1
|
Wang Z, Zou Q, Magermans L, Amselem G, Dessalles CA, Louis B, Filoche M, Gacoin T, Kim J. Shearmetry of Fluids with Tunable Rheology by Polarized Luminescence of Rare Earth-Doped Nanorods. ACS NANO 2024; 18:30650-30657. [PMID: 39404453 DOI: 10.1021/acsnano.4c09493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Shear stress plays a critical role in regulating physiological processes within microcirculatory systems. While particle imaging velocimetry is a standard technique for quantifying shear flow, uncertainty near boundaries and low resolution remain severe restrictions. Additionally, shear stress determination is particularly challenging in biofluids due to their significant non-Newtonian behaviors. The present study develops a shearmetry technique in physiological settings using a biomimetic fluid containing rare earth-doped luminescent nanorods acting in two roles. First, they are used as colloidal additives adjusting rheological properties in physiological media. Their anisotropic morphology and interparticle interaction synergistically induce a non-Newtonian shear-thinning effect emulating real biofluids. Second, they can probe shear stress due to the shear-induced alignment. The polarized luminescence of the nanorods allows for quantifying their orientational order parameter and thus correlated shear stress. Using scanning confocal microscopy, we demonstrate the tomographic mapping of the shear stress distribution in microfluidics. High shear stress is evident near the constriction and the cellular periphery, in which non-Newtonian effects can have a significant impact. This emerging shearmetry technique is promising for implementation in physiological and rheological environments of biofluids.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
- L'Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, INSERM U955, CNRS, 94010 Créteil, France
| | - Qilin Zou
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Lilian Magermans
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Gabriel Amselem
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Claire A Dessalles
- Laboratoire d'Hydrodynamique, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Bruno Louis
- L'Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, INSERM U955, CNRS, 94010 Créteil, France
| | - Marcel Filoche
- L'Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, INSERM U955, CNRS, 94010 Créteil, France
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
2
|
Akdeniz B, Wood JA, Lammertink RGH. Diffusiophoresis in Polymer and Nanoparticle Gradients. J Phys Chem B 2024; 128:5874-5887. [PMID: 38837230 PMCID: PMC11194826 DOI: 10.1021/acs.jpcb.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Diffusiophoresis is the movement of the colloidal particles in response to a concentration gradient and can be observed for both electrolyte (e.g., salt) and nonelectrolyte (e.g., glucose) solutes. Here, we investigated the diffusiophoretic behavior of polystyrene (PS-carboxylate surface) microparticles in nonadsorbing charged and uncharged solute gradients [sodium polystyrenesulfonate (NaPSS), polyethylene glycol (PEG), and nanoscale colloidal silica (SiO2)] using a dead-end channel setup. We compared the diffusiophoretic motion in these gradient types with each other and to the case of using a monovalent salt gradient. In each of the nonadsorbing gradient systems (NaPSS, PEG, and SiO2 nanoparticles), the PS particles migrated toward the lower solute concentration. The exclusion distance values (from the initial position) of particles were recorded within the dead-end channel, and it was found that an increase in solute concentration increases exclusion from the main channel. In the polyelectrolyte case, the motion of PS microparticles was reduced by the addition of a background salt due to reduced electrostatic interaction, whereas it remained constant when using the neutral polymer. Particle diffusiophoresis in gradients of polyelectrolytes (charged macromolecules) is quite similar to the behavior when using a PEG gradient (uncharged macromolecule) in the presence of a background electrolyte. Moreover, we observed PS microparticles under different concentrations and molecular weights of PEG gradients. By combining the simulations, we estimated the exclusion length, which was previously proposed to be the order of the polymer radius. Furthermore, the movement of PS microparticles was analyzed in the gradient of silica nanoparticles. The exclusion distance was higher in silica nanoparticle gradients compared to similar-size PEG gradients because silica nanoparticles are charged. The diffusiophoretic transport of the PS microparticles could be simulated by considering the interaction between the PS microparticles and silica nanoparticles.
Collapse
Affiliation(s)
- Burak Akdeniz
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jeffery A. Wood
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Rob G. H. Lammertink
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
3
|
Detert M, Santos TP, Shen AQ, Calabrese V. Alignment-Rheology Relationship of Biosourced Rod-Like Colloids and Polymers under Flow. Biomacromolecules 2023. [PMID: 37364888 DOI: 10.1021/acs.biomac.3c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Fluids composed of biosourced rod-like colloids (RC) and rod-like polymers (RP) have been extensively studied due to various promising applications relying on their flow-induced orientation (e.g., fiber spinning). However, the relationship between RC and RP alignment and the resulting rheological properties is unclear due to experimental challenges. We investigate the alignment-rheology relationship for a variety of biosourced RC and RP, including cellulose-based particles, filamentous viruses, and xanthan gum, by simultaneous measurements of the shear viscosity and fluid anisotropy under rheometric shear flows. For each system, the RC and RP contribution to the fluid viscosity, captured by the specific viscosity ηsp, follows a universal trend with the extent of the RC and RP alignment independent of concentration. We further exploit this unique rheological-structural link to retrieve a dimensionless parameter (β) directly proportional to ηsp at zero shear rate (η0,sp), a parameter often difficult to access from experimental rheometry for RC and RP with relatively long contour lengths. Our results highlight the unique link between the flow-induced structural and rheological changes occurring in RC and RP fluids. We envision that our findings will be relevant in building and testing microstructural constitutive models to predict the flow-induced structural and rheological evolution of fluids containing RC and RP.
Collapse
Affiliation(s)
- Marvin Detert
- Physics of Fluids, Max Planck Center Twente for Complex Fluid Dynamics, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | - Amy Q Shen
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Vincenzo Calabrese
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
4
|
Santos TP, Calabrese V, Boehm MW, Baier SK, Shen AQ. Flow-induced alignment of protein nanofibril dispersions. J Colloid Interface Sci 2023; 638:487-497. [PMID: 36758259 DOI: 10.1016/j.jcis.2023.01.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
HYPOTHESIS Protein nanofibrils (PNF) resulting from the self-assembly of proteins or peptides can present structural ordering triggered by numerous factors, including the shear flow. We hypothesize that i) depending on the contour length of the PNF and the magnitude of the shear rate applied to the PNF dispersion, they exhibit specific orientation, and ii) it is possible to predict the alignment of PNF by establishing a flow-alignment relationship. Understanding such a relationship is pivotal to improving the fundamental knowledge and application of fibril systems. EXPERIMENTS We use β-lactoglobulin PNF aqueous dispersions with different average contour lengths but equal persistence lengths. We employ simple shear-dominated microfluidic devices with state-of-the-art imaging techniques: flow-induced birefringence (FIB) and micro-particle image velocimetry (μ-PIV), to probe the effect of shear flow on PNF alignment. FINDINGS We provide an empirical relationship connecting the birefringence Δn (quantifying the extent of PNF alignment), and the Péclet number Pe (correlating the shear rate of the flow relative to the rotational diffusion of PNF) to understand the flow-alignment behavior of PNF under shear-dominated flows. Furthermore, we assess the alignment and flow profile of PNF at both high and low flow rates. The length of PNF emerges as a controlling parameter capable of modulating PNF alignment at specific shear rates. Our results shed new insights into the hydrodynamic behavior of PNF, which is highly relevant to various industrial processes involving the fibril systems.
Collapse
Affiliation(s)
- Tatiana P Santos
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| | - Vincenzo Calabrese
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | | | - Stefan K Baier
- Motif FoodWorks, Inc., Boston, MA, USA; The University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
5
|
Calabrese V, Shen AQ, Haward SJ. Naturally derived colloidal rods in microfluidic flows. BIOMICROFLUIDICS 2023; 17:021301. [PMID: 37035099 PMCID: PMC10076066 DOI: 10.1063/5.0142867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Naturally derived colloidal rods (CR) are promising building blocks for developing sustainable soft materials. Engineering new materials based on naturally derived CR requires an in-depth understanding of the structural dynamics and self-assembly of CR in dispersion under processing conditions. With the advancement of microfabrication techniques, many microfluidic platforms have been employed to study the structural dynamics of CR under flow. However, each microfluidic design has its pros and cons which need careful evaluation in order to fully meet the experimental goal and correctly interpret the data. We analyze recent results obtained from naturally derived CR and relevant rod-like macromolecules under microfluidic flows, with emphasis on the dynamical behavior in shear- and extensional-dominated flows. We highlight the key concepts required in order to assess and evaluate the results obtained from different CR and microfluidic platforms as a whole and to aid interconnections with neighboring fields. Finally, we identify and discuss areas of interest for future research directions.
Collapse
|
6
|
Schmitt J, Calabrese V, da Silva MA, Hossain KMZ, Li P, Mahmoudi N, Dalgliesh RM, Washington AL, Scott JL, Edler KJ. Surfactant induced gelation of TEMPO-oxidized cellulose nanofibril dispersions probed using small angle neutron scattering. J Chem Phys 2023; 158:034901. [PMID: 36681636 DOI: 10.1063/5.0129276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this work, we studied TEMPO-oxidized cellulose nanofibril (OCNF) suspensions in the presence of diverse surfactants. Using a combination of small angle neutron scattering (SANS) and rheology, we compared the physical properties of the suspensions with their structural behavior. Four surfactants were studied, all with the same hydrophobic tail length but different headgroups: hexaethylene glycol mono-n-dodecyl ether (C12EO6, nonionic), sodium dodecyl sulfate (SDS, anionic), cocamidopropyl betaine (CapB, zwitterionic), and dodecyltrimethylammonium bromide (DTAB, cationic). Contrast variation SANS studies using deuterated version of C12EO6 or SDS, or by varying the D2O/H2O ratio of the suspensions (with CapB), allowed focusing only on the structural properties of OCNFs or surfactant micelles. We showed that, in the concentration range studied, for C12EO6, although the nanofibrils are concentrated thanks to an excluded volume effect observed in SANS, the rheological properties of the suspensions are not affected. Addition of SDS or CapB induces gelation for surfactant concentrations superior to the critical micellar concentration (CMC). SANS results show that attractive interactions between OCNFs arise in the presence of these anionic or zwitterionic surfactants, hinting at depletion attraction as the main mechanism of gelation. Finally, addition of small amounts of DTAB (below the CMC) allows formation of a tough gel by adsorbing onto the OCNF surface.
Collapse
Affiliation(s)
- Julien Schmitt
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Vincenzo Calabrese
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Marcelo A da Silva
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Kazi M Z Hossain
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Peixun Li
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Najet Mahmoudi
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Adam L Washington
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Janet L Scott
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Karen J Edler
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
7
|
Nakazono T, Yokoi A, Tan WK, Kawamura G, Matsuda A, Muto H. A Novel Controlled Fabrication of Hexagonal Boron Nitride Incorporated Composite Granules Using the Electrostatic Integrated Granulation Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:199. [PMID: 36616109 PMCID: PMC9824452 DOI: 10.3390/nano13010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Despite the availability of nano and submicron-sized additive materials, the controlled incorporation and utilization of these additives remain challenging due to their difficult handling ability and agglomeration-prone properties. The formation of composite granules exhibiting unique microstructure with desired additives distribution and good handling ability has been reported using the electrostatic integrated granulation method. This study demonstrates the feasible controlled incorporation of two-dimensional hexagonal boron nitride (hBN) sheets with alumina (Al2O3) particles, forming Al2O3-hBN core-shell composite granules. The sintered artifacts obtained using Al2O3-hBN core-shell composite granules exhibited an approximately 28% higher thermal conductivity than those obtained using homogeneously hBN-incorporated Al2O3 composite granules. The findings from this study would be beneficial for developing microstructurally controlled composite granules with the potential for scalable fabrication via powder-metallurgy inspired methods.
Collapse
Affiliation(s)
- Taisei Nakazono
- Department of Electrical and Electronics Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
| | - Atsushi Yokoi
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
| | - Wai Kian Tan
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
| | - Go Kawamura
- Department of Electrical and Electronics Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
| | - Atsunori Matsuda
- Department of Electrical and Electronics Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
| | - Hiroyuki Muto
- Department of Electrical and Electronics Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
| |
Collapse
|
8
|
Calabrese V, György C, Haward SJ, Neal TJ, Armes SP, Shen AQ. Microstructural Dynamics and Rheology of Worm-like Diblock Copolymer Nanoparticle Dispersions under a Simple Shear and a Planar Extensional Flow. Macromolecules 2022; 55:10031-10042. [DOI: 10.1021/acs.macromol.2c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/27/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Vincenzo Calabrese
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Csilla György
- Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K
| | - Simon J. Haward
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Thomas J. Neal
- Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K
| | - Amy Q. Shen
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|