1
|
Liang H, Tian W, Xu H, Ge Y, Yang Y, He E, Yang Z, Wang Y, Zhang S, Wang G, Chen Q, Wei Y, Ji Y. Reprocessable Epoxy-Anhydride Resin Enabled by a Thermally Stable Liquid Transesterification Catalyst. Polymers (Basel) 2024; 16:3216. [PMID: 39599307 PMCID: PMC11598466 DOI: 10.3390/polym16223216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Introducing dynamic ester bonds into epoxy-anhydride resins enhances the reprocessability of the crosslinked network, facilitated by various types of transesterification catalysts. However, existing catalysts, such as metal salts and organic molecules, often struggle with dispersion, volatility, or structural instability issues. Here, we propose to solve such problems by incorporating a liquid-state, thermally stable transesterification catalyst into epoxy resins. This catalyst, an imidazole derivative, can be uniformly dispersed in the epoxy resin at room temperature. In addition, it shows high-temperature structural stability above at least 200 °C as the synergistic effects of the electron-withdrawing group and steric bulk can be leveraged. It can also effectively promote transesterification at elevated temperatures, allowing for the effective release of shear stress. This property enables the thermal recycling and reshaping of the fully crosslinked epoxy-anhydride resin. This strategy not only enhances the functionality of epoxy resins but also broadens their applicability across various thermal and mechanical environments.
Collapse
Affiliation(s)
- Huan Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Wendi Tian
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Hongtu Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Yuzhen Ge
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
| | - Enjian He
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Zhijun Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Yixuan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Shuhan Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Guoli Wang
- Electric Power Research Institute, China Southern Power Grid Co., Ltd., Guangzhou 510623, China; (G.W.); (Q.C.)
| | - Qiulin Chen
- Electric Power Research Institute, China Southern Power Grid Co., Ltd., Guangzhou 510623, China; (G.W.); (Q.C.)
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| | - Yan Ji
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (H.L.); (H.X.); (Y.G.); (E.H.); (Z.Y.); (Y.W.); (S.Z.)
| |
Collapse
|
2
|
Ye G, Huo S, Wang C, Zhang Q, Wang H, Song P, Liu Z. Strong yet Tough Catalyst-Free Transesterification Vitrimer with Excellent Fire-Retardancy, Durability, and Closed-Loop Recyclability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404634. [PMID: 39082404 DOI: 10.1002/smll.202404634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Indexed: 11/08/2024]
Abstract
Despite great advances in vitrimer, it remains highly challenging to achieve a property portfolio of excellent mechanical properties, desired durability, and high fire safety. Thus, a catalyst-free, closed-loop recyclable transesterification vitrimer (TPN1.50) with superior mechanical properties, durability, and fire retardancy is developed by introducing a rationally designed tertiary amine/phosphorus-containing reactive oligomer (TPN) into epoxy resin (EP). Because of strong covalent interactions between TPN and EP and its linear oligomer structure, as-prepared TPN1.50 achieves a tensile strength of 86.2 MPa and a toughness of 6.8 MJ m-3, superior to previous vitrimer counterparts. TPN1.50 containing 1.50 wt% phosphorus shows desirable fire retardancy, including a limiting oxygen index of 35.2% and a vertical burning (UL-94) V-0 classification. TPN1.50 features great durability and can maintain its structure integrity in 1 M HCl or NaOH solution for 100 days. This is because the tertiary amines are anchored within the cross-linked network and blocked by rigid P-containing groups, thus effectively suppressing the transesterification. Owing to its good chemical recovery, TPN1.50 can be used as a promising resin for creating recyclable carbon fiber-reinforced polymer composites. This work offers a promising integrated method for creating robust durable fire-safe vitrimers which facilitate the sustainable development of high-performance polymer composites.
Collapse
Affiliation(s)
- Guofeng Ye
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Cheng Wang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qi Zhang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield, 4300, Australia
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, 4300, Australia
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| |
Collapse
|
3
|
Adjaoud A, Marcolini B, Dieden R, Puchot L, Verge P. Deciphering the Self-Catalytic Mechanisms of Polymerization and Transesterification in Polybenzoxazine Vitrimers. J Am Chem Soc 2024; 146:13367-13376. [PMID: 38696347 PMCID: PMC11100009 DOI: 10.1021/jacs.4c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
The use of internal catalysts has emerged as a pivotal design principle to facilitate dynamic exchanges within covalent adaptable networks (CANs). Polybenzoxazines, specifically, have shown considerable potential in generating vitrimers through thermally induced transesterification reactions catalyzed internally by tertiary amines. This study aims to investigate the chemical complexities of transesterification reactions within benzoxazine vitrimers. To achieve this, model molecules using various phenolic acids and amino-alcohol derivatives were synthesized as precursors. The structure of these model molecules was fully elucidated by using nuclear magnetic resonance (NMR). Differential scanning calorimetry (DSC) and rheology experiments evidenced the accelerated network formation of the precursors due to the presence of aliphatic -OH groups. Thermogravimetric analysis coupled with microcomputed gas chromatography (TGA-μGC) was used to provide evidence of transesterification reactions. The results showed that the spatial proximity between tertiary amine and hydroxyl groups significantly enhances the rate exchange, attributed to a neighboring group participation (NGP) effect. Interestingly, kinetic experiments using complementary NMR techniques revealed the thermal latency of the tertiary amine of benzoxazine toward transesterification reactions as its opening is needed to trigger the dynamic exchange. The study highlights the crucial role of steric hindrance and tertiary amine basicity in promoting the dynamic exchange in an internally catalyzed system.
Collapse
Affiliation(s)
- Antoine Adjaoud
- Luxembourg
Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
- University
of Luxembourg, 2 Avenue
de Université, Esch-sur-Alzette L-4365, Luxembourg
| | - Benoit Marcolini
- Luxembourg
Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Reiner Dieden
- Luxembourg
Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Laura Puchot
- Luxembourg
Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Pierre Verge
- Luxembourg
Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| |
Collapse
|
4
|
Yang H, Wang D. Comparing Surface and Bulk Curing Processes of an Epoxy Vitrimer. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470965 DOI: 10.1021/acsami.3c17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
We used atomic force microscopy-based infrared spectroscopy (AFM-IR) and nanomechanical mapping (AFM-NM) to image the surface of a vitrimer, specifically dicarboxylic acid-cured diglycidyl ether of bisphenol A (DGEBA), to assess the curing process of a surface layer and compared this to the process in the bulk. We identified the β-hydroxy esters with various functionalities that are the key to form the cross-links for a system, including difunctional DGEBA and carboxylic acids. The IR peaks of the carbonyl group in generated ester groups are distinguished clearly from those in acids, allowing us to quantitatively assess the curing process at the surface and in the bulk. The initial curing at the surface exhibits a gradual cross-linking and is found to be lower than a rapid cross-linking in the bulk due to a relatively lower concentration of the β-hydroxy esters with high functionalities. This curing process leads to a smaller chemically and mechanically heterogeneous nanostructure at the surface relative to the bulk. After multiple reprocessings, a substantial number of esters lacking dynamic exchange capability form in the bulk, which decrease the flowability and reprocessability of the vitrimers and therefore the mechanical properties.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Wang
- State Key Laboratory of Organic-Inorganic Composites & Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Li K, Tran NV, Pan Y, Wang S, Jin Z, Chen G, Li S, Zheng J, Loh XJ, Li Z. Next-Generation Vitrimers Design through Theoretical Understanding and Computational Simulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302816. [PMID: 38058273 PMCID: PMC10837359 DOI: 10.1002/advs.202302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/03/2023] [Indexed: 12/08/2023]
Abstract
Vitrimers are an innovative class of polymers that boast a remarkable fusion of mechanical and dynamic features, complemented by the added benefit of end-of-life recyclability. This extraordinary blend of properties makes them highly attractive for a variety of applications, such as the automotive sector, soft robotics, and the aerospace industry. At their core, vitrimer materials consist of crosslinked covalent networks that have the ability to dynamically reorganize in response to external factors, including temperature changes, pressure variations, or shifts in pH levels. In this review, the aim is to delve into the latest advancements in the theoretical understanding and computational design of vitrimers. The review begins by offering an overview of the fundamental principles that underlie the behavior of these materials, encompassing their structures, dynamic behavior, and reaction mechanisms. Subsequently, recent progress in the computational design of vitrimers is explored, with a focus on the employment of molecular dynamics (MD)/Monte Carlo (MC) simulations and density functional theory (DFT) calculations. Last, the existing challenges and prospective directions for this field are critically analyzed, emphasizing the necessity for additional theoretical and computational advancements, coupled with experimental validation.
Collapse
Affiliation(s)
- Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Nam Van Tran
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuqing Pan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhicheng Jin
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Guoliang Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianwei Zheng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
6
|
Meyersohn M, Haque FM, Hillmyer MA. Dynamic Aliphatic Polyester Elastomers Crosslinked with Aliphatic Dianhydrides. ACS POLYMERS AU 2023; 3:365-375. [PMID: 37841953 PMCID: PMC10571103 DOI: 10.1021/acspolymersau.3c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 10/17/2023]
Abstract
Chemically crosslinked elastomers are a class of polymeric materials with properties that render them useful as adhesives, sealants, and in other engineering applications. Poly(γ-methyl-ε-caprolactone) (PγMCL) is a hydrolytically degradable and compostable aliphatic polyester that can be biosourced and exhibits competitive mechanical properties to traditional elastomers when chemically crosslinked. A typical limitation of chemically crosslinked elastomers is that they cannot be reprocessed; however, the incorporation of dynamic covalent bonds can allow for bonds to reversibly break and reform under an external stimulus, usually heat. In this work, we study the dynamic behavior and mechanical properties of PγMCL elastomers synthesized from aliphatic dianhydride crosslinkers. The crosslinked elastomers in this work were synthesized using the commercially available crosslinkers, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and 1,2,3,4-cyclobutanetetracarboxylic dianhydride and three-arm hydroxy-telechelic PγMCL star polymers. Stress relaxation experiments on the crosslinked networks showed an Arrhenius dependence of viscosity with temperature with an activation energy of 118 ± 8 kJ/mol, which agrees well with the activation energy of transesterification exchange chemistry obtained from small molecule model studies. Dynamic mechanical thermal analysis and rheological experiments confirmed the dynamic nature of the networks and provided insight into the mechanism of exchange (i.e., associative or dissociative). Tensile testing showed that these materials can exhibit high strains at break and low Young's moduli, characteristic of soft and strong elastomers. By controlling the exchange chemistry and understanding the effect of macromolecular structure on mechanical properties, we prepared the high-performance elastomers that can be potentially reprocessed at moderately elevated temperatures.
Collapse
Affiliation(s)
- Marianne
S. Meyersohn
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Farihah M. Haque
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Hu Z, Hu F, Deng L, Yang Y, Xie Q, Gao Z, Pan C, Jin Y, Tang J, Yu G, Zhang W. Reprocessible Triketoenamine-Based Vitrimers with Closed-Loop Recyclability. Angew Chem Int Ed Engl 2023; 62:e202306039. [PMID: 37314932 DOI: 10.1002/anie.202306039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/16/2023]
Abstract
Development of thermosets that can be repeatedly recycled via both chemical route (closed-loop) and thermo-mechanical process is attractive and remains an imperative task. In this work, we reported a triketoenamine based dynamic covalent network derived from 2,4,6-triformylphloroglucinol and secondary amines. The resulting triketoenamine based network does not have intramolecular hydrogen bonds, thus reducing its π-electron delocalization, lowering the stability of the tautomer structure, and enabling its dynamic feature. By virtue of the highly reversible bond exchange, this novel dynamic covalent bond enables the easy construction of highly crosslinked and chemically reprocessable networks from commercially available monomers. The as-made polymer monoliths exhibit high mechanical properties (tensile strength of 79.4 MPa and Young's modulus of 571.4 MPa) and can undergo a monomer-network-monomer (yields up to 90 %) recycling mediated by an aqueous solution, with the new-generation polymer capable of restoring the material strength to its original state. In addition, owing to its dynamic nature, a catalyst-free and low-temperature reprogrammable covalent adaptable network (vitrimer) was achieved. The design concept reported herein can be applied to the development of other novel vitrimers with high repressibility and recyclability, and sheds light on future design of sustainable polymers with minimal environmental impact.
Collapse
Affiliation(s)
- Zeyou Hu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Fan Hu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Lifeng Deng
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Yumin Yang
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Qiujian Xie
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Zhu Gao
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha, 410083, China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
8
|
A Multifunctional Biomass Zinc Catalyst for Epoxy-Based Vitrimers and Composites. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
9
|
Jeon D, Yoon Y, Kim D, Lee G, Ahn SK, Choi D, Kim CB. Fully Recyclable Covalent Adaptable Network Composite with Segregated Hexagonal Boron Nitride Structure for Efficient Heat Dissipation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dupyo Jeon
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Yeomyung Yoon
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Doyeon Kim
- Department of Chemical Engineering, Myongji University, Yongin17058, Republic of Korea
| | - Gyuri Lee
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Suk-kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Dalsu Choi
- Department of Chemical Engineering, Myongji University, Yongin17058, Republic of Korea
| | - Chae Bin Kim
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan46241, Republic of Korea
| |
Collapse
|
10
|
Lee G, Song HY, Choi S, Kim CB, Hyun K, Ahn SK. Harnessing β-Hydroxyl Groups in Poly(β-Amino Esters) toward Robust and Fast Reprocessing Covalent Adaptable Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gyuri Lee
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Hyeong Yong Song
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| | - Subi Choi
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Chae Bin Kim
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan46241, Republic of Korea
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Institute for Environment and Energy, Pusan National University, Busan46241, Republic of Korea
| | - Suk-kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan46241, Republic of Korea
| |
Collapse
|
11
|
Sharma H, Rana S, Singh P, Hayashi M, Binder WH, Rossegger E, Kumar A, Schlögl S. Self-healable fiber-reinforced vitrimer composites: overview and future prospects. RSC Adv 2022; 12:32569-32582. [PMID: 36425695 PMCID: PMC9661690 DOI: 10.1039/d2ra05103f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 08/15/2023] Open
Abstract
To achieve sustainable development goals, approaches towards the preparation of recyclable and healable polymeric materials is highly attractive. Self-healing polymers and thermosets based on bond-exchangeable dynamic covalent bonds, so called "vitrimers" could be a great effort in this direction. In order to match the industrial importance, enhancement of mechanical strength without sacrificing the bond exchange capability is a challenging issue, however, such concerns can be overcome through the developments of fiber-reinforced vitrimer composites. This article covers the outstanding features of fiber-reinforced vitrimer composites, including their reprocessing, recycling and self-healing properties, together with practical applications and future perspectives of this unique class of materials.
Collapse
Affiliation(s)
- Harsh Sharma
- University of Petroleum & Energy Studies (UPES), School of Engineering Energy Acres, Bidholi Dehradun 248007 India
| | - Sravendra Rana
- University of Petroleum & Energy Studies (UPES), School of Engineering Energy Acres, Bidholi Dehradun 248007 India
| | - Poonam Singh
- University of Petroleum & Energy Studies (UPES), School of Engineering Energy Acres, Bidholi Dehradun 248007 India
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology Showa-ku Nagoya 466-8555 Japan
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg Von-Danckelmann-Platz 4 Halle 06120 Germany
| | - Elisabeth Rossegger
- Chemistry of Functional Polymers, Polymer Competence Center Leoben GmbH Roseggerstraße 12 A-8700 Leoben Austria
| | - Ajay Kumar
- University of Petroleum & Energy Studies (UPES), School of Engineering Energy Acres, Bidholi Dehradun 248007 India
| | - Sandra Schlögl
- Chemistry of Functional Polymers, Polymer Competence Center Leoben GmbH Roseggerstraße 12 A-8700 Leoben Austria
| |
Collapse
|
12
|
Chen F, Gao F, Guo X, Shen L, Lin Y. Tuning the Dynamics of Enamine-One-Based Vitrimers through Substituent Modulation of Secondary Amine Substrates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengbiao Chen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Fei Gao
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Xinru Guo
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi330013, P. R. China
| | - Yangju Lin
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
13
|
Zhu Y, Liu Y, Mohamed HF, Zheng X, He J, Lin L. Rigid, eco-friendly and superhydrophobic SiO 2-Polyvinyl alcohol composite sponge for durable oil remediation. CHEMOSPHERE 2022; 307:135990. [PMID: 35977562 DOI: 10.1016/j.chemosphere.2022.135990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Development of durable and eco-friendly adsorbents for oil remediation is in great demands. However, most of adsorbents were designed to pursue large capabilities while ignored their strength after adsorbing oil, which might cause secondary oil spilling during complex salvage process. Herein, an eco-friendly and superhydrophobic SiO2-modified polyvinyl alcohol composite (H-SiO2-G-PVA) sponge with extraordinary rigid structure after oil adsorption is designed for durable oil remediation. Through a two-step hydrolysis-condensation process including deposition of silica microparticles and introduction of hexadecyltrimethoxysilane (HDTMS), a superhydrophobic H-SiO2-G-PVA sponge has been successfully constructed. The sponge presents stable superhydrophobicity in various complex environments,therefore it efficiently adsorbs oil from water (up to 6 g g-1) and separate surfactant-stabilized water/oil emulsion with high efficiency (>99%). Noticeably, the H-SiO2-G-PVA sponge maintains tough strength (3.5 MPa) after oil adsorption, which ideally overcomes secondary oil spilling problem and endows the sponge with excellent recycling performances (>20 cycles). Meanwhile, the excellent biocompatibility of the sponge (high cell viability of 91.85%) ensures the potential for practical applications. This rigid, eco-friendly oil-adsorbing sponge that achieves stable superhydrophobicity and recyclability, fulfills the application needs for durable oil remediation.
Collapse
Affiliation(s)
- Yi Zhu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen, 361005, PR China
| | - Yuansen Liu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen, 361005, PR China; Fujian Provincial Key Laboratory of Island Conservation and Development, Island Research Center, Ministry of Natural Resources, Pingtan, 350400, PR China
| | - Hala F Mohamed
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen, 361005, PR China; Botany & Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Xinqing Zheng
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen, 361005, PR China
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen, 361005, PR China; Fujian Provincial Key Laboratory of Island Conservation and Development, Island Research Center, Ministry of Natural Resources, Pingtan, 350400, PR China
| | - Ling Lin
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen, 361005, PR China; Fujian Provincial Key Laboratory of Island Conservation and Development, Island Research Center, Ministry of Natural Resources, Pingtan, 350400, PR China.
| |
Collapse
|
14
|
Synthesis of a transesterification vitrimer activated by fluorine from an α,α-difluoro carboxylic acid and a diepoxy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Bakkali-Hassani C, Berne D, Ladmiral V, Caillol S. Transcarbamoylation in Polyurethanes: Underestimated Exchange Reactions? Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
16
|
Lemouzy S, Cuminet F, Berne D, Caillol S, Ladmiral V, Poli R, Leclerc E. Understanding the Reshaping of Fluorinated Polyester Vitrimers by Kinetic and DFT Studies of the Transesterification Reaction. Chemistry 2022; 28:e202201135. [DOI: 10.1002/chem.202201135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Dimitri Berne
- ICGM Univ Montpellier, CNRS, ENSCM 34293 Montpellier France
| | | | | | - Rinaldo Poli
- CNRS LCC (Laboratoire de Chimie de Coordination) UPS INPT Université de Toulouse 205 route de Narbonne 31077 Toulouse, Cedex 4 France
- Institut Universitaire de France 1, rue Descartes 75231 Paris France
| | - Eric Leclerc
- ICGM Univ Montpellier, CNRS, ENSCM 34293 Montpellier France
| |
Collapse
|
17
|
Berne D, Caillol S, Ladmiral V, Leclerc E. Synthesis of polyester thermosets via internally catalyzed Michael-addition of methylene compounds on a 2-(trifluoromethyl)acrylate-derived building block. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Design, Synthesis and Characterization of Vitrimers with Low Topology Freezing Transition Temperature. Polymers (Basel) 2022; 14:polym14122456. [PMID: 35746032 PMCID: PMC9229622 DOI: 10.3390/polym14122456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 01/30/2023] Open
Abstract
Vitrimers are crosslinked polymeric materials that behave like fluids when heated, regulated by the kinetics of internal covalent bond-exchange that occurs rapidly at or above the topology freezing transition temperature (Tv) of the vitrimer, making these materials readily reprocessable and recyclable. We report two novel multiphase vitrimeric materials prepared by the cross-linking of two polymers, namely poly(triethylene glycol sebacate) and poly(2-hydroxyethyl acrylate), using zinc acetate or tin(II) 2-ethylhexanoate as catalysts, which exhibit significantly low Tv temperatures of 39 °C and 29 °C, respectively. The transesterification reactions allow rapid and pronounced stress relaxation at high temperatures, following the Arrhenius law. The lower Tv of these vitrimers could be attributable to the flexible long chains of these polymers and the significant excess of OH moieties present along the main chain of the polymer. The design of such multiphase vitrimers is not only useful for the practical application of vitrimers to reduce plastic waste but could also facilitate further development of functional polymer materials that can be reprocessed at low temperatures.
Collapse
|
19
|
Berne D, Coste G, Morales-Cerrada R, Boursier M, Pinaud J, Ladmiral V, Caillol S. Taking advantage of β-hydroxy amine enhanced reactivity and functionality for the synthesis of dual covalent adaptable networks. Polym Chem 2022. [DOI: 10.1039/d2py00274d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study highlights the potential of β-hydroxy amines as building blocks for aza-Michael CANs.
Collapse
Affiliation(s)
- Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Guilhem Coste
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Julien Pinaud
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|