1
|
Yang J, Ding C, He M, Wang X, Chen J, Qi D, Sun Y. Charge-dominated phase separation synthesis method of Janus particles with well-defined separated lobes and patternable surface chemistries. J Colloid Interface Sci 2025; 695:137804. [PMID: 40347652 DOI: 10.1016/j.jcis.2025.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Synthesizing Janus particles (JPs) with well-defined separated lobes and customizable surface chemistries has broad scientific and engineering application prospects but has proven extremely challenging. Here, we report a novel phase-separation-based fabrication method leveraging charge-dominated seeded emulsion polymerization, which enables the synthesis of JPs with multi-scale lobe architectures (ranging from isotropic asymmetric shapes to chemically anisotropic forms such as ellipses, dumbbells, and triblock structures) and customizable surface chemistries (including functional groups like carboxyl, sulfate, and sulfonate). Our method is based on the principles of multicomponent systems' heterogeneous nucleation and growth, where the interfacial energy is meticulously controlled by fine-tuning the surface charges/chemical properties of polystyrene (PS) seeds and methacryloxypropyl trimethoxysilane (MPS) emulsions, while the growth kinetics of polymethacryloxypropyl trimethoxysilane (PMPS) lobes are guided through a synergistic combination of radical polymerization and hydrolysis-condensation reactions. Charge-dominated repulsive forces at the interface play a crucial role in driving the phase separation, enabling the synthesis of well-defined JPs and making this strategy broadly applicable to a variety of negatively charged PS seeds or MPS emulsions for customizable two-lobe surface chemistries. Furthermore, the PMPS hemisphere can be selectively modified, enabling applications in Pickering emulsions. This work offers a scalable method for the controllable fabrication of JPs with programmable architectures and surface chemistries.
Collapse
Affiliation(s)
- Jifu Yang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chunyu Ding
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengyao He
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinqing Wang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junyu Chen
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyi Sun
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Mohamad Ali B, Yu Z, Tao Z, Zhang T, Wang L, He C, Zhang H, Wang J. TEMPO-Grafted Polystyrene/Polymethacrylate Organosiloxane Janus Nanohybrids as Efficient Pickering Interfacial Catalyst for Selective Aerobic Oxidation of Cinnamyl Alcohol. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38624155 DOI: 10.1021/acsami.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The novel 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) groups immobilized on functional polymers or nanoparticles emerged as potential Pickering interfacial catalysts (PICs) for effective catalysis in biphasic systems. In this study, a snowman-shaped Janus-structured polymer with TEMPO-anchored nanohybrid particles (SM-JPP-TEMPO) was prepared and employed as a potential PIC in the Anelli-Montanari system for the selective oxidation of alcohol. The amphiphilic character of SM-JPP-TEMPO particles plays a dual role as an emulsifier and catalyst in the Pickering emulsion. As a result, it enables smaller droplets (102 μm) at the water-in-oil (W/O) interface and reduces the interfacial tension from 26.58 to 17.38 mN/m, which improves the stability of the Pickering emulsion system. This constructed Pickering emulsion microreactor offers a larger interface contact area and shortens the mass transfer distance of the substrate of cinnamyl alcohol, which significantly enhances the catalytic conversion at the Anelli-Montanari oxidation system, thus achieving remarkable conversion efficiency of (92.3%) with excellent selectivity (99%) in static (stirring-free) condition. It was found that the Janus nanohybrid catalyst (SM-JPP-TEMPO) enhanced 1.29-fold catalytic efficiency compared to the TEMPO grafted spherical polystyrene nanoparticle (PS-NPs-TEMPO) catalyst (72%). Moreover, after seven consecutive cycles, the Janus nanocatalyst (SM-JPP-TEMPO) maintained the conversion significantly. Hence, these results collectively highlight that the amphiphilic SM-JPP-TEMPO catalyst provides an efficient and eco-friendly strategy for the intensification of liquid-liquid biphasic reaction systems for potential applications in industries.
Collapse
Affiliation(s)
- Badusha Mohamad Ali
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ziqi Yu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhengyuan Tao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tangxin Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lei Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chenbing He
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hao Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianli Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
3
|
Liu H, Long Y, Liang F. Interfacial Activity of Janus Particle: Unity of Molecular Surfactant and Homogeneous Particle. Chem Asian J 2024:e202301078. [PMID: 38221222 DOI: 10.1002/asia.202301078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Janus particles with different compositions and properties segmented to different regions on the surface of one objector provide more opportunities for interfacial engineering. As a novel interfacial active material, Janus particles integrate the amphiphilic properties of molecular surfactants and the Pickering effect of homogeneous particles. In this research, the outstanding properties of Janus particles on various interfaces are examined from both theoretical and practical perspectives, and the advantages of Janus particles over molecular surfactants and homogeneous particle surfactants are analyzed. We believe that Janus particles are ideal tools for interface regulation and functionalization in the future.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Yingchun Long
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
4
|
Russo G, Lattuada M. Preparation of Non-Spherical Janus Particles via an Orthogonal Dissolution Approach. Macromol Rapid Commun 2023; 44:e2300415. [PMID: 37722703 DOI: 10.1002/marc.202300415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Post-synthesis modifications are valuable tools to alter functionalities and induce morphology changes in colloidal particles. Non-spherical polymer particles with Janus characteristics are prepared by combining seeded growth polymerization and selective dissolution. First, spherical polystyrene (PS) particles have been swollen with methyl methacrylate (MMA) with an activated swelling method. This is followed by polymerization that led to particles with two well-separated faces: one made of PS and the second of polymethyl methacrylate (PMMA). Subsequently, non-spherical particles are obtained by exposing the Janus colloids to various solvents. Using the two polymers' orthogonal solubility, solvents are identified to selectively dissolve only one face, leading to hemispherical PS or PMMA particles. It is further investigated how changing the composition of the PMMA face - by either co-polymerization with glycidyl methacrylate or by adding a cross-linker - affects the particles' morphology. The poly-methacrylate face can gain total or partial resistance towards the solvents, resulting in intriguing shapes, such as mushroom-like and Janus dimpled particles. The dissolution mechanisms are investigated via optical microscopy, where total or partial dissolutions can be directly observed. Lastly, prematurely quenching the dissolution of the particle's lobes with water can be used to control the Janus mushroom-like particle aspect ratio.
Collapse
Affiliation(s)
- Giovanni Russo
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| |
Collapse
|
5
|
Chen C, Zhang L, Wang N, Sun D, Yang Z. Janus Composite Particles and Interfacial Catalysis Thereby. Macromol Rapid Commun 2023; 44:e2300280. [PMID: 37335979 DOI: 10.1002/marc.202300280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Janus composite particles (JPs) with distinct compartmentalization of varied components thus performances and anisotropic shape display a variety of properties and have demonstrated great potentials in diversify practical applications. Especially, the catalytic JPs are advantageous for multi-phase catalysis with much easier separation of products and recycling the catalysts. In the first section of this review, typical methods to synthesize the JPs with varied morphologies are briefly surveyed in the category of polymeric, inorganic and polymer/inorganic composite. In the main section, recent progresses of the JPs in emulsion interfacial catalysis are summarized covering organic synthesis, hydrogenation, dye degradation, and environmental chemistry. The review will end by calling more efforts toward precision synthesis of catalytic JPs at large scale to meet the stringent requirements in practical applications such as catalytic diagnosis and therapy by the functional JPs.
Collapse
Affiliation(s)
- Chen Chen
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Linlin Zhang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Na Wang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Dorbic K, Lattuada M. Synthesis of dimpled polymer particles and polymer particles with protrusions - Past, present, and future. Adv Colloid Interface Sci 2023; 320:102998. [PMID: 37729785 DOI: 10.1016/j.cis.2023.102998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Since the development of emulsion polymerization techniques, polymer particles have become the epitome of standard colloids due to the exceptional control over size, size distribution, and composition the synthesis methods allow reaching. The exploration of different variations of the synthesis methods has led to the discovery of more advanced techniques, enabling control over their composition and shape. Many early investigations focused on forming particles with protrusions (with one protrusion, called dumbbell particles) and particles with concavities, also called dimpled particles. This paper reviews the literature covering the synthesis, functionalization, and applications of both types of particles. The focus has been on the rationalization of the various approaches used to prepare such particles and on the discussion of the mechanisms of formation not just from the experimental viewpoint but also from the standpoint of thermodynamics. The primary motivation to combine in a single review the preparation of both types of particles has been the observation of similarities among some of the methods developed to prepare dimpled particles, which sometimes include the formation of particles with protrusions and vice versa. The most common applications of these particles have been discussed as well. By looking at the different approaches developed in the literature under one general perspective, we hope to stimulate a more ample use of these particles and promote the development of even more effective synthetic protocols.
Collapse
Affiliation(s)
- Kata Dorbic
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
7
|
Hu J, Hao X, Ning N, Yu B, Tian M. Reactive Janus Particle Compatibilizer with Adjustable Structure and Optimal Interface Location for Compatibilization of Highly Immiscible Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23963-23970. [PMID: 37158003 DOI: 10.1021/acsami.3c03133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Highly immiscible blend materials with distinctive and excellent properties play a key role in meeting the application needs, especially in extreme environments, and reactive nanoparticles are used to increase the interface adhesion and optimize the morphology of highly immiscible blending. However, these reactive nanoparticles tend to aggregate and even agglomerate during reactive blending, which significantly deteriorates their compatibilization efficiency. Herein, reactive Janus particles with the epoxy group and various siloxane molecular long chain grafting ratios (E-JP-PDMS) were synthesized using SiO2@PDVB Janus particles (JP) and used as compatibilizers for polyamide and methyl vinyl silicone elastomer (PA/MVQ) blends, which were highly immiscible. The effects of the structure of E-JP-PDMS Janus nanoparticles on their location at the interfaces between the PA and MVQ as well as their compatibilization efficiency for the PA/MVQ blends were investigated. The location and dispersion of E-JP-PDMS at the interfaces were improved by increasing the PDMS content in E-JP-PDMS. The average diameter of the MVQ domains of the PA/MVQ (70/30, w/w) was 79.5 μm and was reduced to 5.3 μm in the presence of 3.0 wt % of the E-JP-PDMS with 65 wt % PDMS. As a comparison, it was 45.1 μm in the presence of 3.0 wt % of a commercial compatibilizer (ethylene-butylacylate-maleic anhydride copolymer, denoted as EBAMAH), which provides a guideline for the design and preparation of efficient compatibilizers for highly immiscible polymer blends.
Collapse
Affiliation(s)
- Jing Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Shenyang Medical College, Shenyang 110034, China
| | - Xinyue Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Wang C, Ma S, Wei Y, Ou J. Facile Fabrication of Monodisperse Micron-Sized Dual Janus Silica Particles with Asymmetric Morphology and Chemical Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208194. [PMID: 36707410 DOI: 10.1002/smll.202208194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Janus particles are a kind of materials with asymmetric morphology or surface chemical environment. But so far, the preparation of particles with dual asymmetry is still a challenging problem. Hence the cation surfactant hexadecyl trimethyl ammonium bromide and co-surfactant octadecylamine are applied to improve the Pickering emulsion stability, and the micron-sized silica particles are arranged in a single layer at the toluene-water interface through electrostatic interaction. Furthermore, organosilane reagents are added in the preparation process, resulting in the construction of asymmetric hydrophilic or hydrophobic mesoporous precisely onto the micron-sized silica particles surface. The cation surfactant-assisted Pickering emulsion method is simple, effective, and convenience, which can be applied in the synthesis of various dual Janus silica particles for specific applications.
Collapse
Affiliation(s)
- Chenyang Wang
- State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Shujuan Ma
- State Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Yinmao Wei
- State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Junjie Ou
- State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
- State Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
9
|
Li B, Chen X, Zhou Y, Zhao Y, Song T, Wu X, Shi W. Liquid-liquid phase separation of immiscible polymers at double emulsion interfaces for configurable microcapsules. J Colloid Interface Sci 2023; 641:299-308. [PMID: 36934577 DOI: 10.1016/j.jcis.2023.03.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
Liquid-liquid phase separation at complex interfaces is a common phenomenon in biological systems and is also a fundamental basis to create synthetic materials in multicomponent mixtures. Understanding the liquid-liquid phase separation in well-defined macromolecular systems is anticipated to shed light on similar behaviors in cross-disciplinary areas. Here we study a series of immiscible polymers and reveal a generic phase diagram of liquid-liquid phase separation at double emulsion interfaces, which depicts the equilibrium structures by interfacial tension and polymer fraction. We further reveal that the interfacial tensions in various systems fall on a linear relationship with spreading coefficients. Based on this theoretical guideline, the liquid-liquid phase separation can be modulated by a low fraction of amphiphilic block copolymers, leading the double emulsion droplets configurable between compartments and anisotropic shapes. The solidified anisotropic microcapsules could provide unique orientation-sensitive optical properties and thermomechanical responses. The theoretical analysis and experimental protocol in this study yield a generalizable strategy to prepare multiphase double emulsions with controlled structures and desired properties.
Collapse
Affiliation(s)
- Baihui Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaotong Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tiantian Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoxue Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weichao Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China.
| |
Collapse
|
10
|
Gao J, Sun D, Li Z, Zhang Z, Qu Z, Yun Y, Min F, Lv W, Guo M, Ye Y, Yang Z, Qiao Y, Song Y. Orientation-Controlled Ultralong Assembly of Janus Particles Induced by Bubble-Driven Instant Quasi-1D Interfaces. J Am Chem Soc 2023; 145:2404-2413. [PMID: 36656650 DOI: 10.1021/jacs.2c11429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Constructing precisely oriented assemblies and exploring their orientation-dependent properties remain a challenge for Janus nanoparticles (JNPs) due to their asymmetric characteristics. Herein, we propose a bubble-driven instant quasi-1D interfacial strategy for the oriented assembly of JNP chains in a highly controllable manner. It is found that the rapid formation of templated bubbles can promote the interfacial orientation of JNPs kinetically, while the confined quasi-1D interface in the curved liquid bridge can constrain the disordered rotation of the particles, yielding well-oriented JNP chains in a long range. During the evaporation process, the interfacial orientation of the JNPs can be transferred to the assembled chains. By regulating the amphiphilicity of the JNPs, both heteraxial and coaxial JNP assemblies are obtained, which show different polarization dependences on light scattering, and the related colorimetric logic behaviors are demonstrated. This work demonstrates the great potential of patterned interfacial assembly with a manageable orientation and shows the broad prospect of asymmetric JNP assembly in constructing novel optoelectronic devices.
Collapse
Affiliation(s)
- Jie Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Dayin Sun
- Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Zheng Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China
| | - Zeying Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Zhiyuan Qu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yang Yun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Fanyi Min
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Wenkun Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Mengmeng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yilan Ye
- Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Zhenzhong Yang
- Department of Chemical Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Yali Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| |
Collapse
|
11
|
Qi X, Du Y, Zhang Z, Zhang X. Amphiphilic Bowl-Shaped Janus Particles Prepared via Thiol-Ene Click Reaction for Effective Oil-Water Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:455. [PMID: 36770416 PMCID: PMC9921205 DOI: 10.3390/nano13030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Janus particles for oil-water separation have attracted widespread attention in recent years. Herein, we prepared a bowl-shaped Janus particle that could rapidly separate oil and water through a thiol-ene click reaction and selective etching. Firstly, snowman-like composite microspheres based on silica and mercaptopropyl polysilsesquioxane (SiO2@MPSQ) were prepared by a hydrolytic condensation reaction and phase separation, and the effects of the rotational speed and molar ratios on their microscopic morphologies were investigated. Subsequently, bowl-shaped Janus particles with convex hydrophilic and concave oleophilic surfaces were prepared via a thiol-ene click reaction followed by HF etching. Our amphiphilic bowl-shaped Janus particles could remarkably separate micro-sized oil droplets from an n-heptane-water emulsion with a separation efficiency of >98% within 300 s. Based on the experimental and theoretical results, we proposed the underlying mechanism for the coalescence of oil droplets upon the addition of the amphiphilic bowl-shaped Janus particles.
Collapse
|
12
|
Chen C, Chu G, He W, Liu Y, Dai K, Valdez J, Moores A, Huang P, Wang Z, Jin J, Guan M, Jiang W, Mai Y, Ma D, Wang Y, Zhou Y. A Janus Au-Polymersome Heterostructure with Near-Field Enhancement Effect for Implant-Associated Infection Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207950. [PMID: 36300600 DOI: 10.1002/adma.202207950] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Polymer-inorganic hybrid Janus nanoparticles (PI-JNPs) have attracted extensive attention due to their special structures and functions. However, achieving the synergistic enhancement of photochemical activity between polymer and inorganic moieties in PI-JNPs remains challenging. Herein, the construction of a novel Janus Au-porphyrin polymersome (J-AuPPS) heterostructure by a facile one-step photocatalytic synthesis is reported. The near-field enhancement (NFE) effect between porphyrin polymersome (PPS) and Au nanoparticles in J-AuPPS is achieved to enhance its near-infrared (NIR) light absorption and electric/thermal field intensity at their interface, which improves the energy transfer and energetic charge-carrier generation. Therefore, J-AuPPS shows a higher NIR-activated photothermal conversion efficiency (48.4%) and generates more singlet oxygen compared with non-Janus core-particle Au-PPS nanostructure (28.4%). As a result, J-AuPPS exhibits excellent dual-mode (photothermal/photodynamic) antibacterial and anti-biofilm performance, thereby significantly enhancing the in vivo therapeutic effect in an implant-associated-infection rat model. This work is believed to motivate the rational design of advanced hybrid JNPs with desirable NFE effect and further extend their biological applications.
Collapse
Affiliation(s)
- Chuanshuang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guangyu Chu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wanting He
- Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
| | - Kai Dai
- Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Jesus Valdez
- Facility for Electron Microscopy Research (FEMR), McGill University, Montréal, QC, H3A 037, Canada
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| | - Audrey Moores
- Facility for Electron Microscopy Research (FEMR), McGill University, Montréal, QC, H3A 037, Canada
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| | - Pei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhaohong Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiale Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ming Guan
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dongling Ma
- Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
13
|
He HL, Liang FX. Interfacial Engineering of Polymer Blend with Janus Particle as Compatibilizer. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Zhong H, Yang H, Shang J, Zhao B, Deng J. Optically active polymer particles with programmable surface microstructures constructed using chiral helical polyacetylene. NANOSCALE 2022; 14:16893-16901. [PMID: 36341681 DOI: 10.1039/d2nr03328c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Micro/nanoparticles with surface microstructures have attracted tremendous attention due to their fascinating structures and properties. Herein, we present the first strategy for producing optically active polymer particles with varying surface microstructures via a template surface modification process in which achiral particles act as the template and helical substituted polyacetylene acts as the chiral component. To prepare the designed chiral-functionalized particles, template particles were first reacted with propargylamine to produce alkynylated template particles. The alkynylated templates further participated in the polymerization of chiral alkyne monomers through a surface grafting precipitation polymerization approach, resulting in achiral particles with surface microstructures covalently bonded with a chiral helical polymer. SEM images ascertain the production of chiral-functionalized particles showing various shapes (jar-like, golf ball-like, and raspberry-like particles). Furthermore, CD and UV-vis absorption spectra demonstrate that the grafted polyacetylene chains adopt a predominantly single-handed helical conformation, thereby affording composite particles with optical activity. Using the established protocol, numerous advanced chiral-functionalized micro/nanostructures are expected to be designed and constructed.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongfang Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiaqi Shang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
15
|
Affiliation(s)
- Yue Shao
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yilan Ye
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Gui H, Li Y, Du D, Bo Meng Q, Song XM, Liang F. Preparation of asymmetric particles by controlling the phase separation of seeded emulsion polymerization with ethanol/water mixture. J Colloid Interface Sci 2022; 618:496-506. [PMID: 35366477 DOI: 10.1016/j.jcis.2022.03.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
Alcohols are discovered for the first time to tune the morphology of poly(vinyl benzyl chloride)-poly(3-methacryloxypropyltrimethoxysilane) (PVBC-PMPS) composite particles through seeded emulsion polymerization within the alcohol/water mixture. Here, monodispersed linear PVBC particles was synthesized through the dispersion polymerization and employed as the seeds. The as-obtained PVBC-PMPS composite particles could be dramatically tuned from core-shell structures to snowman-like particles, to dumbbell-shaped particles, to inverse snowman-like particles when the ethanol content in reaction mixtures is only adjusted within a narrow range. The morphology of fresh PMPS bulges was observed after removing the linear PVBC seeds with N,N'-dimethyl formamide, and their formation mechanism was studied by monitoring the free radical polymerization and sol-gel process of 3-methacryloxypropyltrimethoxysilane. It has been confirmed that the sol-gel kinetics were the main factor on the particles' morphology. In addition, morphologies of PVBC-PMPS particles were also varied by the MPS feeding amount, types of the co-solvent and pH values of alcohol/water mixtures.
Collapse
Affiliation(s)
- Haoguan Gui
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Yuanyuan Li
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Deming Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qing Bo Meng
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xi-Ming Song
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Gui H, Yang T, Li LL, Liang F, Yang Z. Temperature-Sensitive Anti-Inflammatory Organohydrogels Containing Janus Particle Stabilized Phase-Change Microinclusions. ACS NANO 2022; 16:9859-9870. [PMID: 35699249 DOI: 10.1021/acsnano.2c03940] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A fabrication strategy for multifunctional organohydrogels is proposed, which combines phase-change microinclusions within a double-network (DN) hydrogel under the stabilization of Janus particles. Janus particles possess reactivity and colloidal stability for more robust organohydrogels, while the interstice among Janus particles enhances the mass transfer between the phase interfaces. Moreover, DN hydrogels are achieved through dynamic cross-linking networks, endowing organohydrogels with injectability and self-healing performance. Phase-change microinclusions are beneficial to the organohydrogels with temperature-responsive mechanical property and temperature-programed shape-memory performance. Organohydrogels can be employed for temperature therapy through the melting-crystallization process of phase-change microinclusions. Simultaneously, the payloads within microinclusions can be released for antibacteria upon melting the encapsulated wax. The organohydrogels can be served as an ideal dressing with temperature-responsive mechanical property, temperature therapy effectiveness, and temperature-triggered antibacterial ability.
Collapse
Affiliation(s)
- Haoguan Gui
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Tiantian Yang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Li-Li Li
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Fabrication of amphiphilic porous PDVB-PAA Janus nanoparticles: Formation mechanism, simultaneous loading and regulated release of hydrophobic and hydrophilic cargos. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Das T, Smith JD, Uddin MH, Dagastine RR. Anisotropic Particle Fabrication Using Thermal Scanning Probe Lithography. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19878-19888. [PMID: 35451830 DOI: 10.1021/acsami.2c02885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Size, shape, and chemical properties of nanoparticles are powerful tools to modulate the optical and physicochemical properties of a particle suspension. Despite having many methods to synthesize anisotropic nanoparticles, often there are challenges in terms of controlling the polydispersity, shape, size, or composition of anisotropic nanoparticles. This work has been inspired by the potential for developing a unique pathway to make different shaped monodispersed anisotropic nano- and microparticles with large flexibility in material choice. Compared to existing methods, this state-of-the-art nanolithographic method is fast, easy to prototype, and much simple in terms of its mechanical requirement. We show that this technique has been efficiently used to make a variety of anisotropic nano- and microparticles of different shapes, such as triangular prisms, ovals, disks, flowers, and stairs following the same pathway, at the same time showing the potential of being flexible with respect to the composition of the particles. The thermal scanning probe lithographic method in combination with dry reactive ion etching was used to make two-dimensional and three-dimensional templates for the fabrication of anisotropic nano- and microparticles. Deposition of different metal/metal oxides by the electron-beam evaporation method onto these templates allowed us to fabricate a range of nanomaterials according to the required functionality in potential applications. The particles were characterized by atomic force microscopy, He-ion microscopy, scanning electron microscopy, and dynamic light scattering to ensure that the developed method is reproducible, flexible, and robust in choosing the shapes for making monodispersed anisotropic nanoparticles with great control over shape and size.
Collapse
Affiliation(s)
- Tanweepriya Das
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| | - James D Smith
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
- Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton 3168, Australia
| | - Md Hemayet Uddin
- Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton 3168, Australia
| | - Raymond R Dagastine
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
20
|
Li S, Liu X, Zhang H, Mao Y, Zhang T, Wang J. Shape-tunable polymeric Janus nanoparticles with hollow cavities derived from polymerization induced self-assembly based crosslinked vesicles. Chem Commun (Camb) 2022; 58:2228-2231. [PMID: 35073392 DOI: 10.1039/d1cc06966g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The fabrication of shape-tunable polymeric Janus nanoparticles with hollow cavities derived from polymerization induced self-assembly based crosslinked vesicles is reported for the first time in this work. These novel polymeric JNPs can be applied to an extensive range of applications, wherein nanoparticles with controllable hollow morphologies are needed.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiaobo Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hao Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuhua Mao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Tangxin Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianli Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
21
|
Xie L, Yan M, Liu T, Gong K, Luo X, Qiu B, Zeng J, Liang Q, Zhou S, He Y, Zhang W, Jiang Y, Yu Y, Tang J, Liang K, Zhao D, Kong B. Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles. J Am Chem Soc 2022; 144:1634-1646. [PMID: 35014789 DOI: 10.1021/jacs.1c10391] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rational design and controllable synthesis of hollow nanoparticles with both a mesoporous shell and an asymmetric architecture are crucially desired yet still significant challenges. In this work, a kinetics-controlled interfacial super-assembly strategy is developed, which is capable of preparing asymmetric porous and hollow carbon (APHC) nanoparticles through the precise regulation of polymerization and assembly rates of two kinds of precursors. In this method, Janus resin and silica hybrid (RSH) nanoparticles are first fabricated through the kinetics-controlled competitive nucleation and assembly of two precursors. Specifically, silica nanoparticles are initially formed, and the resin nanoparticles are subsequently formed on one side of the silica nanoparticles, followed by the co-assembly of silica and resin on the other side of the silica nanoparticles. The APHC nanoparticles are finally obtained via high-temperature carbonization of RSH nanoparticles and elimination of silica. The erratic asymmetrical, hierarchical porous and hollow structure and excellent photothermal performance under 980 nm near-infrared (NIR) light endow the APHC nanoparticles with the ability to serve as fuel-free nanomotors with NIR-light-driven propulsion. Upon illumination by NIR light, the photothermal effect of the APHC shell causes both self-thermophoresis and jet driving forces, which propel the APHC nanomotor. Furthermore, with the assistance of phase change materials, such APHC nanoparticles can be employed as smart vehicles that can achieve on-demand release of drugs with a 980 nm NIR laser. As a proof of concept, we apply this APHC-based therapeutic system in cancer treatment, which shows improved anticancer performance due to the synergy of photothermal therapy and chemotherapy. In brief, this kinetics-controlled approach may put forward new insight into the design and synthesis of functional materials with unique structures, properties, and applications by adjusting the assembly rates of multiple precursors in a reaction system.
Collapse
Affiliation(s)
- Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ke Gong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Xin Luo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Beilei Qiu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jie Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yanjun He
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Wei Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yilan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
22
|
Peng Z, Huang J, Guo Z. Anisotropic Janus materials: from micro-/nanostructures to applications. NANOSCALE 2021; 13:18839-18864. [PMID: 34757351 DOI: 10.1039/d1nr05499f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Janus materials have led to great achievements in recent years owing to their unique asymmetric structures and properties. In this review, recent advances of Janus materials including Janus particles and Janus membranes are summarized, and then the microstructures and applications of Janus materials are emphasized. The asymmetric wettability of Janus materials is related to their microstructures; hence, the microstructures of Janus materials were analyzed, compared and summarized. Also presented are current and potential applications in sensing, drug delivery, oil-water separation and so on. Finally, a perspective on the research prospects and development of Janus materials in more fields is given.
Collapse
Affiliation(s)
- Zhouliang Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
23
|
Sun H, Lin S, Ng FTT, Mitra SK, Pan Q. Synthesis of Shape-Controllable Anisotropic Microparticles and "Walnut-like" Microparticles via Emulsion Interfacial Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6007-6015. [PMID: 33938218 DOI: 10.1021/acs.langmuir.1c00589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anisotropic microparticles have plenty of applications for their asymmetric structure and precisely modified surface. In our research, the uniform anisotropic microparticles with benzyl chloride group were synthesized successfully via emulsion interfacial polymerization. By varying the degree of cross-linking and the concentration of slightly hydrophilic monomer 4-vinyl benzyl chloride (VBC), several types of microparticles with different concavities and different shapes of microparticles (hemisphere, bowl-like, egg-like, etc.) were obtained. Nanoporous microparticles with a walnut-like heterostructure were achieved with modified hydrophilic seeds with the same strategy. The potential applications of shape-controllable fluorescent microparticles and surface modification of microparticles by thiol-click reaction were explored. The modified microparticles achieved in this study are very useful in labeling, tracing, protein separation, and other biomedical fields.
Collapse
Affiliation(s)
- Haohong Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Shaohui Lin
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Flora T T Ng
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K Mitra
- Waterloo Institute for Nanotechnology, Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Qinmin Pan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
24
|
Hu J, Song Y, Ning N, Zhang L, Yu B, Tian M. An effective strategy for improving the interface adhesion of the immiscible methyl vinyl silicone elastomer/thermoplastic polyurethane blends via developing a hybrid janus particle with amphiphilic brush. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Frank BD, Antonietti M, Zeininger L. Structurally Anisotropic Janus Particles with Tunable Amphiphilicity via Polymerization of Dynamic Complex Emulsions. Macromolecules 2020; 54:981-987. [PMID: 33518808 PMCID: PMC7842141 DOI: 10.1021/acs.macromol.0c02152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Indexed: 12/20/2022]
Abstract
![]()
A facile
one-step approach for the synthesis of physically and
chemically anisotropic polymer particles with tunable size, shape,
composition, wettability, and functionality is reported. Specifically,
dynamically reconfigurable oil-in-water Janus emulsions containing
photocurable hydrocarbon or fluorocarbon acrylate monomers as one
of the droplet phases are used as structural templates to polymerize
them into precision Janus particles with highly uniform anomalous
morphologies including (hemi-) spheres, lenses, and bowls. During
polymerization, each interface is exposed to a different chemical
environment, yielding particles with an intrinsic Janus character
that can be amplified via side-selective postfunctionalization. The
fabrication method allows to start with various common emulsification
techniques, thus generating particles in the range of 200 nm –150
μm, also at a technical scale. The anisotropic shape combined
with the asymmetric wettability profile of the produced particles
promotes their directed self-assembly into colloidal clusters as well
as their directional alignment at fluid interfaces. We foresee the
application of such Janus particles in technical emulsions or oil
recovery, for the manufacturing of programmed self-assembled architectures,
and for the engineering of microstructured interfaces.
Collapse
Affiliation(s)
- Bradley D Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
26
|
Fu J, An D, Song Y, Wang C, Qiu M, Zhang H. Janus nanoparticles for cellular delivery chemotherapy: Recent advances and challenges. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Zhang L, Shi S, Zhang G, Song X, Sun D, Liang F, Yang Z. Responsive polymeric Janus cage. Chem Commun (Camb) 2020; 56:10497-10500. [PMID: 32776053 DOI: 10.1039/d0cc04451b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A robust thermo-responsive polymeric Janus cage with a PNIPAM-cPVBC-PEO sandwiched shell is synthesized. The Janus cage provides a general method of thermally triggered separation of oil/water emulsions independent of the type of surfactant and emulsion. It can selectively capture organic compounds at a higher temperature and release them at a lower temperature.
Collapse
Affiliation(s)
- Linlin Zhang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Cheng W, Xu Z, Chen S, Ai J, Lin J, Lin J, Chen Q. Compatibilization Behavior of Double Spherical TETA-SiO 2@PDVB Janus Particles Anchored at the Phase Interface of Acrylic Resin/Epoxy Resin (AR/EP) Polymer Blends. ACS OMEGA 2019; 4:17607-17614. [PMID: 31681867 PMCID: PMC6822127 DOI: 10.1021/acsomega.9b00793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/03/2019] [Indexed: 06/10/2023]
Abstract
The inorganic particles used as a compatibilizer play a role in crack termination and heat resistance. However, the poor compatibility of inorganic particles and polymer hinders their application. Herein, the double spherical SiO2@PDVB Janus particles (JPs) were modified with triethylenetetramine (TETA), and the obtained anisotropic TETA-SiO2@PDVB JPs were used as the compatibilizer of acrylic resin/epoxy resin (AR/EP) composites. The modification and the compatibilization of TETA-SiO2@PDVB JPs were studied by scanning electron microscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry, and dynamic mechanical analyzer, impact test, tensile test, and so forth. Results show that amino groups grafted onto the SiO2 lobe can react with epoxy groups of EP, which results in the TETA-SiO2 lobe being embedded in the EP phase and the PDVB lobe being pushed toward the AR phase. The TETA-SiO2@PDVB JPs anchored at the interface of AR and EP increase their interfacial adhesion, decrease the domain phase size and distribution of dispersed AR, and improve the compatibility of AR/EP composites. The compatibilization of nanoparticles (NPs) is realized by the cavitation and blunting of different scaled AR phase domain distributions and that of JPs is realized by the strong interfacial force originated by JPs. Moreover, the desorption energy of TETA-SiO2@PDVB JPs is higher than that of SiO2-TETA; so the glass transition temperature (T g) of AR/EP/JP composites is higher than that of AR/EP/NP composites. The strong interfacial adhesion and high desorption energy endow TETA-SiO2@PDVB JPs with a toughening effect and enhancing effect. The impact strength and the tensile strength of AR/EP/TETA-SiO2@PDVB composites are 16.03 kJ/m2 and 63.12 MPa, which are 9.91 kJ/m2 and 16.32 MPa higher than those of AR/EP composites, respectively. JPs used in the thermosetting EP is benefit to its toughening study and the new anisotropic Janus compatibilizer.
Collapse
Affiliation(s)
- Wei Cheng
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Zhiyan Xu
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Shuning Chen
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Jie Ai
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Jinhuo Lin
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Jianrong Lin
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| | - Qinhui Chen
- College
of Chemistry and Materials Science and Fujian Provincial Key Laboratory
of Polymer Materials, Fujian Normal University, Fuzhou 350007, People’s Republic of China
| |
Collapse
|
29
|
Ghosh SK, Böker A. Self‐Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Alexander Böker
- Fraunhofer‐Institut für Angewandte Polymerforschung Geiselbergstraβe 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
30
|
Tang X, Hou Y, Meng QB, Zhang G, Liang F, Song XM. Heteropoly acids-functionalized Janus particles as catalytic emulsifier for heterogeneous acylation in flow ionic liquid-in-oil Pickering emulsion. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Morphology evolution of Janus dumbbell nanoparticles in seeded emulsion polymerization. J Colloid Interface Sci 2019; 543:34-42. [PMID: 30776668 DOI: 10.1016/j.jcis.2019.01.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Emulsion polymerization is a versatile approach to produce different polymeric nanoparticle morphologies, which can be useful in a variety of applications. However, the detailed mechanism of the morphology formation is not entirely clear. We study the kinetics of nanoparticle morphology evolution during a seeded emulsion polymerization using both experimental and computational tools. Lightly crosslinked polystyrene seeds were first synthesized using dispersion polymerization. Then the seed particles were swollen in tert-butyl acrylate and styrene monomers, and subsequently polymerized into nanoparticles of dumbbell and multilobe morphologies. It was discovered that both the seed and final particle morphology were affected by the methanol concentration during the seed synthesis. Systematically adjusting the methanol amount will not only yield spherical seed particles of different size, but also dumbbell particles even without the second monomer polymerization. In addition to methanol concentration, morphology can be controlled by crosslinking density. The kinetics studies revealed an interesting transition from multilobe to dumbbell geometries during the secondary polymerization. Based on the results, a nucleation-growth model has been proposed to describe the morphology evolution and verification was offered by computer simulation. The key discovery is that nanoparticle morphology can be kinetically controlled by diffusion of the protrusions on the seed particles. The condition of seed synthesis and crosslinking density will drastically change the seed and final nanoparticle morphology.
Collapse
|
32
|
Sun D, Si Y, Song XM, Liang F, Yang Z. Bi-continuous emulsion using Janus particles. Chem Commun (Camb) 2019; 55:4667-4670. [DOI: 10.1039/c9cc01191a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bi-continuous emulsion stabilized with amphiphilic Janus particles was achieved.
Collapse
Affiliation(s)
- Dayin Sun
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials
- Liaoning University
- Shenyang 110036
- China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Yan Si
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xi-Ming Song
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials
- Liaoning University
- Shenyang 110036
- China
| | - Fuxin Liang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials
- Liaoning University
- Shenyang 110036
- China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Zhenzhong Yang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials
- Liaoning University
- Shenyang 110036
- China
- State Key Laboratory of Polymer Physics and Chemistry
| |
Collapse
|
33
|
Yu X, Sun Y, Liang F, Jiang B, Yang Z. Triblock Janus Particles by Seeded Emulsion Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiaotian Yu
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Yijing Sun
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingyin Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Polymer Institute, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Zheng H, Du W, Duan Y, Geng K, Deng J, Gao C. Biodegradable Anisotropic Microparticles for Stepwise Cell Adhesion and Preparation of Janus Cell Microparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36776-36785. [PMID: 30284813 DOI: 10.1021/acsami.8b14884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The biomimetic anisotropic particles have different physicochemical properties on the opposite two sides, enabling diverse applications in emulsion, photonic display, and diagnosis. However, the traditional anisotropic particles have a very small size, ranging from submicrons to a few microns. The design and fabrication of anisotropic macron-sized particles with new structures and properties is still challenging. In this study, anisotropic polycaprolactone (PCL) microparticles well separated with each other were prepared by crystallization from the dilute PCL solution in a porous 3D gelatin template. They had fuzzy and smooth surfaces on each side, and a size as large as 70 μm. The fuzzy surface of the particle adsorbed significantly larger amount of proteins, and was more cell-attractive regardless of the cell types. The particles showed stronger affinity toward fibroblasts over hepatocytes, which paved a new way for cell isolation merely based on the surface morphology. After a successive seeding process, Janus cell microparticles with fibroblasts and endothelial cells (ECs) on each side were designed and obtained by making use of the anisotropic surface morphology, which showed significant difference in EC functions in terms of prostacyclin (PGl2) secretion, demonstrating the unique and appealing functions of this type of anisotropic microspheres.
Collapse
Affiliation(s)
- Honghao Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Wang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine , Zhejiang University , Hangzhou 310058 , China
| | - Keyu Geng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jun Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
35
|
Liang F, Liu B, Cao Z, Yang Z. Janus Colloids toward Interfacial Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4123-4131. [PMID: 29169237 DOI: 10.1021/acs.langmuir.7b02308] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Janus colloids are functional particles consisting of two surfaces (or internal materials) with distinct physical or chemical properties in the same particle. Owing to their amphiphilic nature, Janus colloids composed of both hydrophilic and hydrophobic faces provide a powerful tool to generate functional surfaces and to manipulate the properties of interfaces. Amphiphilic Janus colloids have shown promising applications as particulate surfactants in oil/water separation, as interfacial compatibilizers in polymer blends, and as assembly blocks in robust coatings with unique wettability. In this Feature Article, we summarize recent advances in engineering interfaces by using Janus colloids.
Collapse
Affiliation(s)
- Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Bing Liu
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Zheng Cao
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
36
|
Han B, Xia W, Liu K, Tian F, Chen Y, Wang X, Liang F, Yang Z. Janus Nanoparticles for Improved Dentin Bonding. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8519-8526. [PMID: 29468876 DOI: 10.1021/acsami.7b19652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The amphiphilic monomer 2-hydroxyethyl methacrylate (HEMA) is widely used in dental adhesives as a priming component, especially for dentin bonding. It behaves as a compatibilizer between hydrophilic and hydrophobic components and stabilizes the multicomponent adhesive system. However, there are several drawbacks associated with using HEMA, such as water retention within the adhesive layer, hydrolysis in oral environments, and cytotoxicity. These drawbacks lead to the failure of tooth restoration and represent a heavy medical burden. Thus, it is imperative to find a new compatibilizer to substitute for HEMA. Because of their superior compatibilization capabilities as functional solid surfactants, amphiphilic Janus particles are chosen as candidates for an alternative to HEMA in dental adhesives. Reactive amphiphilic Janus nanoparticles are synthesized by selectively etching and modifying at the interface of a Pickering emulsion. This approach could be extended to the synthesis of a series of other Janus nanoparticles. The Janus nanoparticles were verified to be better for the reduction of the phase separation and stabilization of dentin adhesives than HEMA. It is also demonstrated that these reactive Janus nanoparticles can strongly enhance the dentin bonding interface without cytotoxicity. It is clearly illustrated by this study that Janus nanoparticles may be promising materials to substitute for HEMA in dental adhesives.
Collapse
Affiliation(s)
| | | | | | | | - Ying Chen
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | | | - Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
37
|
Meng QB, Yang P, Feng T, Ji X, Zhang Q, Liu D, Wu S, Liang F, Zheng Z, Song XM. Phosphomolybdic acid-responsive Pickering emulsions stabilized by ionic liquid functionalized Janus nanosheets. J Colloid Interface Sci 2017; 507:74-82. [DOI: 10.1016/j.jcis.2017.07.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022]
|
38
|
Xu W, Chen J, Chen S, Chen Q, Lin J, Liu H. Study on the Compatibilizing Effect of Janus Particles on Liquid Isoprene Rubber/Epoxy Resin Composite Materials. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenqin Xu
- College
of Chemical and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
| | - Jiawen Chen
- College
of Chemical and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
| | - Shuning Chen
- College
of Chemical and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Qinhui Chen
- College
of Chemical and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
| | - Jinhuo Lin
- College
of Chemical and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
| | - Haiqing Liu
- College
of Chemical and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, People’s Republic of China
| |
Collapse
|
39
|
Pei X, Zhai K, Liang X, Deng Y, Xu K, Tan Y, Yao X, Wang P. Fabrication of shape-tunable macroparticles by seeded polymerization of styrene using non-cross-linked starch-based seed. J Colloid Interface Sci 2017; 512:600-608. [PMID: 29101901 DOI: 10.1016/j.jcis.2017.10.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022]
Abstract
Nonspherical colloidal particles with various geometries and different compositions have attracted tremendous attention and been widely researched. The preparation of polymer colloidal particles with controlled shapes by seeded polymerization is recognized as the most promising technique owing to the precise control of various morphologies and using non-cross-linked seed particles are of particular interest. Seeds particles derived from natural biopolymers are seldom applied. Hence, non-cross-linked starch-based seed could be used to fabricate the anisotropic particles by soap-free seed polymerization. Non-cross-linked starch-based seed particles were prepared by a nanoprecipitation method. Starch/polystyrene composite colloidal particles with shape-tunable were fabricated by soap-free seeded polymerization using starch-based seed. The effect of the polymerization time, monomer feed ratio and seed type were investigated. The seed particles with a single- or multi-hole structure were obtained after swelling with styrene. The resulting particles including golf-like, raspberry-like, octahedron-like and snowman-like structures, was fabricated on the polymerization process. This study firstly reports that the morphology of composite particles from golf-like to snowman-like at high monomer feed ratio using starch-based seed. At low monomer feed ratio, raspberry-like particles were obtained by surface nucleation increasing process. In addition, seed type also effect the morphology of composite particles.
Collapse
Affiliation(s)
- Xiaopeng Pei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| | - Kankan Zhai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| | - Xuechen Liang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yukun Deng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Kun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Ying Tan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xianping Yao
- Hangzhou Research Institute of Chemical Technology, Hangzhou 310014, PR China.
| | - Pixin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
40
|
Affiliation(s)
- Weichao Shi
- Department
of Applied Physics, School of Engineering and Applied
Sciences, and ‡Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - David A. Weitz
- Department
of Applied Physics, School of Engineering and Applied
Sciences, and ‡Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
41
|
|
42
|
Wang Y, Yang Y, Yuan J, Pan M, Liu G, Ding H, Ma C. Asymmetrical Morphology and Performance of Composite Colloidal Particles Controlled via Hydrophilic Comonomer Addition Time in the Presence of Polyvinylidene Fluoride Latex. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yang Wang
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Yongfang Yang
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Mingwang Pan
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Huili Ding
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Cuicui Ma
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| |
Collapse
|
43
|
Qiao Y, Du Y, Zhang X, Li Y. Preparation at the water-oil interface of Janus composite nanoparticles and their photoelectric properties. J Appl Polym Sci 2017. [DOI: 10.1002/app.45107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yisha Qiao
- School of Materials Science and Engineering; Shanghai University; Shanghai 200444 China
| | - Yixuan Du
- School of Materials Science and Engineering; Shanghai University; Shanghai 200444 China
| | - Xiaowei Zhang
- School of Materials Science and Engineering; Shanghai University; Shanghai 200444 China
| | - Yunbo Li
- School of Materials Science and Engineering; Shanghai University; Shanghai 200444 China
| |
Collapse
|
44
|
Liu Y, Hu J, Yu X, Xu X, Gao Y, Li H, Liang F. Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. J Colloid Interface Sci 2017; 490:357-364. [DOI: 10.1016/j.jcis.2016.11.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
|
45
|
Zhou X, Chen S, Liu B, Wang X. Azo-Polymer Janus Particles Assembled by Solvent-Induced Microphase Separation and Their Photoresponsive Behavior. Chem Asian J 2016; 11:3443-3448. [DOI: 10.1002/asia.201601259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Xinran Zhou
- Department of Chemical Engineering; Key Laboratory of Advanced Materials (MOE); Tsinghua University; Beijing 100084 People's Republic of China
| | - Shouping Chen
- Department of Chemical Engineering; Key Laboratory of Advanced Materials (MOE); Tsinghua University; Beijing 100084 People's Republic of China
| | - Bingyang Liu
- Department of Chemical Engineering; Key Laboratory of Advanced Materials (MOE); Tsinghua University; Beijing 100084 People's Republic of China
| | - Xiaogong Wang
- Department of Chemical Engineering; Key Laboratory of Advanced Materials (MOE); Tsinghua University; Beijing 100084 People's Republic of China
| |
Collapse
|
46
|
Wang L, Pan M, Song S, Zhu L, Yuan J, Liu G. Intriguing Morphology Evolution from Noncrosslinked Poly(tert-butyl acrylate) Seeds with Polar Functional Groups in Soap-Free Emulsion Polymerization of Styrene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7829-40. [PMID: 27389855 DOI: 10.1021/acs.langmuir.6b01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Herein, we demonstrate a facile approach to prepare anisotropic poly(tert-butyl acrylate)/polystyrene (PtBA/PS) composite particles with controllable morphologies by soap-free seeded emulsion polymerization (SSEP). In the first step, noncrosslinked PtBA seeds with self-stabilizing polar functional groups (e.g., ester groups and radicals) are synthesized by soap-free emulsion polymerization. During the subsequent SSEP of styrene (St), PS bulges are nucleated on the PtBA seeds due to the microphase separation confined in the latex particles. The morphology evolution of PtBA/PS composite particles is tailored by varying the monomer/seed feed ratio, polymerization time, and polymerization temperature. Many intriguing morphologies, including hamburger-like, litchi-like, mushroom-like, strawberry-like, bowl-like, and snowman-like, have been acquired for PtBA/PS composite particles. The polar groups on the PtBA seed surface greatly influence the formation and further merging of PS/St bulges during the polymerization. A possible formation mechanism is proposed on the basis of experimental results. These complex composite particles are promising for applications in superhydrophobic coatings.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Shaofeng Song
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106-7202, United States
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Gang Liu
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| |
Collapse
|
47
|
Wu D, Chew JW, Honciuc A. Polarity Reversal in Homologous Series of Surfactant-Free Janus Nanoparticles: Toward the Next Generation of Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6376-6386. [PMID: 27283348 DOI: 10.1021/acs.langmuir.6b01422] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability to finely tune the amphiphilic balance of Janus nanoparticles (JNPs) could represent a step forward toward creating the next generation of solid-state amphiphiles with significant potential for applications. The inherent amphiphilicity of JNPs stemming from an intrinsic polarity contrast between two surface regions is well-acknowledged, but remained difficult to demonstrate experimentally in the absence of surfactants and stabilizers. We have designed two homologous series of surfactant-free polymeric JNPs starting from polystyrene (PS) seed nanoparticles (NPs) on which we grew Janus lobes of different sizes via seed polymerization and phase separation of the 3-(triethoxysilyl)propyl-methacrylate (3-TSPM) monomer. The two series differ only by the radical initiator used in the seed polymerization: polar ionic ammonium persulfate (APS) vs nonpolar oil-soluble 2,2'-azobis(2-methylpropionitrile) (AIBN). To compare the two series, we employed them in the emulsification of water with heptane or molten paraffin wax. A polarity reversal of the JNPs within AIBN-JNP series could be observed from the catastrophic and transitional emulsion phase inversions and occurred when the more polar lobe was larger than the nonpolar seed PS lobe. Furthermore, the AIBN-JNPs appeared to be amphiphilic and adopt preferred orientation within the monolayer at the oil/water interface. We therefore demonstrated that in the absence of surfactants the amphiphilicity of the JNPs depends not only on the relative size of the lobes, but also on the surface polarity contrast, which can be tuned by changing the nature of radical initiator.
Collapse
Affiliation(s)
- Dalin Wu
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences , Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU) , Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University (NTU) , Singapore 637141, Singapore
| | - Andrei Honciuc
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences , Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland
| |
Collapse
|
48
|
Lee J, Yezer BA, Prieve DC, Behrens SH. Janus Particles in a Nonpolar Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3095-3099. [PMID: 26974187 DOI: 10.1021/acs.langmuir.5b04255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amphiphilic Janus particles are currently receiving great attention as "solid surfactants". Previous studies have introduced such particles with a variety of shapes and functions, but there has so far been a strong emphasis on water-dispersible particles that mimic the molecular surfactants soluble in polar solvents. Here we present an example of lipophilic Janus particles which are selectively dispersible in very nonpolar solvents such as alkanes. Interfacial tension measurements between the alkane dispersions and pure water indicate that these particles do have interfacial activity, and like typical hydrophobic, nonionic surfactants, they do not partition to the aqueous bulk. We also show that the oil-borne particles, by retaining locally polar domains where charges can reside, generate electric conductivity in nonpolar liquids-another feature familiar from molecular surfactants and one commonly exploited to mitigate explosion hazards due to flow electrification during petroleum pumping and in the formulation of electronic inks.
Collapse
Affiliation(s)
- Joohyung Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Benjamin A Yezer
- Center for Complex Fluids Engineering and Department of Chemical Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Dennis C Prieve
- Center for Complex Fluids Engineering and Department of Chemical Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Sven Holger Behrens
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
49
|
Nie H, Zhang C, Liu Y, He A. Synthesis of Janus Rubber Hybrid Particles and Interfacial Behavior. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00159] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Huarong Nie
- Shandong Provincial Key Laboratory
of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics
(Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Cao Zhang
- Shandong Provincial Key Laboratory
of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics
(Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuewen Liu
- Shandong Provincial Key Laboratory
of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics
(Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Aihua He
- Shandong Provincial Key Laboratory
of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics
(Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
50
|
Tian L, Li X, Zhao P, Chen X, Ali Z, Ali N, Zhang B, Zhang H, Zhang Q. Generalized Approach for Fabricating Monodisperse Anisotropic Microparticles via Single-Hole Swelling PGMA Seed Particles. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01319] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lei Tian
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiangjie Li
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Panpan Zhao
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xin Chen
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zafar Ali
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Nisar Ali
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Baoliang Zhang
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hepeng Zhang
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiuyu Zhang
- The Key Laboratory of Space Applied
Physics and Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|