1
|
Hooiveld E, Rijnders L, van der Meer B, van der Gucht J, Sprakel J, van der Kooij HM. Self-stratification and phase separation in drying binary colloidal films. J Colloid Interface Sci 2025; 679:324-333. [PMID: 39454263 DOI: 10.1016/j.jcis.2024.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
HYPOTHESIS Films that develop compositional heterogeneity during drying offer a promising approach for achieving tailored functionalities. These functionalities can be realized by strategically directing different components during the drying process. One approach to achieve this is through spontaneous size segregation of colloidal particles. Two variants thereof have previously been observed in binary suspensions: layer formation (self-stratification) due to kinetically driven concentration gradients, and micro-domain formation (phase separation) due to thermodynamic depletion interactions between the small and large species. Surprisingly, in the context of binary colloidal films, these phenomena have never been investigated concurrently during evaporation. EXPERIMENTS We show how we can achieve both self-stratification and domain formation in a single step. Using real-time 3D confocal fluorescence microscopy, we quantitatively unravel the effects of various parameters on the emergence of compositional heterogeneity. FINDINGS We reveal that beyond a certain size ratio, micro-phase separation becomes a prominent mechanism dictating the final morphology. The initial volume fraction minimally affects the final domain size but significantly impacts self-stratification. Reducing the evaporation rate increases the domain size while minimizing stratification. Finally, reducing the colloidal electrostatic interaction by a small increase in salt concentration enhances phase separation yet reverses stratification. These findings unveil a strategy for harnessing two distinct size segregation mechanisms in a single film, forming a foundation for customizable self-partitioning coatings.
Collapse
Affiliation(s)
- Ellard Hooiveld
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Lisa Rijnders
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Berend van der Meer
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Hanne M van der Kooij
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE, the Netherlands.
| |
Collapse
|
2
|
Angsusing J, Samee W, Tadtong S, Mangmool S, Okonogi S, Toolmal N, Chittasupho C. Development, Optimization, and Stability Study of a Yataprasen Film-Forming Spray for Musculoskeletal Pain Management. Gels 2025; 11:64. [PMID: 39852035 PMCID: PMC11764686 DOI: 10.3390/gels11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Yataprasen (YTPS) remedy ethanolic spray, one of the National Thai Traditional Medicine Formulary, is extensively employed in Thai traditional healthcare to manage musculoskeletal pain and inflammation. Despite its widespread use, the quality and stability of the YTPS formulation, critical to its efficacy, safety, and patient adherence, have not been comprehensively studied. This research developed and optimized a film-forming spray (FFS) formulation of YTPS ethanolic extract and conducted a 6-month stability evaluation. The FFS shares similarities with gel formulations, particularly in its ability to form a cohesive, semi-solid film upon application, enhancing localized drug delivery and prolonged contact time. Key physicochemical properties, including density (0.8450-0.9086 g/cm3), pH (4.72-4.95), spray angle (55.58-60.10°), evaporation time (1.04-1.27 min), and theoretical film thickness (7.72-13.97 µm), were analyzed across varying storage conditions. Active components β-amyrin and stigmasterol demonstrated retention rates of 96.78% and 68.22%, respectively, under refrigerated conditions, with degradation rates accelerating at higher temperatures. Significant variations in density, spray angle, film thickness, and stigmasterol concentration were observed. Additionally, the RP-HPLC method was validated for the accurate and precise quantification of the bioactive compounds such as β-amyrin and stigmasterol, demonstrating excellent linearity within a 10-100 µg/mL range for both compounds with excellent linearity R2 > 0.999. The results confirmed that YTPS-FFS exhibits good stability and that the validated HPLC method is reliable for routine quality control. These findings supported the potential of YTPS-FFS formulation as a standardized and effective dosage form for managing musculoskeletal conditions, advancing its role in modernized traditional medicine.
Collapse
Affiliation(s)
- Jaenjira Angsusing
- Ph.D. Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, CMU Presidential Scholarship, Chiang Mai 50200, Thailand
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nopparut Toolmal
- Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
de Bruijn R, Darhuber AA, Michels JJ, van der Schoot P. Structuring in thin films during meniscus-guided deposition. J Chem Phys 2024; 161:194709. [PMID: 39560089 DOI: 10.1063/5.0225995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
We theoretically study the evaporation-driven phase separation of a binary fluid mixture in a thin film deposited on a moving substrate, as occurs in meniscus-guided deposition for solution-processed materials. Our focus is on the limit of rapid substrate motion where phase separation takes place far away from the coating device. In this limit, demixing takes place under conditions mimicking those in a stationary film because substrate and film move at the same speed. We account for the hydrodynamic transport of the mixture within the lubrication approximation. In the early stages of demixing, diffusive and evaporative mass transport predominates, consistent with earlier studies on evaporation-driven spinodal decomposition. In the late-stage coarsening of the demixing process, the interplay of solvent evaporation, diffusive, and hydrodynamic mass transport results in several distinct coarsening mechanisms. The effective coarsening rate is dictated by the dominant mass transport mechanism and therefore depends on the material properties, evaporation rate, and time: slow solvent evaporation results in initially diffusive coarsening that for sufficiently strong hydrodynamic transport transitions to hydrodynamic coarsening, whereas rapid solvent evaporation can preempt and suppress hydrodynamic and diffusive coarsening. We identify a novel hydrodynamic coarsening regime for off-critical mixtures, arising from the interaction of the interfaces between solute-rich and solute-poor regions in the film with the solution-gas interface. This interaction induces a directional motion of solute-rich droplets along gradients in the film thickness, from regions where the film is relatively thick to where it is thinner. The solute-rich domains subsequently accumulate and coalesce in the thinner regions.
Collapse
Affiliation(s)
- René de Bruijn
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anton A Darhuber
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Paul van der Schoot
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
de Bruijn R, Michels JJ, van der Schoot P. Transient nucleation driven by solvent evaporation. J Chem Phys 2024; 160:084505. [PMID: 38415833 DOI: 10.1063/5.0186395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
We theoretically investigate homogeneous crystal nucleation in a solution containing a solute and a volatile solvent. The solvent evaporates from the solution, thereby continuously increasing the concentration of the solute. We view it as an idealized model for the far-out-of-equilibrium conditions present during the liquid-state manufacturing of organic electronic devices. Our model is based on classical nucleation theory, taking the solvent to be a source of the transient conditions in which the solute drops out of the solution. Other than that, the solvent is not directly involved in the nucleation process itself. We approximately solve the kinetic master equations using a combination of Laplace transforms and singular perturbation theory, providing an analytical expression for the nucleation flux. Our results predict that (i) the nucleation flux lags slightly behind a commonly used quasi-steady-state approximation. This effect is governed by two counteracting effects originating from solvent evaporation: while a faster evaporation rate results in an increasingly larger influence of the lag time on the nucleation flux, this lag time itself is found to decrease with increasing evaporation rate. Moreover, we find that (ii) the nucleation flux and the quasi-steady-state nucleation flux are never identical, except trivially in the stationary limit, and (iii) the initial induction period of the nucleation flux, which we characterize as a generalized induction time, decreases weakly with the evaporation rate. This indicates that the relevant time scale for nucleation also decreases with an increasing evaporation rate. Our analytical theory compares favorably with results from a numerical evaluation of the governing kinetic equations.
Collapse
Affiliation(s)
- René de Bruijn
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jasper J Michels
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Paul van der Schoot
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Ronsin OJJ, Harting J. Formation of Crystalline Bulk Heterojunctions in Organic Solar Cells: Insights from Phase-Field Simulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49785-49800. [PMID: 36282868 DOI: 10.1021/acsami.2c14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The performance of organic solar cells strongly depends on the bulk-heterojunction (BHJ) morphology of the photoactive layer. This BHJ forms during the drying of the wet-deposited solution, because of physical processes such as crystallization and/or liquid-liquid phase separation (LLPS). However, the process-structure relationship remains insufficiently understood. In this work, a recently developed, coupled phase-field-fluid mechanics framework is used to simulate the BHJ formation upon drying. For the first time, this allows to investigate the interplay between all the relevant physical processes (evaporation, crystal nucleation and growth, liquid demixing, composition-dependent kinetic properties), within a single coherent theoretical framework. Simulations for the model system P3HT-PCBM are presented. The comparison with previously reported in situ characterization of the drying structure is very convincing: The morphology formation pathways, crystallization kinetics, and final morphology are in line with experimental results. The final BHJ morphology is a subtle mixture of pure crystalline donor and acceptor phases, pure and mixed amorphous domains, which depends on the process parameters and material properties. The expected benefit of such an approach is to identify physical design rules for ink formulation and processing conditions to optimize the cell's performance. It could be applied to recent organic material systems in the future.
Collapse
Affiliation(s)
- Olivier J J Ronsin
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Straße 248, 90429Nürnberg, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429Nürnberg, Germany
| | - Jens Harting
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Straße 248, 90429Nürnberg, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429Nürnberg, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429Nürnberg, Germany
| |
Collapse
|
6
|
Muntean SA, Kronberg VCE, Colangeli M, Muntean A, van Stam J, Moons E, Cirillo ENM. Quantitative analysis of phase formation and growth in ternary mixtures upon evaporation of one component. Phys Rev E 2022; 106:025306. [PMID: 36109888 DOI: 10.1103/physreve.106.025306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
We perform a quantitative analysis of Monte Carlo simulation results of phase separation in ternary blends upon evaporation of one component. Specifically, we calculate the average domain size and plot it as a function of simulation time to compute the exponent of the obtained power law. We compare and discuss results obtained by two different methods, for three different models: two-dimensional (2D) binary-state model (Ising model), 2D ternary-state model with and without evaporation. For the ternary-state models, we study additionally the dependence of the domain growth on concentration, temperature and initial composition. We reproduce the expected 1/3 exponent for the Ising model, while for the ternary-state model without evaporation and for the one with evaporation we obtain lower values of the exponent. It turns out that phase separation patterns that can form in this type of systems are complex. The obtained quantitative results give valuable insights towards devising computable theoretical estimations of size effects on morphologies as they occur in the context of organic solar cells.
Collapse
Affiliation(s)
- Stela Andrea Muntean
- Department of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden
| | - Vì C E Kronberg
- Department of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden
| | - Matteo Colangeli
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adrian Muntean
- Department of Mathematics and Computer Science, Karlstad University, 65188 Karlstad, Sweden
| | - Jan van Stam
- Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Ellen Moons
- Department of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden
| | - Emilio N M Cirillo
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
7
|
Ronsin OJJ, Harting J. Phase‐Field Simulations of the Morphology Formation in Evaporating Crystalline Multicomponent Films. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Olivier J. J. Ronsin
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy Forschungszentrum Jülich Fürther Straße 248 90429 Nürnberg Germany
- Department of Chemical and Biological Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Fürther Straße 248 90429 Nürnberg Germany
| | - Jens Harting
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy Forschungszentrum Jülich Fürther Straße 248 90429 Nürnberg Germany
- Department of Chemical and Biological Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Fürther Straße 248 90429 Nürnberg Germany
- Department of Physics Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Fürther Straße 248 90429 Nürnberg Germany
| |
Collapse
|
8
|
Carmona P, Röding M, Särkkä A, von Corswant C, Olsson E, Lorén N. Structure formation and coarsening kinetics of phase-separated spin-coated ethylcellulose/hydroxypropylcellulose films. SOFT MATTER 2022; 18:3206-3217. [PMID: 35383800 DOI: 10.1039/d2sm00113f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport from pharmaceutical pellets. The drug transport rate is determined by the structure of the porous films that are formed as water-soluble HPC leaches out. However, a detailed understanding of the evolution of the phase-separated structure in the films is lacking. In this work, we have investigated EC/HPC films produced by spin-coating, mimicking the industrial fluidized bed spraying. The aim was to investigate film structure evolution and coarsening kinetics during solvent evaporation. The structure evolution was characterized using confocal laser scanning microscopy and image analysis. The effect of the EC:HPC ratio (15 to 85 wt% HPC) on the structure evolution was determined. Bicontinuous structures were found for 30 to 40 wt% HPC. The growth of the characteristic length scale followed a power law, L(t) ∼ t(n), with n ∼ 1 for bicontinuous structures, and n ∼ 0.45-0.75 for discontinuous structures. The characteristic length scale after kinetic trapping ranged between 3.0 and 6.0 μm for bicontinuous and between 0.6 and 1.6 μm for discontinuous structures. Two main coarsening mechanisms could be identified: interfacial tension-driven hydrodynamic growth for bicontinuous structures and diffusion-driven coalescence for discontinuous structures. The 2D in-plane interface curvature analysis showed that the mean curvature decreased as a function of time for bicontinuous structures, confirming that interfacial tension is driving the growth. The findings of this work provide a good understanding of the mechanisms responsible for morphology development and open for further tailoring of thin EC/HPC film structures for controlled drug release.
Collapse
Affiliation(s)
- Pierre Carmona
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Magnus Röding
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University, Gothenburg, Sweden
| | - Aila Särkkä
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University, Gothenburg, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Eva Olsson
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Niklas Lorén
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
9
|
Michels JJ, Brzezinski M, Scheidt T, Lemke EA, Parekh SH. Role of Solvent Compatibility in the Phase Behavior of Binary Solutions of Weakly Associating Multivalent Polymers. Biomacromolecules 2022; 23:349-364. [PMID: 34866377 PMCID: PMC8753604 DOI: 10.1021/acs.biomac.1c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Condensate formation of biopolymer solutions, prominently those of various intrinsically disordered proteins (IDPs), is often driven by "sticky" interactions between associating residues, multivalently present along the polymer backbone. Using a ternary mean-field "stickers-and-spacers" model, we demonstrate that if sticker association is of the order of a few times the thermal energy, a delicate balance between specific binding and nonspecific polymer-solvent interactions gives rise to a particularly rich ternary phase behavior under physiological circumstances. For a generic system represented by a solution comprising multiassociative scaffold and client polymers, the difference in solvent compatibility between the polymers modulates the nature of isothermal liquid-liquid phase separation (LLPS) between associative and segregative. The calculations reveal regimes of dualistic phase behavior, where both types of LLPS occur within the same phase diagram, either associated with the presence of multiple miscibility gaps or a flip in the slope of the tie-lines belonging to a single coexistence region.
Collapse
Affiliation(s)
- Jasper J. Michels
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mateusz Brzezinski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tom Scheidt
- Institute
for Molecular Biology, Johannes Gutenberg
University, Ackermannweg
4, 55128 Mainz, Germany
| | - Edward A. Lemke
- Institute
for Molecular Biology, Johannes Gutenberg
University, Ackermannweg
4, 55128 Mainz, Germany
| | - Sapun H. Parekh
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Biomedical Engineering, The University
of Texas at Austin, 107
West Dean Keeton Street Stop C0800, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Carmona P, von Corswant C, Röding M, Särkkä A, Olsson E, Lorén N. Cross-sectional structure evolution of phase-separated spin-coated ethylcellulose/hydroxypropylcellulose films during solvent quenching. RSC Adv 2022; 12:26078-26089. [PMID: 36275112 PMCID: PMC9477114 DOI: 10.1039/d2ra04178b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport out of pharmaceutical pellets. The films are applied on the pellets using fluidized bed spraying. The drug transport rate is determined by the structure of the porous films that are formed as the water-soluble HPC leaches out. However, a detailed understanding of the evolution of the phase-separated structure during production is lacking. Here, we have investigated EC/HPC films produced by spin-coating, which mimics the industrial manufacturing process. This work aimed to understand the structure formation and film shrinkage during solvent evaporation. The cross-sectional structure evolution was characterized using confocal laser scanning microscopy (CLSM), profilometry and image analysis. The effect of the EC/HPC ratio on the cross-sectional structure evolution was investigated. During shrinkage of the film, the phase-separated structure undergoes a transition from 3D to nearly 2D structure evolution along the surface. This transition appears when the typical length scale of the phase-separated structure is on the order of the thickness of the film. This was particularly pronounced for the bicontinuous systems. The shrinkage rate was found to be independent of the EC/HPC ratio, while the initial and final film thickness increased with increasing HPC fraction. A new method to estimate part of the binodal curve in the ternary phase diagram for EC/HPC in ethanol has been developed. The findings of this work provide a good understanding of the mechanisms responsible for the morphology development and allow tailoring of thin EC/HPC films structure for controlled drug release. The EC/HPC/EtOH phase diagram could be estimated from the CLSM monitoring of the cross-sectional in situ phase separation. The findings of this work provide a good understanding of the structure evolution.![]()
Collapse
Affiliation(s)
- Pierre Carmona
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Magnus Röding
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg University, Gothenburg, Sweden
| | - Aila Särkkä
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg University, Gothenburg, Sweden
| | - Eva Olsson
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Niklas Lorén
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
11
|
Ronsin OJJ, Jang D, Egelhaaf HJ, Brabec CJ, Harting J. Phase-Field Simulation of Liquid-Vapor Equilibrium and Evaporation of Fluid Mixtures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55988-56003. [PMID: 34792348 DOI: 10.1021/acsami.1c12079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In solution processing of thin films, the material layer is deposited from a solution composed of several solutes and solvents. The final morphology and hence the properties of the film often depend on the time needed for the evaporation of the solvents. This is typically the case for organic photoactive or electronic layers. Therefore, it is important to be able to predict the evaporation kinetics of such mixtures. We propose here a new phase-field model for the simulation of evaporating fluid mixtures and simulate their evaporation kinetics. Similar to the Hertz-Knudsen theory, the local liquid-vapor (LV) equilibrium is assumed to be reached at the film surface and evaporation is driven by diffusion away from this gas layer. In the situation where the evaporation is purely driven by the LV equilibrium, the simulations match the behavior expected theoretically from the free energy: for evaporation of pure solvents, the evaporation rate is constant and proportional to the vapor pressure. For mixtures, the evaporation rate is in general strongly time-dependent because of the changing composition of the film. Nevertheless, for highly nonideal mixtures, such as poorly compatible fluids or polymer solutions, the evaporation rate becomes almost constant in the limit of low Biot numbers. The results of the simulation have been successfully compared to experiments on a polystyrene-toluene mixture. The model allows to take into account deformations of the liquid-vapor interface and, therefore, to simulate film roughness or dewetting.
Collapse
Affiliation(s)
- Olivier J J Ronsin
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, 90429 Nürnberg, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
| | - DongJu Jang
- ZAE Bayern─Solar Factory of the Future, Energy Campus Nürnberg, Fürther Straße 250, 90429 Nürnberg, Germany
| | - Hans-Joachim Egelhaaf
- ZAE Bayern─Solar Factory of the Future, Energy Campus Nürnberg, Fürther Straße 250, 90429 Nürnberg, Germany
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Jens Harting
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, 90429 Nürnberg, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
| |
Collapse
|
12
|
Müller M, Abetz V. Nonequilibrium Processes in Polymer Membrane Formation: Theory and Experiment. Chem Rev 2021; 121:14189-14231. [PMID: 34032399 DOI: 10.1021/acs.chemrev.1c00029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Porous polymer and copolymer membranes are useful for ultrafiltration of functional macromolecules, colloids, and water purification. In particular, block copolymer membranes offer a bottom-up approach to form isoporous membranes. To optimize permeability, selectivity, longevity, and cost, and to rationally design fabrication processes, direct insights into the spatiotemporal structure evolution are necessary. Because of a multitude of nonequilibrium processes in polymer membrane formation, theoretical predictions via continuum models and particle simulations remain a challenge. We compiled experimental observations and theoretical approaches for homo- and block copolymer membranes prepared by nonsolvent-induced phase separation and highlight the interplay of multiple nonequilibrium processes─evaporation, solvent-nonsolvent exchange, diffusion, hydrodynamic flow, viscoelasticity, macro- and microphase separation, and dynamic arrest─that dictates the complex structure of the membrane on different scales.
Collapse
Affiliation(s)
- Marcus Müller
- Georg-August Universität, Institut für Theoretische Physik, 37073 Göttingen, Germany
| | - Volker Abetz
- Helmholtz-Zentrum Hereon, Institut für Membranforschung, 21502 Geesthacht, Germany.,Universität Hamburg, Institut für Physikalische Chemie, 20146 Hamburg, Germany
| |
Collapse
|
13
|
Xu J, Liu Z, Jing L, Chen J. Fabrication of PCDTBT Conductive Network via Phase Separation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5071. [PMID: 34501162 PMCID: PMC8433801 DOI: 10.3390/ma14175071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Poly[N-9'-hepta-decanyl-2,7-carbazole-alt-5-5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) is a stable semiconducting polymer with high rigidity in its molecular chains, which makes it difficult to organize into an ordered structure and affects the device performance. Here, a PCDTBT network consisting of aggregates and nanofibers in thin films was fabricated through the phase separation of mixed PCDTBT and polyethylene glycol (PEG). Using atomic force microscopy (AFM), the effect of the blending conditions (weight ratio, solution concentration, and molecular weight) and processing conditions (substrate temperature and solvent) on the resulting phase-separated morphologies of the blend films after a selective washing procedure was studied. It was found that the phase-separated structure's transition from an island to a continuous structure occurred when the weight ratio of PCDTBT/PEG changed from 2:8 to 7:3. Increasing the solution concentration from 0.1 to 3.0 wt% led to an increase in both the height of the PCDTBT aggregate and the width of the nanofiber. When the molecular weight of the PEG was increased, the film exhibited a larger PCDTBT aggregate size. Meanwhile, denser nanofibers were found in films prepared using PCDTBT with higher molecular weight. Furthermore, the electrical characteristics of the PCDTBT network were measured using conductive AFM. Our findings suggest that phase separation plays an important role in improving the molecular chain diffusion rate and fabricating the PCDTBT network.
Collapse
Affiliation(s)
- Jianwei Xu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, China; (Z.L.); (L.J.)
| | | | | | - Jingbo Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, China; (Z.L.); (L.J.)
| |
Collapse
|
14
|
Łojkowski M, Chlanda A, Choińska E, Swieszkowski W. Water vapor induced self-assembly of islands/honeycomb structure by secondary phase separation in polystyrene solution with bimodal molecular weight distribution. Sci Rep 2021; 11:13299. [PMID: 34168207 PMCID: PMC8225630 DOI: 10.1038/s41598-021-92594-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
The formation of complex structures in thin films is of interest in many fields. Segregation of polymer chains of different molecular weights is a well-known process. However, here, polystyrene with bimodal molecular weight distribution, but no additional chemical modification was used. It was proven that at certain conditions, the phase separation occurred between two fractions of bimodal polystyrene/methyl ethyl ketone solution. The films were prepared by spin-coating, and the segregation between polystyrene phases was investigated by force spectroscopy. Next, water vapour induced secondary phase separation was investigated. The introduction of moist airflow induced the self-assembly of the lower molecular weight into islands and the heavier fraction into a honeycomb. As a result, an easy, fast, and effective method of obtaining island/honeycomb morphologies was demonstrated. The possible mechanisms of the formation of such structures were discussed.
Collapse
Affiliation(s)
- Maciej Łojkowski
- Faculty of Material Sciences and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland.
- Centre for Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, Warsaw, Poland.
| | - Adrian Chlanda
- Faculty of Material Sciences and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668, Warsaw, Poland
| | - Emilia Choińska
- Faculty of Material Sciences and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Material Sciences and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland.
| |
Collapse
|
15
|
John J, Deshpande AP, Varughese S. Morphology control and ionic crosslinking of pectin domains to enhance the toughness of solvent cast
PVA
/pectin blends. J Appl Polym Sci 2021. [DOI: 10.1002/app.50360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jacob John
- Department of Chemical Engineering Indian Institute of Technology Madras India
| | | | - Susy Varughese
- Department of Chemical Engineering Indian Institute of Technology Madras India
| |
Collapse
|
16
|
Carmona P, Röding M, Särkkä A, von Corswant C, Olsson E, Lorén N. Structure evolution during phase separation in spin-coated ethylcellulose/hydroxypropylcellulose films. SOFT MATTER 2021; 17:3913-3922. [PMID: 33710242 DOI: 10.1039/d1sm00044f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous phase-separated films made of ethylcellulose (EC) and hydroxypropylcellulose (HPC) are commonly used for controlled drug release. The structure of these thin films is controlling the drug transport from the core to the surrounding liquids in the stomach or intestine. However, detailed understanding of the time evolution of these porous structures as they are formed remains elusive. In this work, spin-coating, a widely applied technique for making thin uniform polymer films, was used to mimic the industrial manufacturing process. The focus of this work was on understanding the structure evolution of phase-separated spin-coated EC/HPC films. The structure evolution was determined using confocal laser scanning microscopy (CLSM) and image analysis. In particular, we determined the influence of spin-coating parameters and EC : HPC ratio on the final phase-separated structure and the film thickness. The film thickness was determined by profilometry and it influences the ethanol solvent evaporation rate and thereby the phase separation kinetics. The spin speed was varied between 1000 and 10 000 rpm and the ratio of EC : HPC in the polymer blend was varied between 78 : 22 wt% and 40 : 60 wt%. The obtained CLSM micrographs showed phase separated structures, typical for the spinodal decomposition phase separation mechanism. By using confocal laser scanning microscopy combined with Fourier image analysis, we could extract the characteristic length scale of the phase-separated final structure. Varying spin speed and EC : HPC ratio gave us precise control over the characteristic length scale and the thickness of the film. The results showed that the characteristic length scale increases with decreasing spin speed and with increasing HPC ratio. The thickness of the spin-coated film decreases with increasing spin speed. It was found that the relation between film thickness and spin speed followed the Meyerhofer equation with an exponent close to 0.5. Furthermore, good correlations between thickness and spin speed were found for the compositions 22 wt% HPC, 30 wt% HPC and 45 wt% HPC. These findings give a good basis for understanding the mechanisms responsible for the morphology development and increase the possibilities to tailor thin EC/HPC film structures.
Collapse
Affiliation(s)
- Pierre Carmona
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Magnus Röding
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University Gothenburg, Gothenburg, Sweden
| | - Aila Särkkä
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University Gothenburg, Gothenburg, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Eva Olsson
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Niklas Lorén
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
17
|
Levitsky A, Schneider SA, Rabkin E, Toney MF, Frey GL. Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. MATERIALS HORIZONS 2021; 8:1272-1285. [PMID: 34821920 DOI: 10.1039/d0mh01805h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The performance of organic solar cells (OSC) critically depends on the morphology of the active layer. After deposition, the active layer is in a metastable state and prone to changes that lead to cell degradation. Here, a high efficiency fullerene:polymer blend is used as a model system to follow the temperature-induced morphology evolution through a series of thermal annealing treatments. Electron microscopy analysis of the nano-scale phase evolution during the early stages of thermal annealing revealed that spinodal decomposition, i.e. spontaneous phase separation with no nucleation stage, is possibly responsible for the formation of a fine scale bicontinuous structure. In the later evolution stages, large polycrystalline fullerene aggregates are formed. Optical microscopy and scattering revealed that aggregate-growth follows the Johnson-Mehl-Avrami-Kolmogorov equation indicating a heterogeneous transformation process, i.e., through nucleation and growth. These two mechanisms, spinodal decomposition vs. nucleation and growth, are mutually exclusive and their co-existence is surprising. This unexpected observation is resolved by introducing a metastable monotectic phase diagram and showing that the morphology evolution goes through two distinct and consecutive transformation processes where spinodal decomposition of the amorphous donor:acceptor blend is followed by nucleation and growth of crystalline acceptor aggregates. Finally, this unified thermodynamic and kinetic mechanism allows us to correlate the morphology evolution with OSC degradation during thermal annealing.
Collapse
Affiliation(s)
- Artem Levitsky
- Department of Material Science and Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel.
| | | | | | | | | |
Collapse
|
18
|
Kim JY. Phase Diagrams of Ternary π-Conjugated Polymer Solutions for Organic Photovoltaics. Polymers (Basel) 2021; 13:983. [PMID: 33806946 PMCID: PMC8004777 DOI: 10.3390/polym13060983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022] Open
Abstract
Phase diagrams of ternary conjugated polymer solutions were constructed based on Flory-Huggins lattice theory with a constant interaction parameter. For this purpose, the poly(3-hexylthiophene-2,5-diyl) (P3HT) solution as a model system was investigated as a function of temperature, molecular weight (or chain length), solvent species, processing additives, and electron-accepting small molecules. Then, other high-performance conjugated polymers such as PTB7 and PffBT4T-2OD were also studied in the same vein of demixing processes. Herein, the liquid-liquid phase transition is processed through the nucleation and growth of the metastable phase or the spontaneous spinodal decomposition of the unstable phase. Resultantly, the versatile binodal, spinodal, tie line, and critical point were calculated depending on the Flory-Huggins interaction parameter as well as the relative molar volume of each component. These findings may pave the way to rationally understand the phase behavior of solvent-polymer-fullerene (or nonfullerene) systems at the interface of organic photovoltaics and molecular thermodynamics.
Collapse
Affiliation(s)
- Jung Yong Kim
- School of Chemical Engineering and Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Post Office Box 378 Jimma, Ethiopia
| |
Collapse
|
19
|
Michels JJ, Zhang K, Wucher P, Beaujuge PM, Pisula W, Marszalek T. Predictive modelling of structure formation in semiconductor films produced by meniscus-guided coating. NATURE MATERIALS 2021; 20:68-75. [PMID: 32778811 DOI: 10.1038/s41563-020-0760-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Meniscus-guided coating methods, such as zone casting, dip coating and solution shearing, are scalable laboratory models for large-area solution coating of functional materials for thin-film electronics. Unfortunately, the general lack of understanding of how the coating parameters affect the dry-film morphology upholds trial-and-error experimentation and delays lab-to-fab translation. We present herein a model that predicts dry-film morphologies produced by meniscus-guided coating of a crystallizing solute. Our model reveals how the interplay between coating velocity and evaporation rate determines the crystalline domain size, shape anisotropy and regularity. If coating is fast, evaporation drives the system quickly past supersaturation, giving isotropic domain structures. If coating is slow, depletion due to crystallization stretches domains in the coating direction. The predicted morphologies have been experimentally confirmed by zone-casting experiments of the organic semiconductor 4-tolyl-bithiophenyl-diketopyrrolopyrrole. Although here we considered a small molecular solute, our model can be applied broadly to polymers and organic-inorganic hybrids such as perovskites.
Collapse
Affiliation(s)
| | - Ke Zhang
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Philipp Wucher
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pierre M Beaujuge
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Tomasz Marszalek
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
20
|
Lee T, Sanzogni AV, Burn PL, Mark AE. Evolution and Morphology of Thin Films Formed by Solvent Evaporation: An Organic Semiconductor Case Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40548-40557. [PMID: 32844643 DOI: 10.1021/acsami.0c08454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The crucial role played by the solution-vapor interface in determining the growth and morphology of an organic semiconductor thin film formed by solvent evaporation has been examined in atomic detail. Specifically, how the loss of individual solvent molecules from the surface of the solution induces solute assembly has been studied using molecular dynamics simulations. The system consisted of bis(2-phenylpyridine) (acetylacetonate)iridium(III) [Ir(ppy)2(acac)] and 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) in chloroform at 310 K. The simulations clearly indicate that (a) the system does not undergo uniform phase separation (spinodal decomposition), (b) solute aggregation initiates at the solution-vapor interface, (c) the distribution of solvent in the film is nonhomogeneous, (d) this nonhomogeneous distribution can induce preferential alignment of host molecules, and (e) a portion of the solvent likely remains trapped within the film. The work not only demonstrates the ability to directly model evaporation in atomic detail on the relevant length scales but also shows that atomistic simulations have the potential to shed new light on morphological properties of a wide range of organic semiconductor devices manufactured using solution-processing methods.
Collapse
Affiliation(s)
- Thomas Lee
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia Campus, Brisbane 4072, Australia
- Centre for Organic Photonics & Electronics, The University of Queensland, St. Lucia Campus, Brisbane 4072, Australia
| | - Audrey V Sanzogni
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia Campus, Brisbane 4072, Australia
- Centre for Organic Photonics & Electronics, The University of Queensland, St. Lucia Campus, Brisbane 4072, Australia
| | - Paul L Burn
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia Campus, Brisbane 4072, Australia
- Centre for Organic Photonics & Electronics, The University of Queensland, St. Lucia Campus, Brisbane 4072, Australia
| | - Alan E Mark
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia Campus, Brisbane 4072, Australia
| |
Collapse
|
21
|
Biernat M, Dąbczyński P, Biernat P, Rysz J. Phase Separation in PCDTBT:PCBM Blends: from Flory-Huggins Interaction Parameters to Ternary Phase Diagrams. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2424-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Gao M, Liang Z, Geng Y, Ye L. Significance of thermodynamic interaction parameters in guiding the optimization of polymer:nonfullerene solar cells. Chem Commun (Camb) 2020; 56:12463-12478. [PMID: 32969427 DOI: 10.1039/d0cc04869k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polymer solar cells (PSCs) based on polymer donors and nonfullerene small molecule acceptors are a very attractive technology for solar energy conversion, and their performance is heavily determined by film morphology. It is of considerable interest to reveal instructive morphology-performance relationships of these blends. This feature article discusses the recent advances in analysing the morphology formation of nonfullerene PSCs with an effective polymer thermodynamic quantity, i.e., Flory-Huggins interaction parameter χ. In particular, guidelines of high and low χ systems are summarized. The fundamental understanding of χ and its correlations to film morphology and photovoltaic device parameters is of utmost relevance for providing essential material design criteria, establishing suitable morphology processing guidelines, and thus advancing the practical applications of PSCs based on nonfullerene acceptors.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Ziqi Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China. and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
23
|
Schaefer C, Paquay S, McLeish TCB. Morphology formation in binary mixtures upon gradual destabilisation. SOFT MATTER 2019; 15:8450-8458. [PMID: 31490530 DOI: 10.1039/c9sm01344j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spontaneous liquid-liquid phase separation is commonly understood in terms of phenomenological mean-field theories. These theories correctly predict the structural features of the fluid at sufficiently long time scales and wavelengths. However, these conditions are not met in various examples in biology and materials science where the mixture is slowly destabilised, and phase separation is strongly affected by critical thermal fluctuations. We propose a mechanism of pretransitional structuring of a mixture that approaches the miscibility gap and predict scaling relations that describe how the characteristic feature size of the emerging morphology decreases with an increasing quench rate. These predictions quantitatively agree with our kinetic Monte Carlo and molecular dynamics simulations of a phase-separating binary mixture, as well as with previously reported experimental observations. We discuss how these predictions are affected by non-conserved order parameters (e.g., due to chemical reactions or alignment of liquid-crystalline molecules), hydrodynamics and active transport.
Collapse
Affiliation(s)
- Charley Schaefer
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK.
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Jung Yong Kim
- Department of Materials Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
- School of Chemical Engineering, Jimma Institute of Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia
| |
Collapse
|
25
|
Guo S, Lu Y, Wang B, Shen C, Chen J, Reiter G, Zhang B. Controlling the pore size in conjugated polymer films via crystallization-driven phase separation. SOFT MATTER 2019; 15:2981-2989. [PMID: 30912567 DOI: 10.1039/c9sm00370c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A wide range of possible applications in sensors and optoelectronic devices have focused considerable attention on porous membranes made of semi-conducting polymers. In this study, porous films of poly(3-hexylthiophene) (P3HT) were conveniently constructed through spin-coating of solutions of a blend of P3HT and polyethylene glycol (PEG). Pores were formed by phase separation driven simultaneously by incompatibility and crystallization. The influence of the polymer concentration (c), molecular weight (Mn) and spin-coating temperature (Tsp) on the pore size and structure was investigated. With increasing c from 0.5 to 5.0 wt%, the pore diameter (d) varied from ≈1.3 μm to ≈38 μm. Similarly, we observed a substantial increase of d with increasing Mn of PEG, while changing Mn of P3HT did not affect d. Micron- and nano-scale pores coexisted in porous P3HT films. While incompatibility of P3HT and PEG caused the formation of nano-pores, micron-scale pores resulted from crystallization in the PEG-rich domains by forcing PEG molecules to diffuse from the surrounding PEG-P3HT blend region to the crystal growth front.
Collapse
Affiliation(s)
- Shaowen Guo
- School of Materials Science & Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450002, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Statt A, Howard MP, Panagiotopoulos AZ. Influence of hydrodynamic interactions on stratification in drying mixtures. J Chem Phys 2018; 149:024902. [DOI: 10.1063/1.5031789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Antonia Statt
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Michael P. Howard
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
27
|
Pfeifer S, Pokuri BSS, Du P, Ganapathysubramanian B. Process optimization for microstructure-dependent properties in thin film organic electronics. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.md.2018.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Schaefer C. Structuring of Fluid Adlayers upon Ongoing Unimolecular Adsorption. PHYSICAL REVIEW LETTERS 2018; 120:036001. [PMID: 29400489 DOI: 10.1103/physrevlett.120.036001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Fluids with spatial density variations of single or mixed molecules play a key role in biophysics, soft matter, and materials science. The fluid structures usually form via spinodal decomposition or nucleation following an instantaneous destabilization of the initially disordered fluid. However, in practice, an instantaneous quench is often not viable, and the rate of destabilization may be gradual rather than instantaneous. In this work we show that the commonly used phenomenological descriptions of fluid structuring are inadequate under these conditions. We come to that conclusion in the context of surface catalysis, where we employ kinetic Monte Carlo simulations to describe the unimolecular adsorption of gaseous molecules onto a metal surface. The adsorbates diffuse at the surface and, as a consequence of lateral interactions and due to an ongoing increase of the surface coverage, phase separate into coexisting low- and high-density regions. The typical size of these regions turns out to depend much more strongly on the rate of adsorption than predicted from recently reported phenomenological models. We discuss how this finding contributes to the fundamental understanding of the crossover from liquid-liquid to liquid-solid demixing of solution-cast polymer blends.
Collapse
Affiliation(s)
- C Schaefer
- Department of Physics, Durham University, South Road DH1 3LE, United Kingdom
| |
Collapse
|
29
|
Schaefer C, Michels JJ, van der Schoot P. Dynamic Surface Enrichment in Drying Thin-Film Binary Polymer Solutions. Macromolecules 2017; 50:5914-5919. [PMID: 29056760 PMCID: PMC5645757 DOI: 10.1021/acs.macromol.7b01224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Indexed: 01/27/2023]
Abstract
![]()
Solution-cast, thin-film
polymer composites find a wide range of
applications, such as in the photoactive layer of organic solar cells.
The performance of this layer crucially relies on its phase-separated
morphology. Efficient charge-carrier extraction requires each of the
components to preferentially wet one of the two electrodes. It is
often presumed that the experimentally observed surface enrichment
required for this is caused by specific interactions of the active
ingredients with each surface. By applying a generalized diffusion
model, we find the dynamics to also play an important role in determining
which component accumulates at which surface. We show that for sufficiently
fast evaporation the component with the smallest cooperative diffusivity
accumulates at the free interface. Counterintuitively, depending on
the interactions between the various components, this may be the smaller
solute. Our comprehensive numerical and analytical study provides
a tool to predict and control phase-separated morphologies in thin-film
polymer composites.
Collapse
Affiliation(s)
- C Schaefer
- Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands.,Theory of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Simbeyond B.V., Groene Loper 19, 5612 AE Eindhoven, The Netherlands
| | - J J Michels
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - P van der Schoot
- Theory of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
30
|
Huang Z, Liu K, Feng Y, Zhou J, Zhang X. Bio-inspired intelligent evaporation modulation in a thermo-sensitive nanogel colloid solution for self-thermoregulation. Phys Chem Chem Phys 2017. [PMID: 28621365 DOI: 10.1039/c7cp03137h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Intelligent evaporation and temperature modulation plays an important role in self-regulation of living organisms and many industrial applications. Here we demonstrate that a poly(N-isopropylacrylamide) (PNIPAM) nanogel colloid solution can spontaneously and intelligently modulate its evaporation rate with temperature variation, which has a larger evaporation rate than distilled water at a temperature higher than its lower critical solution temperature (LCST) and a smaller evaporation rate at a temperature lower than its LCST. It performs just like human skin. Theoretical analysis based on the thermodynamic derivation reveals that the evaporation rate transition around the LCST may originate from the saturated vapor pressure transition caused by the status transformation of the PNIPAM additives. An intelligent thermoregulation system based on the PNIPAM colloid solution is also demonstrated, illustrating its potential for intelligent temperature control and acting as an artificial skin.
Collapse
Affiliation(s)
- Zhi Huang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | | | | | | | | |
Collapse
|