for fine-tuning their phase transition properties to be "on-demand" applied in the specific scene but are still underexplored. Herein, a novel amphiphilic small LCST molecule is rationally designed and synthesized. The molecule, namely TG, features a conjugation of multiple short ethylene glycol (EG) chains with the functional coordinating terpyridine (Tpy) moiety. The molecule TG demonstrates excellent LCST behavior down to 0.05 × 10-3 m in a water solution. And a cloud point Tcp = 30.9 °C with a very short thermal hysteresis ΔT = 0.2 °C and good reversibility can be achieved when c = 0.1 × 10-3 m. The excellent LCST properties of TG have enabled its successful performance as the smart window for solar radiation management with the ∆Tlum, ∆TIR, and ∆Tsol being 83.6%, 49.1%, and 67.2%, respectively. Moreover, the presence of Tpy moiety in TG enables its coordination with Ru3+ and the resulting complex also exhibits modulated LCST behavior with different concentration-dependent Tcp. These studies would provide novel small-molecule-based scaffolds for constructing better solar radiation management systems as well as other thermal-responsive smart materials.
Collapse
Affiliation(s)
- Junnan Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou City, 310014, P. R. China
| | - Weidong Yuan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou City, 310014, P. R. China
| | - Yuxi Qing
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou City, 310014, P. R. China
| | - Guangyan Du
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou City, 310014, P. R. China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| |
Collapse
|
3
|
Wei B, Li H, Chu H, Dong H, Zhang Y, Sun CL, Li Y. Self-Assembly of Amphiphilic PDI and NDI Derivatives with Opposite Thermoresponsive Fluorescent Behaviors in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6493-6505. [PMID: 38484325 DOI: 10.1021/acs.langmuir.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This work presents a study of the thermally induced aggregation of perylene diimide (PDI) and naphthalene diimide (NDI) derivatives modified with oligo ethylene glycol (OEG) chains in aqueous solution. Water-soluble and flexible OEG side chains were introduced into the π-core of glutamate-modified NDI and PDI structures, and the aggregation process was modulated by heating or cooling in water. Interestingly, a rare opposite temperature response of fluorescent behavior from the two amphiphilic chromophores was revealed, in which the PDI exhibited fluorescent enhancement, while fluorescent quenching upon temperature increase was observed from the NDI assembly. The mechanism of thermally induced aggregation is clearly explained by studies with various spectroscopic techniques including UV-visible, fluorescence, 1H NMR, 2D NMR spectroscopy, and SEM observation as well as control experiments operated in DMSO solution. It is found that although similar J-aggregates were formed by both amphiphilic chromophores in aqueous solution, the temperature response of the aggregates to temperature was opposite. The degree of PDI aggregation decreased, while that of NDI increased upon temperature rising. This research paves a valuable way for understanding the complicated supramolecular behaviors of amphiphilic chromophores.
Collapse
Affiliation(s)
- Bizhuo Wei
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huajing Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huan Chu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Huanhuan Dong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Yijun Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Cai-Li Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, No. 58 Yanta Road, Xi'an 710054, China
| |
Collapse
|
4
|
Polo Fonseca L. From nano to the macro: tuning hierarchical aggregation of thermoresponsive PEG/PCL-based polyurethanes via molar mass/composition control. Macromol Res 2023. [DOI: 10.1007/s13233-023-00137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
AbstractAmphiphilic hyperbranched polyurethanes (HPUs) based on PEG and PCL are promising for several biomedical applications. However, the lack of control over the molar mass and composition hinders a deep understanding of the aqueous self-assembly of HPUs. In this paper, the control over the HPU molar mass and composition was provided by dynamic urea bond-mediated polymerization (DUBMP), enabling a careful evaluation of their aqueous self-assembly by 1H NMR, DLS, and Cryo-TEM. HPUs containing a single PCL block per chain self-assemble into nanoaggregates (Rh ≈ 10 nm) in water up to its cloud-point temperature (Tcp) of 34 °C. On the other hand, HPUs with more than one PCL block per chain self-assemble into nanoaggregates and their clusters below Tcp. In this case, the solution behavior can be tuned by the HPU molar mass. Increasing $$\overline{{\mathrm{M} }_{\mathrm{w}}}$$
M
w
¯
from 4 to 19 kDa, HPUs of similar composition can form colloidally stable cluster suspensions ($$\overline{{\mathrm{M} }_{\mathrm{w}}}$$
M
w
¯
= 4 kDa) and phase separate into a denser liquid aggregate–cluster phase ($$\overline{{\mathrm{M} }_{\mathrm{w}}}$$
M
w
¯
= 7 kDa) or into a highly viscous aggregate-network phase ($$\overline{{\mathrm{M} }_{\mathrm{w}}}$$
M
w
¯
= 19 kDa). This type of control over the hierarchical aggregation of HPUs was reported for the first time and is interesting for biomedical applications.
Graphical abstract
Collapse
|
5
|
Controlling the LCST-Phase Transition in Azobenzene-Functionalized Poly ( N-Isopropylacrlyamide) Hydrogels by Light. Gels 2023; 9:gels9020075. [PMID: 36826244 PMCID: PMC9956105 DOI: 10.3390/gels9020075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Poly(N-isopropylacrylamide) PNIPAAm hydrogels were modified with a new azobenzene-containing co-monomer. In this work, light responsiveness as an additional functionality, is conceptualized to induce two phase transitions in the same material, which can be controlled by light. For a hydrogel with merely 2.5 mol% of this co-monomer, the lower critical solution transition temperature (LCST) was lowered by 12 °C (to 20 °C) compared to PNIPAAm (LCST at 32 °C), as analyzed by differential scanning calorimetry (DSC). The untreated unimodal endotherm split into a bimodal peak upon irradiation with UV-light, giving a second onset due to the switched (Z) isomer-rich regions, LCST*H2.5%-(Z) = 26 °C. On irradiation with 450 nm, leading to the reverse (Z) to (E) isomerization, the endotherm was also reversible. Thus, a photo-switchable hydrogel whose LCST and structure are tunable with the hydrophobicity-hydrophilicity of the (E) and (Z) isomeric state of azobenzene was obtained. The influence of the increase in the mol% of azoacrylate on the LCST was evaluated via DSC, in combination with NMR studies, UV-vis spectroscopy and control experiments with linear polymers. The large light-driven modulation of the LCST adds bistability in thermoresponsive hydrogels, which may open diverse applications in the field of soft robotics actuators.
Collapse
|
6
|
Jennings J, Webster-Aikman RR, Ward-O’Brien N, Xie A, Beattie DL, Deane OJ, Armes SP, Ryan AJ. Hydrocarbon-Based Statistical Copolymers Outperform Block Copolymers for Stabilization of Ethanol-Water Foams. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39548-39559. [PMID: 35984897 PMCID: PMC9437873 DOI: 10.1021/acsami.2c09910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Well-defined block copolymers have been widely used as emulsifiers, stabilizers, and dispersants in the chemical industry for at least 50 years. In contrast, nature employs amphiphilic proteins as polymeric surfactants whereby the spatial distribution of hydrophilic and hydrophobic amino acids within the polypeptide chains is optimized for surface activity. Herein, we report that polydisperse statistical copolymers prepared by conventional free-radical copolymerization can provide superior foaming performance compared to the analogous diblock copolymers. A series of predominantly (meth)acrylic comonomers are screened to identify optimal surface activity for foam stabilization of aqueous ethanol solutions. In particular, all-acrylic statistical copolymers comprising trimethylhexyl acrylate and poly(ethylene glycol) acrylate, P(TMHA-stat-PEGA), confer strong foamability and also lower the surface tension of a range of ethanol-water mixtures to a greater extent than the analogous block copolymers. For ethanol-rich hand sanitizer formulations, foam stabilization is normally achieved using environmentally persistent silicone-based copolymers or fluorinated surfactants. Herein, the best-performing fully hydrocarbon-based copolymer surfactants effectively stabilize ethanol-rich foams by a mechanism that resembles that of naturally-occurring proteins. This ability to reduce the surface tension of low-surface-energy liquids suggests a wide range of potential commercial applications.
Collapse
|
7
|
Kostyurina E, Allgaier J, Kruteva M, Frielinghaus H, Csiszár A, Förster S, Biehl R. Passive Macromolecular Translocation Mechanism through Lipid Membranes. J Am Chem Soc 2022; 144:15348-15354. [PMID: 35951721 DOI: 10.1021/jacs.2c06659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The translocation of biologically active macromolecules through cell membranes is of vital importance for cells and is a key process for drug delivery. Proteins exploit specific conformational changes in their secondary structure to facilitate membrane translocation. For the large class of biological and synthetic macromolecules, where such conformational adaptions are not possible, guidelines to tailor the structure of monomers and macromolecules to aid membrane translocation and cross-membrane drug delivery would be highly desirable. Here, we use alternating amphiphilic macromolecules to systematically investigate the relation between polarity, polymer chain length, lipid chain length, polymer concentration, and temperature on membrane partition and translocation rate. We employed pulse field gradient NMR and confocal fluorescence microscopy to determine membrane adsorption and desorption rate constants and partitioning coefficients. We find that translocation is a two-step process involving a fast adsorption and membrane insertion process and a slower desorption process. Membrane insertion is a key step that determines the molecular weight, concentration, and temperature dependences. Passive translocation is possible on time scales from minutes to hours. Macromolecules with different adapted hydrophilic/hydrophobic comonomer sequences show the same translocation rate, indicating that common optimized translocation conditions can be realized with a variety of monomer chemical structures. The investigated copolymers are biocompatible, biodegradable, and capable of transporting a hydrophobic payload through the lipid membrane. This detailed understanding of the macromolecular translocation mechanism enables to better tailor the delivery of active agents using macromolecular carriers.
Collapse
Affiliation(s)
- Ekaterina Kostyurina
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Jürgen Allgaier
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Margarita Kruteva
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, 85747 Garching, Germany
| | - Agnes Csiszár
- Institute for Biological Information Processing (IBI-2), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, 85747 Garching, Germany
| | - Ralf Biehl
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| |
Collapse
|
8
|
Dually Responsive Poly(N-vinylcaprolactam)-b-poly(dimethylsiloxane)-b-poly(N-vinylcaprolactam) Polymersomes for Controlled Delivery. Molecules 2022; 27:molecules27113485. [PMID: 35684423 PMCID: PMC9182360 DOI: 10.3390/molecules27113485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Limited tissue selectivity and targeting of anticancer therapeutics in systemic administration can produce harmful side effects in the body. Various polymer nano-vehicles have been developed to encapsulate therapeutics and prevent premature drug release. Dually responsive polymeric vesicles (polymersomes) assembled from temperature-/pH-sensitive block copolymers are particularly interesting for the delivery of encapsulated therapeutics to targeted tumors and inflamed tissues. We have previously demonstrated that temperature-responsive poly(N-vinylcaprolactam) (PVCL)-b-poly(dimethylsiloxane) (PDMS)-b-PVCL polymersomes exhibit high loading efficiency of anticancer therapeutics in physiological conditions. However, the in-vivo toxicity of these polymersomes as biocompatible materials has not yet been explored. Nevertheless, developing an advanced therapeutic nanocarrier must provide the knowledge of possible risks from the material’s toxicity to support its future clinical research in humans. Herein, we studied pH-induced degradation of PVCL10-b-PDMS65-b-PVCL10 vesicles in-situ and their dually (pH- and temperature-) responsive release of the anticancer drug, doxorubicin, using NMR, DLS, TEM, and absorbance spectroscopy. The toxic potential of the polymersomes was evaluated in-vivo by intravenous injection (40 mg kg−1 single dose) of PVCL10-PDMS65-PVCL10 vesicles to mice. The sub-acute toxicity study (14 days) included gravimetric, histological, and hematological analyses and provided evidence for good biocompatibility and non-toxicity of the biomaterial. These results show the potential of these vesicles to be used in clinical research.
Collapse
|