1
|
Martin-Martin J, Abad M, Lopez de Pariza X, Ezquerra TA, Nogales A, Sardon H, Sebastián V, Oriol L, Piñol M. Degradable Ureido-Polycarbonate Block Copolymers with a Complex UCST Thermoresponse. Macromol Rapid Commun 2025:e2500029. [PMID: 40119569 DOI: 10.1002/marc.202500029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Indexed: 03/24/2025]
Abstract
In this work, amphiphilic block copolymers (BCs) consisting of a hydrophilic poly(ethylene glycol) methyl ether (PEG) and a degradable polycarbonate block derived from 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) with pendant ureido units, along with corresponding homopolycarbonates are described. Polymers are synthesized by combining ring opening polymerization (ROP) and thiol-ene/yne functionalization to incorporate UCST-promoting ureido groups. For homopolycarbonates, increasing the ureido groups density along the polymer chain facilitates the upper critical solution temperature (UCST)-type thermoresponse in water. Because of their amphiphilic character, BCs form stable self-assemblies either by direct dispersion in water, co-solvent method or microfluidics. Upon heating, these self-assemblies swell, and collapse due to extensive hydration of the polycarbonate block, rather than becoming solubilized. Thermoresponsiveness is analyzed in terms of the number of ureido groups in the polycarbonate for a given polycarbonate block length as well as the length of polycarbonate block. As a proof of concept, the potential of these self-assemblies as thermoresponsive drug nanocarriers is evaluated, using curcumin as a hydrophobic model drug.
Collapse
Affiliation(s)
- Javier Martin-Martin
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Miriam Abad
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Xabier Lopez de Pariza
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano, 121, Madrid, 28006, Spain
| | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC, C/Serrano, 121, Madrid, 28006, Spain
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Zaragoza, 50018, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Luis Oriol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| | - Milagros Piñol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
| |
Collapse
|
2
|
Haider MS, Mahato AK, Kotliarova A, Forster S, Böttcher B, Stahlhut P, Sidorova Y, Luxenhofer R. Biological Activity In Vitro, Absorption, BBB Penetration, and Tolerability of Nanoformulation of BT44:RET Agonist with Disease-Modifying Potential for the Treatment of Neurodegeneration. Biomacromolecules 2023; 24:4348-4365. [PMID: 36219820 PMCID: PMC10565809 DOI: 10.1021/acs.biomac.2c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/17/2022] [Indexed: 11/29/2022]
Abstract
BT44 is a novel, second-generation glial cell line-derived neurotropic factor mimetic with improved biological activity and is a lead compound for the treatment of neurodegenerative disorders. Like many other small molecules, it suffers from intrinsic poor aqueous solubility, posing significant hurdles at various levels for its preclinical development and clinical translation. Herein, we report a poly(2-oxazoline)s (POx)-based BT44 micellar nanoformulation with an ultrahigh drug-loading capacity of 47 wt %. The BT44 nanoformulation was comprehensively characterized by 1H NMR spectroscopy, differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), dynamic light scattering (DLS), and cryo-transmission/scanning electron microscopy (cryo-TEM/SEM). The DSC, XRD, and redispersion studies collectively confirmed that the BT44 formulation can be stored as a lyophilized powder and can be redispersed upon need. The DLS suggested that the redispersed formulation is suitable for parenteral administration (Dh ≈ 70 nm). The cryo-TEM measurements showed the presence of wormlike structures in both the plain polymer and the BT44 formulation. The BT44 formulation retained biological activity in immortalized cells and in cultured dopamine neurons. The micellar nanoformulation of BT44 exhibited improved absorption (after subcutaneous injection) and blood-brain barrier (BBB) penetration, and no acute toxic effects in mice were observed. In conclusion, herein, we have developed an ultrahigh BT44-loaded aqueous injectable nanoformulation, which can be used to pave the way for its preclinical and clinical development for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Malik Salman Haider
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring
11, 97070Würzburg, Germany
- University
Hospital of Würzburg, Department of Ophthalmology, Josef-Schneider-Street 11, D-97080Würzburg, Germany
| | - Arun Kumar Mahato
- Laboratory
of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014Helsinki, Finland
| | - Anastasiia Kotliarova
- Laboratory
of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014Helsinki, Finland
| | - Stefan Forster
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring
11, 97070Würzburg, Germany
| | - Bettina Böttcher
- Biocenter
and Rudolf Virchow Centre, Julius-Maximilians-University
Würzburg, Haus
D15, Josef-Schneider-Strasse 2, 97080Würzburg, Germany
| | - Philipp Stahlhut
- Department
of Functional Materials in Medicine and Dentistry, Institute of Functional
Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070Würzburg, Germany
| | - Yulia Sidorova
- Laboratory
of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014Helsinki, Finland
| | - Robert Luxenhofer
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring
11, 97070Würzburg, Germany
- Soft
Matter Chemistry, Department of Chemistry, and Helsinki Institute
of Sustainability Science, Faculty of Science, University of Helsinki, PB 55-00014Helsinki, Finland
| |
Collapse
|
3
|
Hahn L, Zorn T, Kehrein J, Kielholz T, Ziegler AL, Forster S, Sochor B, Lisitsyna ES, Durandin NA, Laaksonen T, Aseyev V, Sotriffer C, Saalwächter K, Windbergs M, Pöppler AC, Luxenhofer R. Unraveling an Alternative Mechanism in Polymer Self-Assemblies: An Order-Order Transition with Unusual Molecular Interactions between Hydrophilic and Hydrophobic Polymer Blocks. ACS NANO 2023; 17:6932-6942. [PMID: 36972400 PMCID: PMC10100562 DOI: 10.1021/acsnano.3c00722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Polymer self-assembly leading to cooling-induced hydrogel formation is relatively rare for synthetic polymers and typically relies on H-bonding between repeat units. Here, we describe a non-H-bonding mechanism for a cooling-induced reversible order-order (sphere-to-worm) transition and related thermogelation of solutions of polymer self-assemblies. A multitude of complementary analytical tools allowed us to reveal that a significant fraction of the hydrophobic and hydrophilic repeat units of the underlying block copolymer is in close proximity in the gel state. This unusual interaction between hydrophilic and hydrophobic blocks reduces the mobility of the hydrophilic block significantly by condensing the hydrophilic block onto the hydrophobic micelle core, thereby affecting the micelle packing parameter. This triggers the order-order transition from well-defined spherical micelles to long worm-like micelles, which ultimately results in the inverse thermogelation. Molecular dynamics modeling indicates that this unexpected condensation of the hydrophilic corona onto the hydrophobic core is due to particular interactions between amide groups in the hydrophilic repeat units and phenyl rings in the hydrophobic ones. Consequently, changes in the structure of the hydrophilic blocks affecting the strength of the interaction could be used to control macromolecular self-assembly, thus allowing for the tuning of gel characteristics such as strength, persistence, and gelation kinetics. We believe that this mechanism might be a relevant interaction pattern for other polymeric materials as well as their interaction in and with biological environments. For example, controlling the gel characteristics could be considered important for applications in drug delivery or biofabrication.
Collapse
Affiliation(s)
- Lukas Hahn
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Zorn
- Center
for Nanosystems Chemistry & Institute of Organic Chemistry, Department
of Chemistry and Pharmacy, Julius-Maximilians-University
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Josef Kehrein
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Kielholz
- Institute
of Pharmaceutical Technology and Buchmann Institute for Molecular
Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Anna-Lena Ziegler
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Stefan Forster
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Benedikt Sochor
- Chair for
X-Ray Microscopy, Julius-Maximilians-University
Würzburg, Josef-Martin-Weg
63, 97074 Würzburg, Germany
| | - Ekaterina S. Lisitsyna
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Nikita A. Durandin
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Timo Laaksonen
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Vladimir Aseyev
- Soft
Matter Chemistry, Department of Chemistry, Helsinki Institute of Sustainability
Science, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| | - Christoph Sotriffer
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kay Saalwächter
- Institute
of Physics-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Maike Windbergs
- Institute
of Pharmaceutical Technology and Buchmann Institute for Molecular
Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ann-Christin Pöppler
- Center
for Nanosystems Chemistry & Institute of Organic Chemistry, Department
of Chemistry and Pharmacy, Julius-Maximilians-University
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert Luxenhofer
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Soft
Matter Chemistry, Department of Chemistry, Helsinki Institute of Sustainability
Science, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Belkhir K, Cerlati O, Heaugwane D, Tosi A, Benkhaled BT, Brient PL, Chatard C, Graillot A, Catrouillet S, Balor S, Goudounèche D, Payré B, Laborie P, Lim JH, Putaux JL, Vicendo P, Gibot L, Lonetti B, Mingotaud AF, Lapinte V. Synthesis and Self-Assembly of UV-Cross-Linkable Amphiphilic Polyoxazoline Block Copolymers: Importance of Multitechnique Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:16144-16155. [PMID: 36516233 DOI: 10.1021/acs.langmuir.2c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the nanomedicine field, there is a need to widen the availability of nanovectors to compensate for the increasingly reported side effects of poly(ethene glycol). Nanovectors enabling cross-linking can further optimize drug delivery. Cross-linkable polyoxazolines are therefore relevant candidates to address these two points. Here we present the synthesis of coumarin-functionalized poly(2-alkyl-2-oxazoline) block copolymers, namely, poly(2-methyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) and poly(2-methyl-2-oxazoline)-block-poly(2-butyl-2-oxazoline). The hydrophilic ratio and molecular weights were varied in order to obtain a range of possible behaviors. Their self-assembly after nanoprecipitation or film rehydration was examined. The resulting nano-objects were fully characterized by transmission electron microscopy (TEM), cryo-TEM, multiple-angle dynamic and static light scattering. In most cases, the formation of polymer micelles was observed, as well as, in some cases, aggregates, which made characterization more difficult. Cross-linking was performed under UV illumination in the presence of a coumarin-bearing cross-linker based on polymethacrylate derivatives. Addition of the photo-cross-linker and cross-linking resulted in better-defined objects with improved stability in most cases.
Collapse
Affiliation(s)
- Kedafi Belkhir
- ICGM, Université de Montpellier, CNRS, ENSCM, 34090Montpellier, France
| | - Orélia Cerlati
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Diana Heaugwane
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Alice Tosi
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | | | | | - Camille Chatard
- Specific Polymers, 150 Avenue des Cocardières, 34160Castries, France
| | - Alain Graillot
- Specific Polymers, 150 Avenue des Cocardières, 34160Castries, France
| | - Sylvain Catrouillet
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Stéphanie Balor
- METi Platform, Université Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex, France
| | - Dominique Goudounèche
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062Toulouse cedex, France
| | - Bruno Payré
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062Toulouse cedex, France
| | - Pascale Laborie
- Technopolym, Institut de Chimie de Toulouse ICT-UAR 2599, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Jia-Hui Lim
- Université Grenoble Alpes, CNRS, CERMAV, F-38000Grenoble, France
| | - Jean-Luc Putaux
- Université Grenoble Alpes, CNRS, CERMAV, F-38000Grenoble, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062Toulouse cedex 9, France
| | - Vincent Lapinte
- ICGM, Université de Montpellier, CNRS, ENSCM, 34090Montpellier, France
| |
Collapse
|
5
|
Development of temperature-responsive suspension stabilizer and its application in cementing slurry system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021; 10:e2001382. [PMID: 33448122 PMCID: PMC11468752 DOI: 10.1002/adhm.202001382] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Indexed: 12/30/2022]
Abstract
For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.
Collapse
Affiliation(s)
- Anna Zahoranová
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163MCVienna1060Austria
| | - Robert Luxenhofer
- Functional Polymer MaterialsChair for Advanced Materials SynthesisInstitute for Functional Materials and BiofabricationDepartment of Chemistry and PharmacyJulius‐Maximilians‐Universität WürzburgRöntgenring 11Würzburg97070Germany
- Soft Matter ChemistryDepartment of ChemistryHelsinki UniversityHelsinki00014Finland
| |
Collapse
|
7
|
Konefał R, Černoch P, Konefał M, Spěváček J. Temperature Behavior of Aqueous Solutions of Poly(2-oxazoline) Homopolymer and Block Copolymers Investigated by NMR Spectroscopy and Dynamic Light Scattering. Polymers (Basel) 2020; 12:E1879. [PMID: 32825475 PMCID: PMC7565327 DOI: 10.3390/polym12091879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
1H NMR methods in combination with dynamic light scattering were applied to study temperature behavior of poly(2-isopropyl-2-oxazoline) (PIPOx) homopolymer as well as PIPOx-b-poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx)-b-PMeOx diblock copolymers in aqueous solutions. 1H NMR spectra showed a different way of phase transition for the main and side chains in PIPOx-based solutions. Additionally, the phase transition is irreversible for PIPOx homopolymer and partially reversible for PIPOx-b-PMeOx copolymer. As revealed by NMR, the phase transition in PEtOx-based copolymers solutions exists despite the absence of solution turbidity. It is very broad, virtually independent of the copolymer composition and reversible with some hysteresis. Two types of water molecules were detected in solutions of the diblock copolymers above the phase transition-"free" with long and "bound" with short spin-spin relaxation times T2. NOESY spectra revealed information about conformational changes observed already in the pre-transition region of PIPOx-b-PMeOx copolymer solution.
Collapse
Affiliation(s)
- Rafał Konefał
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; (P.Č.); (M.K.)
| | | | | | | |
Collapse
|
8
|
Konefał R, Spěváček J, Mužíková G, Laga R. Thermoresponsive behavior of poly(DEGMA)-based copolymers. NMR and dynamic light scattering study of aqueous solutions. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Keerthika N, Jayalakshmi A, Ramkumar S. Anchored block‐copolymer surfactants for the synthesis of redispersible polystyrene latexes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - S.G. Ramkumar
- Department of ChemistryCentral University of Tamil Nadu Thiruvarur India
| |
Collapse
|
10
|
Škopić MK, Götte K, Gramse C, Dieter M, Pospich S, Raunser S, Weberskirch R, Brunschweiger A. Micellar Brønsted Acid Mediated Synthesis of DNA-Tagged Heterocycles. J Am Chem Soc 2019; 141:10546-10555. [PMID: 31244181 DOI: 10.1021/jacs.9b05696] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The translation of well-established molecular biology methods such as genetic coding, selection, and DNA sequencing to combinatorial organic chemistry and compound identification has made extremely large compound collections, termed DNA-encoded libraries, accessible for drug screening. However, the reactivity of the DNA imposes limitations on the choice of chemical methods for encoded library synthesis. For example, strongly acidic reaction conditions must be avoided because they damage the DNA by depurination, i.e. the cleavage of purine bases from the oligomer. Application of micellar catalysis holds much promise for encoded chemistry. Aqueous micellar dispersions enabled compound synthesis under often appealingly mild conditions. Amphiphilic block copolymers covalently functionalized with sulfonic acid moieties in the lipophilic portion assemble in water and locate the Brønsted catalyst in micelles. These acid nanoreactors enabled the reaction of DNA-conjugated aldehydes to diverse substituted tetrahydroquinolines and aminoimidazopyridines by Povarov and Groebke-Blackburn-Bienaymé reactions, respectively, and the cleavage of tBoc protective groups from amines. The polymer micelle design was successfully translated to the Cu/Bipyridine/TEMPO system mediating the oxidation of DNA-coupled alcohols to the corresponding aldehydes. These results suggest a potentially broad applicability of polymer micelles for encoded chemistry.
Collapse
Affiliation(s)
- M Klika Škopić
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - K Götte
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - C Gramse
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - M Dieter
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - S Pospich
- Max Planck Institute of Molecular Physiology , Otto-Hahn-Straße 11 , 44227 Dortmund , Germany
| | - S Raunser
- Max Planck Institute of Molecular Physiology , Otto-Hahn-Straße 11 , 44227 Dortmund , Germany
| | - R Weberskirch
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| | - A Brunschweiger
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Straße 6 , 44227 Dortmund , Germany
| |
Collapse
|
11
|
Zhou Y, Wu P. Block length-dependent phase transition of poly(N-isopropylacrylamide)-b-poly(2-isopropyl-2-oxazoline) diblock copolymer in water. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Konefał R, Spěváček J, Černoch P. Thermoresponsive poly(2-oxazoline) homopolymers and copolymers in aqueous solutions studied by NMR spectroscopy and dynamic light scattering. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Zahoranová A, Mrlík M, Tomanová K, Kronek J, Luxenhofer R. ABA and BAB Triblock Copolymers Based on 2-Methyl-2-oxazoline and 2-n-Propyl-2-oxazoline: Synthesis and Thermoresponsive Behavior in Water. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anna Zahoranová
- Polymer Institute; Slovak Academy of Sciences; Dúbravská cesta 9 845 41 Bratislava Slovakia
| | - Miroslav Mrlík
- Centre of Polymer Systems; University Institute; Tomas Bata University in Zlín; Trˇída T. Bati 5678 760 01 Zlín Czech Republic
| | - Katarína Tomanová
- Department of Polymer Processing; Institute of Natural and Synthetic Polymers; Slovak University of Technology; Krsˇkanská 21 949 01 Nitra Slovakia
| | - Juraj Kronek
- Polymer Institute; Slovak Academy of Sciences; Dúbravská cesta 9 845 41 Bratislava Slovakia
| | - Robert Luxenhofer
- Functional Polymer Materials; Chair for Chemical Technology of Materials Synthesis; University of Würzburg; Röntgenring 11 97070 Würzburg Germany
| |
Collapse
|
14
|
|
15
|
Konefał R, Spěváček J, Jäger E, Petrova S. Thermoresponsive behaviour of terpolymers containing poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly(ε-caprolactone) blocks in aqueous solutions: an NMR study. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3930-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Kampmann AL, Luksin M, Pretzer I, Weberskirch R. Formation of Well-Defined Polymer Particles in the Sub-100 nm Size Range by Using Amphiphilic Block Copolymer Surfactants and a Microemulsion Approach. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anne-Larissa Kampmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund; Otto-Hahn Str. 6 44227 Dortmund Germany
| | - Michael Luksin
- Faculty of Chemistry and Chemical Biology, TU Dortmund; Otto-Hahn Str. 6 44227 Dortmund Germany
| | - Irene Pretzer
- Faculty of Chemistry and Chemical Biology, TU Dortmund; Otto-Hahn Str. 6 44227 Dortmund Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology, TU Dortmund; Otto-Hahn Str. 6 44227 Dortmund Germany
| |
Collapse
|
17
|
Lempke L, Ernst A, Kahl F, Weberskirch R, Krause N. Sustainable Micellar Gold Catalysis - Poly(2-oxazolines) as Versatile Amphiphiles. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Spěváček J, Konefał R, Čadová E. NMR Study of Thermoresponsive Block Copolymer in Aqueous Solution. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiří Spěváček
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovský Sq. 2, 162 06 Prague 6 Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovský Sq. 2, 162 06 Prague 6 Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovský Sq. 2, 162 06 Prague 6 Czech Republic
| |
Collapse
|
19
|
Kampmann AL, Grabe T, Jaworski C, Weberskirch R. Synthesis of well-defined core–shell nanoparticles based on bifunctional poly(2-oxazoline) macromonomer surfactants and a microemulsion polymerization process. RSC Adv 2016. [DOI: 10.1039/c6ra22896h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Surface-functional nanoparticles have been fabricated by utilizing bifunctional poly(2-oxazoline) macromonomers as surfactants in a microemulsion process.
Collapse
Affiliation(s)
| | - Tobias Grabe
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| | - Carolin Jaworski
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| |
Collapse
|
20
|
Kourti ME, Fega E, Pitsikalis M. Block copolymers based on 2-methyl- and 2-phenyl-oxazoline by metallocene-mediated cationic ring-opening polymerization: synthesis and characterization. Polym Chem 2016. [DOI: 10.1039/c6py00405a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cationic polymerization of oxazolines, lactones and vinyl ethers can be efficiently promoted by metallocene complexes activated by floroaryl borates.
Collapse
Affiliation(s)
- Maria-Evgenia Kourti
- Industrial Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- 15771 Athens
- Greece
| | - Eirini Fega
- Industrial Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- 15771 Athens
- Greece
| | - Marinos Pitsikalis
- Industrial Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- 15771 Athens
- Greece
| |
Collapse
|
21
|
Van Steenberge PHM, Verbraeken B, Reyniers MF, Hoogenboom R, D’hooge DR. Model-Based Visualization and Understanding of Monomer Sequence Formation in Gradient Copoly(2-oxazoline)s On the basis of 2-Methyl-2-oxazoline and 2-Phenyl-2-oxazoline. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01642] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Paul H. M. Van Steenberge
- Laboratory
for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Zwijnaarde (Gent), Belgium
| | - Bart Verbraeken
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Marie-Françoise Reyniers
- Laboratory
for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Zwijnaarde (Gent), Belgium
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Dagmar R. D’hooge
- Laboratory
for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Zwijnaarde (Gent), Belgium
- Department
of Textiles, Ghent University, Technologiepark 907, B-9052 Zwijnaarde (Gent), Belgium
| |
Collapse
|