1
|
Xie D, Sun L, Wu M, Li Q. From detection to elimination: iron-based nanomaterials driving tumor imaging and advanced therapies. Front Oncol 2025; 15:1536779. [PMID: 39990682 PMCID: PMC11842268 DOI: 10.3389/fonc.2025.1536779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Iron-based nanomaterials (INMs), due to their particular magnetic property, excellent biocompatibility, and functionality, have been developed into powerful tools in both tumor diagnosis and therapy. We give an overview here on how INMs such as iron oxide nanoparticles, element-doped nanocomposites, and iron-based organic frameworks (MOFs) display versatility for tumor imaging and therapy improvement. In terms of imaging, INMs improve the sensitivity and accuracy of techniques such as magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) and support the development of multimodal imaging platforms. Regarding treatment, INMs play a key role in advanced strategies such as immunotherapy, magnetic hyperthermia, and synergistic combination therapy, which effectively overcome tumor-induced drug resistance and reduce systemic toxicity. The integration of INMs with artificial intelligence (AI) and radiomics further expands its capabilities for precise tumor identification, and treatment optimization, and amplifies treatment monitoring. INMs now link materials science with advanced computing and clinical innovations to enable next-generation cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Dong Xie
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Linglin Sun
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manxiang Wu
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Qiang Li
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Xie L, Zuo X, Wang B, Li D, Chang W, Ji S, Ding D. Micelle-like Nanoparticles for Drug Delivery and Magnetically Enhanced Tumor Chemotherapy. ACS Biomater Sci Eng 2024; 10:7527-7538. [PMID: 39576943 DOI: 10.1021/acsbiomaterials.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Using the coordination bonds between transition metal atoms and electron-rich functional groups, we synthesized two kinds of micelle-like nanoparticles. Using magnetic Fe3O4 as the core, poly(methyl methacrylate) (PMMA) and poly(acrylic acid) (PAA) brushes were grafted via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET-ATRP), which formed micelle-like magnetic nanoparticles Fe3O4/PAA-PMMA with a hydrophobic outer layer and Fe3O4/PMMA-PAA with a hydrophilic outer layer. Both the micelle-like nanoparticles had amphiphilic properties and can be used to load hydrophilic or hydrophobic drugs. Even loaded with hydrophobic drugs, the micelle-like nanoparticles can still be dispersed in aqueous solution, and Fe3O4/PAA-PMMA had a higher loading content. As the drug carrier, these two micelle-like nanoparticles can be used for magnetically targeted drug delivery and magnetic resonance imaging due to superparamagnetic Fe3O4. In addition, due to the magnetic retention effect, the drug-loaded micelle-like nanoparticles remained at the tumor site, increasing the local drug concentration. At the same time, the drug-loaded micelle-like nanoparticles generated a magnetocaloric effect under the alternating magnetic field, which not only killed tumor cells by magnetic hyperthermia but also promoted the rapid release of drugs at the tumor site. In general, magnetically enhanced chemotherapy showed the best therapeutic effect on tumors.
Collapse
Affiliation(s)
- Liqin Xie
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
| | - Xirui Zuo
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
| | - Beilei Wang
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
| | - Dan Li
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
| | - Wenke Chang
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
| | - Shenglu Ji
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
| | - Dan Ding
- School of Life Science and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
- College of Life Sciences, Nankai University, 92 Weijin Road, Tianjin 300071, China
| |
Collapse
|
3
|
Ali K, Rakesh S, Khalid S, Khan AU. Moist Heat Synthesis of Magnetic EGCG-Cappedα-Fe 2O 3 Nanoparticles and Their In Vitro and In Silico Interactions with Pristine HSA- and NDM-1-Producing Bacteria. ACS OMEGA 2023; 8:48775-48786. [PMID: 38162781 PMCID: PMC10753701 DOI: 10.1021/acsomega.3c05743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024]
Abstract
A simple, facile, moist-heating (e.g., autoclave), one-step procedure for EGCG-mediated biosynthesis of narrow-size magnetic iron oxide (α-Fe2O3) nanoparticles (EGCG-MINPs) was developed. The influence of pH of the reaction mixture over the size distribution of as-synthesized EGCG-MINPs was investigated systematically by employing UV-visible (UV-vis) spectroscopy and dynamic light scattering (DLS)-based hydrodynamic size, surface charge (zeta-potential), and polydispersity index (PDI). The FE-SEM, TEM, and XRD characterizations revealed that the EGCG-MINPs synthesized at pH 5.0 were in the size range of 6.20-16.7 nm and possess well-crystalline hexagonal shaped nanostructures of hematite (α-Fe2O3) crystal phase. The role of EGCG in Fe3+ ion reduction and EGCG-MINP formation was confirmed by FTIR analysis. The VSM analysis has revealed that EGCG-MINPs were highly magnetic nanostructures with the hysteretic feature of saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) as 33.64 emu/g, 12.18 emu/g, and 0.33 Oe, respectively. Besides, significant (p < 0.001) dose-dependent (250-1000 μg/mL) antibacterial and antibiofilm activities against the NDM-1-producing Gram-negative Escherichia coli (AK-33), Klebsiella pneumoniae (AK-65), Pseudomonas aeruginosa (AK-66), and Shigella boydii (AK-67) bacterial isolates warranted the as-synthesized EGCG-MINPs as a promising alternative for clinical management of chronic bacterial infections in biomedical settings. In addition, molecular docking experiments revealed that compared to free Fe3+ and EGCG alone, the EGCG-MINPs or Fe-EGCG complex possess significantly high binding affinity toward HSA and hence can be considered as promising biocompatible nanodrug carriers in in vivo drug delivery systems.
Collapse
Affiliation(s)
- Khursheed Ali
- Medical Microbiology and Molecular
Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Shruti Rakesh
- Medical Microbiology and Molecular
Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Shamsi Khalid
- Medical Microbiology and Molecular
Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Asad U. Khan
- Medical Microbiology and Molecular
Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| |
Collapse
|
4
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
5
|
Sartaliya S, Mahajan R, Sharma R, Dar AH, Jayamurugan G. New Water-Soluble Magnetic Field-Induced Drug Delivery System Obtained Via Preferential Molecular Marriage over Narcissistic Self-Sorting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8999-9009. [PMID: 35829621 DOI: 10.1021/acs.langmuir.2c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomaterials that respond to stimuli are of considerable interest for drug delivery applications. Drug delivery has been a leading challenge when it comes to the externally triggered controlled release of hydrophobic drugs. The present paper describes a unique arrangement of polymers in a competitive environment derived from the dynamic self-sorting behavior of the hydrophobic chains of amphiphilic mPEG-PLLA and poly-l-lactic acid (PLLA)-coated iron oxide nanoparticles IONP@PLLA to achieve a core-shell structure in which the hydrophobic PLLA part acts as a dense core and poly(ethylene glycol) (PEG) as an uncrowded shell. By using irreversible covalent interactions created by hydrophobic polymer-functionalized IONPs, it was possible to selectively form socially self-sorted nanocarriers (SS-NCs) with a higher hydrophobic core than the hydrophilic shell over narcissistic self-sorted nanocarriers (NS-NCs), that is, homo-micelles of amphiphilic polymers. The higher hydrophobic core of SS-NCs is indeed helpful in achieving higher drug [doxorubicin (DOX)] loading and encapsulation efficiencies of around 17 and 90%, respectively, over 10.3 and 65.6% for NS-NCs. Furthermore, due to the presence of IONPs and the densely packed hydrophobic compartments, the controlled release of DOX was facilitated by direct magnetism and temperature stimulation when an alternating magnetic field (AMF) was applied. An appreciably higher rate of drug release (∼50%) than that without AMF (∼18%) was achieved under ambient conditions in 24 h. The present study, therefore, proposes a new drug delivery system that exceeds homo-micelles and adds an extra feature of manipulating drug release through magnetism and temperature, that is, hyperthermia.
Collapse
Affiliation(s)
- Shaifali Sartaliya
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Ritu Mahajan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Raina Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Arif Hassan Dar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| |
Collapse
|
6
|
Su M, Sheng YJ, Chen YJ, Li T, Shi QX, Xiao H, Pu MQ, Bao H, Wan WM. Living Covalent-Anionic-Radical Polymerization via a Barbier Strategy. ACS Macro Lett 2022; 11:354-361. [PMID: 35575370 DOI: 10.1021/acsmacrolett.2c00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The developments of the living alkene polymerization method have achieved great progress and enabled the precise synthesis of important polyalkenes with controlled molecular weight, molecular weight distribution, and architecture through an anionic, cationic or radical strategy. However, it is still challenging to develop a living alkene polymerization method through an all-in-one strategy where anionic and radical characteristics are merged into one polymerization species. Here, a versatile living polymerization method is reported by introducing a well-established all-in-one covalent-anionic-radical Barbier strategy into a living polymerization. Through this living covalent-anionic-radical Barbier polymerization (Barbier CARP), narrow distributed polystyrenes, with Đ as low as 1.05, are successfully prepared under mild conditions with a full monomer conversion by using wide varieties of organohalides, for example, alkyl, benzyl, allyl, and phenyl halides, as initiators with Mg in one pot. This living covalent-anionic-radical polymerization via a Barbier strategy expands the methodology library of polymer chemistry and enables living polymerization with an unconventional polymerization mode.
Collapse
Affiliation(s)
- Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Yu-Jing Sheng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, People’s Republic of China
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, People’s Republic of China
| | - Yu-Jiao Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, People’s Republic of China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, 350007, People’s Republic of China
| | - Tao Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, People’s Republic of China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, 350007, People’s Republic of China
| | - Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, People’s Republic of China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, People’s Republic of China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, People’s Republic of China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, 350007, People’s Republic of China
| | - Meng-Qin Pu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, People’s Republic of China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, 350007, People’s Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| |
Collapse
|
7
|
Zhang Z, Chen Y, Zhang Y. Self-Assembly of Upconversion Nanoparticles Based Materials and Their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103241. [PMID: 34850560 DOI: 10.1002/smll.202103241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Indexed: 05/27/2023]
Abstract
In the past few decades, significant progress of the conventional upconversion nanoparticles (UCNPs) based nanoplatform has been achieved in many fields, and with the development of nanoscience and nanotechnology, more and more complex situations need a UCNPs based nanoplatform having multifunctions for specific multimodal or multiplexed applications. Through self-assembly, different UCNPs or UCNPs with other materials could be combined together within an entity. It is more like an ideal UCNPs nanoplatform, a unique system with the properties defined by its individual components as well as by the morphology of the composite. Various designs can show their different desired properties depending on the application situation. This review provides a complete summary on the optimization of the synthesis method for the recently designed UCNPs assemblies and summarizes various applications, including dual-modality cell imaging, molecular delivery, detection, and programmed control therapy. The challenges and limitations the UCNPs assembly faces and the potential solutions in this field are also presented.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
8
|
Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin Drug Deliv 2022; 19:321-335. [PMID: 35202551 DOI: 10.1080/17425247.2022.2047020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In the field of drug delivery, controlling the release of therapeutic substances at localized targets has become a primary focus of medical research, especially in the field of cancer treatment. Magnetic nanoparticles are one of the most promising drug carriers thanks to their biocompatibility and (super)paramagnetic properties. These properties allow for the combination between imaging modalities and specific release of drugs at target sites using either local stimulus (i.e. pH, conjugation of biomarkers, …) or external stimulus (i.e. external magnetic field). AREAS COVERED This review provides an update on recent advances with the development of targeted drug delivery systems based on magnetic nanoparticles (MNPs). This overview focuses on active targeting strategies and systems combining both imaging and therapeutic modalities (i.e. theranostics). If most of the examples concern the particular case of cancer therapy, the possibility of using MNPs for other medical applications is also discussed. EXPERT OPINION The development of clinically relevant drug delivery systems based on magnetic nanoparticles is driven by advantages stemming from their remarkable properties (i.e. easy preparation, facile chemical functionalization, biocompatibility, low toxicity and superior magnetic responsiveness). This literature review shows that drug carriers based on magnetic nanoparticles can be efficiently used for the controlled release of drug at targeted locations mediated by various stimuli. Advances in the field should lead to the implementation of such systems into clinical trials, especially systems enabling drug tracking in the body.
Collapse
Affiliation(s)
- D Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - T Vangijzegem
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - I Ternad
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - S Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| |
Collapse
|
9
|
Rezaei A, Morsali A, Bozorgmehr MR, Nasrabadi M. Quantum chemical analysis of 5-aminolevulinic acid anticancer drug delivery systems: Carbon nanotube, –COOH functionalized carbon nanotube and iron oxide nanoparticle. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Dong J, Du X, Zhang Y, Zhuang T, Cui X, Li Z. Thermo/glutathione-sensitive release kinetics of heterogeneous magnetic micro-organogel prepared by sono-catalysis. Colloids Surf B Biointerfaces 2021; 208:112109. [PMID: 34562785 DOI: 10.1016/j.colsurfb.2021.112109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
To improve the loading and delivery for hydrophobic drugs and optimize the release efficiency in tumor microenvironment, a novel core-shell magnetic micro-organogel carrier was successfully prepared by a sono-catalysis process in the study. As-synthesized magnetic micro-organogel had an appropriate dispersibility in water owing to the hydrophilicity of protein shell and could be kept steadily with a well-defined spherical morphology owing to the three-dimensional gel structure of oil core, and it promised an accessible targeted drug delivery owing to its good magnetism-mediated motion ability. Moreover, the magnetic micro-organogel showed a high loading efficiency up to 94.22% for coumarin 6 which was dissolved into the micro-organogel as a model hydrophobic drug. More importantly, the release kinetics revealed that the magnetic micro-organogel had a thermo-sensitive and glutathione (GSH)-sensitive ability to control the drug release, and proved that its release mechanisms referred to the combination of erosion, diffusion and degradation.
Collapse
Affiliation(s)
- Jun Dong
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Xiaoyu Du
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Yongqiang Zhang
- College of Chemistry, Jilin University, 130012 Changchun, China; Junan Sub-Bureau of Linyi Ecological Environmental Bureau, 276600 Linyi, China
| | - Tingting Zhuang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, 130012 Changchun, China
| | - Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China.
| |
Collapse
|
11
|
Nuñez-Magos L, Lira-Escobedo J, Rodríguez-López R, Muñoz-Navia M, Castillo-Rivera F, Viveros-Méndez PX, Araujo E, Encinas A, Saucedo-Anaya SA, Aranda-Espinoza S. Effects of DC Magnetic Fields on Magnetoliposomes. Front Mol Biosci 2021; 8:703417. [PMID: 34589517 PMCID: PMC8473709 DOI: 10.3389/fmolb.2021.703417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/21/2021] [Indexed: 02/04/2023] Open
Abstract
The potential use of magnetic nanoparticles (MNPs) in biomedicine as magnetic resonance, drug delivery, imagenology, hyperthermia, biosensors, and biological separation has been studied in different laboratories. One of the challenges on MNP elaboration for biological applications is the size, biocompatibility, heat efficiency, stabilization in physiological conditions, and surface coating. Magnetoliposome (ML), a lipid bilayer of phospholipids encapsulating MNPs, is a system used to reduce toxicity. Encapsulated MNPs can be used as a potential drug and a gene delivery system, and in the presence of magnetic fields, MLs can be accumulated in a target tissue by a strong gradient magnetic field. Here, we present a study of the effects of DC magnetic fields on encapsulated MNPs inside liposomes. Despite their widespread applications in biotechnology and environmental, biomedical, and materials science, the effects of magnetic fields on MLs are unclear. We use a modified coprecipitation method to synthesize superparamagnetic nanoparticles (SNPs) in aqueous solutions. The SNPs are encapsulated inside phospholipid liposomes to study the interaction between phospholipids and SNPs. Material characterization of SNPs reveals round-shaped nanoparticles with an average size of 12 nm, mainly magnetite. MLs were prepared by the rehydration method. After formation, we found two types of MLs: one type is tense with SNPs encapsulated and the other is a floppy vesicle that does not show the presence of SNPs. To study the response of MLs to an applied DC magnetic field, we used a homemade chamber. Digitalized images show encapsulated SNPs assembled in chain formation when a DC magnetic field is applied. When the magnetic field is switched off, it completely disperses SNPs. Floppy MLs deform along the direction of the external applied magnetic field. Solving the relevant magnetostatic equations, we present a theoretical model to explain the ML deformations by analyzing the forces exerted by the magnetic field over the surface of the spheroidal liposome. Tangential magnetic forces acting on the ML surface result in a press force deforming MLs. The type of deformations will depend on the magnetic properties of the mediums inside and outside the MLs. The model predicts a coexistence region of oblate-prolate deformation in the zone where χ = 1. We can understand the chain formation in terms of a dipole-dipole interaction of SNP.
Collapse
Affiliation(s)
- L. Nuñez-Magos
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - J. Lira-Escobedo
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - R. Rodríguez-López
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - M. Muñoz-Navia
- Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - F. Castillo-Rivera
- CONACyT–Instituto de Geología de la Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - P. X. Viveros-Méndez
- Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - E. Araujo
- Departamento de Matematicas y Física, Instituto Tecnológico y de Estudios Superiores de Occidente, San Pedro Tlaquepaque, Mexico
| | - A. Encinas
- Laboratory of Magnetism, División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - S. A. Saucedo-Anaya
- Unidad Académica de Estudios Nucleares, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - S. Aranda-Espinoza
- Laboratory of Biophysics and Soft Matter, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
12
|
Tan J, Deng Z, Song C, Xu J, Zhang Y, Yu Y, Hu J, Liu S. Coordinating External and Built-In Triggers for Tunable Degradation of Polymeric Nanoparticles via Cycle Amplification. J Am Chem Soc 2021; 143:13738-13748. [PMID: 34411484 DOI: 10.1021/jacs.1c05617] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The selective activation of nanovectors in pathological tissues is of crucial importance to achieve optimized therapeutic outcomes. However, conventional stimuli-responsive nanovectors lack sufficient sensitivity because of the slight difference between pathological and normal tissues. To this end, the development of nanovectors capable of responding to weak pathological stimuli is of increasing interest. Herein, we report the fabrication of amphiphilic polyurethane nanoparticles containing both external and built-in triggers. The activation of external triggers leads to the liberation of highly reactive primary amines, which subsequently activates the built-in triggers with the release of more primary amines in a positive feedback manner, thereby triggering the degradation of micellar nanoparticles in a cycle amplification model. The generality and versatility of the cycle amplification concept have been successfully verified using three different triggers including reductive milieu, light irradiation, and esterase. We demonstrate that these stimuli-responsive nanoparticles show self-propagating degradation performance even in the presence of trace amounts of external stimuli. Moreover, we confirm that the esterase-responsive nanoparticles can discriminate cancer cells from normal ones by amplifying the esterase stimulus that is overexpressed in cancer cells, thereby enabling the selective release of encapsulated payloads and killing cancer cells. This work presents a robust strategy to fabricate stimuli-responsive nanocarriers with highly sensitive property toward external stimuli, showing promising applications in cancer therapy with minimized side effects.
Collapse
Affiliation(s)
- Jiajia Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zhengyu Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Chengzhou Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jie Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yuben Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jinming Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
|
14
|
Somuncuoğlu B, Lee YL, Constantinou AP, Poussin DL, Georgiou TK. Ethyl methacrylate diblock copolymers as polymeric surfactants: Effect of molar mass and composition. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Shi SY, Zhang GY. Click-formed polymer gels with aggregation-induced emission and dual stimuli-responsive behaviors. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2006090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sheng-yu Shi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-ying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
17
|
Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112199. [PMID: 34225852 DOI: 10.1016/j.msec.2021.112199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.e., nanoparticles that integrate therapeutic and diagnostic characteristics - have been developed. The examples for TNPs include mesoporous silica nanoparticles, luminescence nanoparticles, carbon-based nanomaterials, metal nanoparticles, and magnetic nanoparticles. These TNPs have emerged as single and powerful cancer-treating multifunctional nanoplatforms, as they widely provide the necessary functionalities to overcome the previous/conventional limitations including lack of the site-specific delivery of anti-cancer drugs, and real-time continuous monitoring of the target cancer sites while performing therapeutic actions. This has been mainly possible due to the association of the as-developed TNPs with the already-available unique diagnostic (e.g., luminescence, photoacoustic, and magnetic resonance imaging) and therapeutic (e.g., photothermal, photodynamic, hyperthermia therapy) modalities in the biomedical field. In this review, we have discussed in detail about the recent developments on the aforementioned important TNPs without/with targeting ability (i.e., attaching them with ligands or tumor-specific antibodies) and also the strategies that are implemented to increase their tumor accumulation and to enhance their theranostic efficacies for effective biomedical cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
18
|
Siavashy S, Soltani M, Ghorbani-Bidkorbeh F, Fallah N, Farnam G, Mortazavi SA, Shirazi FH, Tehrani MHH, Hamedi MH. Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery. Carbohydr Polym 2021; 265:118027. [PMID: 33966822 DOI: 10.1016/j.carbpol.2021.118027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
In this study, magnetic core/chitosan shell Nanoparticles (NPs) containing cisplatin were synthesized via cisplatin complexation with tripolyphosphate as the chitosan crosslinker using two different procedures: a conventional batch flow method and a microfluidic approach. An integrated microfluidic device composed of three stages was developed to provide precise and highly controllable mixing. The comparison of the results revealed that NPs synthesized in microchannels were monodisperse 104 ± 14.59 nm (n = 3) in size with optimal morphological characteristics, whereas polydisperse 423 ± 53.33 nm (n = 3) nanoparticles were obtained by the conventional method. Furthermore, cisplatin was loaded in NPs without becoming inactivated, and the microfluidic technique demonstrated higher encapsulation efficiency, controlled release, and consequently lower IC50 values during exposure to the A2780 cell line proving that microfluidic synthesized NPs were able to enter the cells and release the drug more efficiently. The developed microfluidic platform presents valuable features that could potentially provide the clinical translation of NPs in drug delivery.
Collapse
Affiliation(s)
- Saeed Siavashy
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
| | - Fatemeh Ghorbani-Bidkorbeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Newsha Fallah
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golrokh Farnam
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirazi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
19
|
|
20
|
Hannecart A, Stanicki D, Vander Elst L, Muller RN, Brûlet A, Sandre O, Schatz C, Lecommandoux S, Laurent S. Embedding of superparamagnetic iron oxide nanoparticles into membranes of well-defined poly(ethylene oxide)-block-poly(ε-caprolactone) nanoscale magnetovesicles as ultrasensitive MRI probes of membrane bio-degradation. J Mater Chem B 2020; 7:4692-4705. [PMID: 31364686 DOI: 10.1039/c9tb00909d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study reports the preparation of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) polymer vesicles via a nanoprecipitation method and the loading of two different size hydrophobically coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (a magnetic core size of 4.2 nm and 7.6 nm) into the membrane of these nanovesicles, whose thickness was measured precisely by small angle neutron scattering (SANS). Spherical nano-assemblies with a high USPIO payload and a diameter close to 150 nm were obtained as confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and cryo-TEM. The vesicular structure of these hybrid nano-assemblies was confirmed by multi-angle light scattering (MALS) measurements. Their magnetic properties were evaluated by T1 and T2 measurements (20 and 60 MHz) and by nuclear magnetic relaxation dispersion (NMRD) profiles. The size of USPIO entrapped in the membranes of PEO-b-PCL vesicles has a strong impact on their magnetic properties. It affects both their longitudinal and their transverse relaxivities and thus their magnetic resonance imaging (MRI) sensitivity. Acid-catalyzed hydrolysis of the PCL membrane also influences their relaxivities as shown by measurements carried out at pH 7 vs. pH 5. This property was used to monitor the membrane hydrolytic degradation in vitro, as a proof of concept of potential monitoring of drug delivery by nanomedicines in vivo and non-invasively, by MRI.
Collapse
Affiliation(s)
- Adeline Hannecart
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium.
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium.
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium.
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium. and Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland, B-6041 Charleroi, Belgium
| | - Annie Brûlet
- Laboratoire Léon Brillouin, CNRS, CEA, Univ. Paris-Saclay, UMR12, F-91191 Gif sur Yvette, France
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33607 Pessac, France
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33607 Pessac, France
| | - Sébastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33607 Pessac, France
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau B-7000 Mons, Belgium. and Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland, B-6041 Charleroi, Belgium
| |
Collapse
|
21
|
|
22
|
Abstract
Stimulus-responsive polymers have been used in improving the efficacy of medical diagnostics through different approaches including enhancing the contrast in imaging techniques and promoting the molecular recognition in diagnostic assays. This review overviews the mechanisms of stimulus-responsive polymers in response to external stimuli including temperature, pH, ion, light, etc. The applications of responsive polymers in magnetic resonance imaging, capture and purification of biomolecules through protein-ligand recognition and lab-on-a-chip technology are discussed.
Collapse
Affiliation(s)
- Divambal Appavoo
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, University of Central Florida, FL 32826, USA.
| | | | | |
Collapse
|
23
|
Hu J, Liu S. Modulating intracellular oxidative stress via engineered nanotherapeutics. J Control Release 2020; 319:333-343. [DOI: 10.1016/j.jconrel.2019.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
|
24
|
Zou Y, Li Y, Xu J, Huang X, Chen D. Heavily superparamagnetic magnetite-loaded polymeric worm-like micelles that have an ultrahigh T2 relaxivity. Polym Chem 2020. [DOI: 10.1039/d0py00930j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Composite worm-like micelles with an ultrahigh T2 relaxivity fabricated via two-stage self-assembly of SMNPs guided by PEG-b-P4VP and DNA.
Collapse
Affiliation(s)
- Yunlong Zou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Yanran Li
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Jiayin Xu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Xiayun Huang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Daoyong Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| |
Collapse
|
25
|
Chen Y, Ren J, Tian D, Li Y, Jiang H, Zhu J. Polymer–Upconverting Nanoparticle Hybrid Micelles for Enhanced Synergistic Chemo–Photodynamic Therapy: Effects of Emission–Absorption Spectral Match. Biomacromolecules 2019; 20:4044-4052. [DOI: 10.1021/acs.biomac.9b01211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jingli Ren
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Di Tian
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuce Li
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Hao Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
26
|
Ji S, Xu L, Fu X, Sun J, Li Z. Light- and Metal Ion-Induced Self-Assembly and Reassembly Based on Block Copolymers Containing a Photoresponsive Polypeptide Segment. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00475] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sifan Ji
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lili Xu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
27
|
Yao J, Gao F, Liang X, Li Y, Mi Y, Qi Q, Yao J, Cao Z. Efficient preparation of carboxyl-functionalized magnetic polymer/Fe3O4 nanocomposite particles in one-pot miniemulsion systems. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Ashraf N, Ahmad F, Da-Wei L, Zhou RB, Feng-Li H, Yin DC. Iron/iron oxide nanoparticles: advances in microbial fabrication, mechanism study, biomedical, and environmental applications. Crit Rev Microbiol 2019; 45:278-300. [PMID: 30985230 DOI: 10.1080/1040841x.2019.1593101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbially synthesized iron oxide nanoparticles (FeONPs) hold great potential for biomedical, clinical, and environmental applications owing to their several unique features. Biomineralization, a process that exists in almost every living organism playing a significant role in the fabrication of FeONPs through the involvement of 5-100 nm sized protein compartments such as dodecameric (Dps), ferritin, and encapsulin with their diameters 9, 12, and ∼32 nm, respectively. This contribution provides a detailed overview of the green synthesis of FeONPs by microbes and their applications in biomedical and environmental fields. The first part describes our understanding in the biological fabrication of zero-valent FeONPs with special emphasis on ferroxidase (FO) mediated series of steps involving in the translocation, oxidation, nucleation, and storage of iron in Dps, ferritin, and encapsulin protein nano-compartments. Secondly, this review elaborates the significance of biologically synthesized FeONPs in biomedical science for the detection, treatment, and prevention of various diseases. Thirdly, we tried to provide the recent advances of using FeONPs in the environmental process, e.g. detection, degradation, remediation and treatment of toxic pesticides, dyes, metals, and wastewater.
Collapse
Affiliation(s)
- Noreen Ashraf
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Fiaz Ahmad
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Li Da-Wei
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Ren-Bin Zhou
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - He Feng-Li
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Da-Chuan Yin
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| |
Collapse
|
29
|
Biosensors for Epilepsy Management: State-of-Art and Future Aspects. SENSORS 2019; 19:s19071525. [PMID: 30925837 PMCID: PMC6480455 DOI: 10.3390/s19071525] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Epilepsy is a serious neurological disorder which affects every aspect of patients’ life, including added socio-economic burden. Unfortunately, only a few suppressive medicines are available, and a complete cure for the disease has not been found yet. Excluding the effectiveness of available therapies, the timely detection and monitoring of epilepsy are of utmost priority for early remediation and prevention. Inability to detect underlying epileptic signatures at early stage causes serious damage to the central nervous system (CNS) and irreversible detrimental variations in the organ system. Therefore, development of a multi-task solving novel smart biosensing systems is urgently required. The present review highlights advancements in state-of-art biosensing technology investigated for epilepsy diseases diagnostics and progression monitoring or both together. State of art epilepsy biosensors are composed of nano-enabled smart sensing platform integrated with micro/electronics and display. These diagnostics systems provide bio-information needed to understand disease progression and therapy optimization timely. The associated challenges related to the development of an efficient epilepsy biosensor and vision considering future prospects are also discussed in this report. This review will serve as a guide platform to scholars for understanding and planning of future research aiming to develop a smart bio-sensing system to detect and monitor epilepsy for point-of-care (PoC) applications.
Collapse
|
30
|
Quantum chemical modeling of iron oxide magnetic nanoparticles functionalized with cytarabine. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
He K, Li J, Shen Y, Yu Y. pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement. J Mater Chem B 2019; 7:6840-6854. [PMID: 31609370 DOI: 10.1039/c9tb01654f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Theranostic platforms that combine therapeutic and imaging modalities have received increasing interest.
Collapse
Affiliation(s)
- Kewu He
- Department of Radiology
- The First Affiliated Hospital of Anhui Medical University
- Hefei
- China
| | - Jiajia Li
- Central Laboratory
- The First Affiliated Hospital of Anhui Medical University
- Hefei
- China
| | - Yuxian Shen
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- China
| | - Yongqiang Yu
- Department of Radiology
- The First Affiliated Hospital of Anhui Medical University
- Hefei
- China
| |
Collapse
|
32
|
Mahmood AA, Zhang J, Liao R, Pan X, Xu D, Xu H, Zhou Q. Evaluation of non-targeting, C- or N-pH (low) insertion peptide modified superparamagnetic iron oxide nanoclusters for selective MRI of liver tumors and their potential toxicity in cirrhosis. RSC Adv 2019; 9:14051-14059. [PMID: 35519327 PMCID: PMC9064030 DOI: 10.1039/c9ra02430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/01/2019] [Indexed: 11/21/2022] Open
Abstract
Superparamagnetic iron oxide nanoclusters (SPIONs) modified with pH (low) insertion peptide (pHLIP) could be advantageous for magnetic resonance imaging (MRI) diagnosis of liver tumors at the early stage due to their unique responsiveness to the tumor acidic microenvironment when tumor markers are unknown. However, many critical aspects including the effectiveness of selective MRI in liver tumors, types of delivery and the potential safety profile in cirrhosis need to be fully evaluated. In this study, we report the evaluation of non-targeting, C- or N-pHLIP modified SPIONs as the contrast agent for selective MRI of liver tumors and their potential toxicity profile in cirrhosis. It was found that N-pHLIP modified SPIONs did not result in the loss of liver tumor in the T2-weight MRI but provided additional dynamic details of tumor structures that would enhance the diagnosis of liver tumors at a small size below 8 mm. In addition, an enhanced safety profile was found for N-pHLIP modified SPIONs with almost fully recoverable impact in cirrhosis. In contrast, the poly-d-lysine assembled SPIONs and C-terminus linked pHLIP SPIONs had non-tumor specific MRI contrast enhancement and potential safety risks in cirrhosis due to the iron overload post injection. All these results implied the promising potential of N-terminus linked pHLIP SPIONs as an MRI contrast agent for the diagnosis of liver tumors. The acid-responsive pHLIP modified SPION as an MRI contrast agent for liver cancer diagnosis requires the validation of both the tumor-specific enhancement and a safe profile in cirrhosis.![]()
Collapse
Affiliation(s)
- Abdulrahman Ahmed Mahmood
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Jianqi Zhang
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Rufang Liao
- Department of Radiology
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Xiwei Pan
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Dan Xu
- Department of Radiology
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Haibo Xu
- Department of Radiology
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Qibing Zhou
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
33
|
Argüelles-Pesqueira AI, Diéguez-Armenta NM, Bobadilla-Valencia AK, Nataraj SK, Rosas-Durazo A, Esquivel R, Alvarez-Ramos ME, Escudero R, Guerrero-German P, Lucero-Acuña JA, Zavala-Rivera P. Low intensity sonosynthesis of iron carbide@iron oxide core-shell nanoparticles. ULTRASONICS SONOCHEMISTRY 2018; 49:303-309. [PMID: 30177494 DOI: 10.1016/j.ultsonch.2018.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 05/27/2023]
Abstract
Here we demonstrate a simple method for the organic sonosynthesis of stable Iron Carbide@Iron Oxide core-shell nanoparticles (ICIONPs) stabilized by oleic acid surface modification. This robust synthesis route is based on the sonochemistry reaction of organometallic precursor like Fe(CO)5 in octanol using low intensity ultrasonic bath. As obtained, nanoparticles diameter sizes were measured around 6.38 nm ± 1.34 with a hydrodynamic diameter around 25 nm and an estimated polydispersity of 0.27. Core-Shell structure of nanoparticles was confirmed using HR-TEM and XPS characterization tools in which a core made up of iron carbide (Fe3C) and a shell of magnetite (γ-Fe2O3) was found. The overall nanoparticle presented ferromagnetic behavior at 4 K by SQUID. With these characteristics, the ICIONPs can be potentially used in various applications such as theranostic agent due to their properties obtained from the iron oxides and iron carbide phases.
Collapse
Affiliation(s)
- A I Argüelles-Pesqueira
- Posgrado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, 83000, Mexico
| | - N M Diéguez-Armenta
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, 83000, Mexico
| | - A K Bobadilla-Valencia
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Ciudad de México 04510, Mexico
| | - S K Nataraj
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - A Rosas-Durazo
- Posgrado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, 83000, Mexico
| | - R Esquivel
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, 83000, Mexico
| | - M E Alvarez-Ramos
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, 83000, Mexico
| | - R Escudero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Ciudad de México 04510, Mexico
| | - P Guerrero-German
- Posgrado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, 83000, Mexico
| | - J A Lucero-Acuña
- Posgrado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, 83000, Mexico; Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, 83000, Mexico
| | - P Zavala-Rivera
- Posgrado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, 83000, Mexico; Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, 83000, Mexico.
| |
Collapse
|
34
|
Bram S, Gordon MN, Carbonell MA, Pink M, Stein BD, Morgan DG, Aguilà D, Aromí G, Skrabalak SE, Losovyj Y, Bronstein LM. Zn 2+ Ion Surface Enrichment in Doped Iron Oxide Nanoparticles Leads to Charge Carrier Density Enhancement. ACS OMEGA 2018; 3:16328-16337. [PMID: 31458268 PMCID: PMC6643693 DOI: 10.1021/acsomega.8b02411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/19/2018] [Indexed: 05/04/2023]
Abstract
Here, we report the development of monodisperse Zn-doped iron oxide nanoparticles (NPs) with different amounts of Zn (Zn x Fe3-x O4, 0 < x < 0.43) by thermal decomposition of a mixture of zinc and iron oleates. The as-synthesized NPs show a considerable fraction of wüstite (FeO) which is transformed to spinel upon 2 h oxidation of the NP reaction solutions. At any Zn doping amounts, we observed the enrichment of the NP surface with Zn2+ ions, which is enhanced at higher Zn loadings. Such a distribution of Zn2+ ions is attributed to the different thermal decomposition profiles of Zn and Fe oleates, with Fe oleate decomposing at much lower temperature than that of Zn oleate. The decomposition of Zn oleate is, in turn, catalyzed by a forming iron oxide phase. The magnetic properties were found to be strongly dependent on the Zn doping amounts, showing the saturation magnetization to decrease by 9 and 20% for x = 0.05 and 0.1, respectively. On the other hand, X-ray photoelectron spectroscopy near the Fermi level demonstrates that the Zn0.05Fe2.95O4 sample displays a more metallic character (a higher charge carrier density) than undoped iron oxide NPs, supporting its use as a spintronic material.
Collapse
Affiliation(s)
- Stanley Bram
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Matthew N. Gordon
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael A. Carbonell
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Barry D. Stein
- Department
of Biology, Indiana University, 1001 E. Third Street, Bloomington, Indiana 47405, United States
| | - David Gene Morgan
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - David Aguilà
- Departament
de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, Barcelona 08028, Spain
| | - Guillem Aromí
- Departament
de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, Barcelona 08028, Spain
| | - Sara E. Skrabalak
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yaroslav Losovyj
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- E-mail: (Y.L.)
| | - Lyudmila M. Bronstein
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- A.N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
- Department
of Physics, Faculty of Science, King Abdulaziz
University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
- E-mail: (L.M.B.)
| |
Collapse
|
35
|
Zhu K, Liu G, Zhang G, Hu J, Liu S. Engineering Cross-Linkable Plasmonic Vesicles for Synergistic Chemo-Photothermal Therapy Using Orthogonal Light Irradiation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01653] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kangning Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
36
|
Zhao SQ, Hu G, Xu XH, Kang SM, Liu N, Wu ZQ. Synthesis of Redox-Responsive Core Cross-Linked Micelles Carrying Optically Active Helical Poly(phenyl isocyanide) Arms and Their Applications in Drug Delivery. ACS Macro Lett 2018; 7:1073-1079. [PMID: 35632938 DOI: 10.1021/acsmacrolett.8b00610] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this manuscript, we designed and synthesized three core cross-linked micelles (M-5L, P-5L, and P-5D) with redox-responsive disulfide bonds in the core and carrying optically active helical polyisocyanide arms. Their arms were different in the helicity of the main chain and the chirality of the side groups. These micelles showed excellent redox-responsiveness to reducing agent. However, because of the different chiralities of the arms, the three micelles exhibited different performances in drug delivery and controlled release. The M-5L micelle carrying left-handed helical arms showed better therapeutic effect than the other two due to the rapid cell membrane permeability.
Collapse
Affiliation(s)
- Song-Qing Zhao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Guiju Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Shu-Ming Kang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| |
Collapse
|
37
|
Recent advances on stimuli-responsive macromolecular magnetic resonance imaging (MRI) contrast agents. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9291-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Selvam R, Ramasamy S, Mohiyuddin S, Enoch IVMV, Gopinath P, Filimonov D. Molecular encapsulator-appended poly(vinyl alcohol) shroud on ferrite nanoparticles. Augmented cancer-drug loading and anticancer property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:125-133. [PMID: 30274045 DOI: 10.1016/j.msec.2018.07.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 07/13/2018] [Accepted: 07/21/2018] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles (MNPs) have the potency to deliver cancer drugs assisted by the application of a magnetic field. In this paper, we present the design of magnesium ferrite nanoparticles of size suitable for drug delivery. A coating polymer, poly(vinyl alcohol), tethered with a tapered cone-shaped cyclic oligosachcharide, β-cyclodextrin (β-CD) is synthesized and used to wrap and disperse the MNPs. The magnetic properties are explored using vibrating sample magnetometry and Mössbauer spectroscopy. The ∑130 nm MNPs, shrouded with the PVA-CD conjugate allows a high amount of the cancer drug, camptothecin, to be loaded on the nanocarrier. Cytotoxicity studies reveal that the loaded drug retains its potency against HEK 293 cells and the cells are sensitive to the treatment by the drug-loaded nanocarrier.
Collapse
Affiliation(s)
- Rajakar Selvam
- Nanotoxicology Research Lab, Department of Nanosciences, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India
| | - Sivaraj Ramasamy
- Chemistry Research Lab, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India
| | - Shanid Mohiyuddin
- Department of Biotechnology/Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Israel V M V Enoch
- Nanotoxicology Research Lab, Department of Nanosciences, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India; Chemistry Research Lab, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India.
| | - Packirisamy Gopinath
- Department of Biotechnology/Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Dmitry Filimonov
- Radiochemistry branch, Department of Chemistry, GSP-1 Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|
39
|
Wu M, Lin X, Tan X, Li J, Wei Z, Zhang D, Zheng Y, Zheng AX, Zhao B, Zeng Y, Liu X, Liu J. Photoresponsive Nanovehicle for Two Independent Wavelength Light-Triggered Sequential Release of P-gp shRNA and Doxorubicin To Optimize and Enhance Synergistic Therapy of Multidrug-Resistant Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19416-19427. [PMID: 29771490 DOI: 10.1021/acsami.8b03823] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Prerelease of RNA molecules than chemotherapeutic drugs with a sufficient interval is a vital prerequisite for RNA/drug co-delivery strategy to overcome multidrug resistance (MDR) of cancer cells, but how to precisely control their release at different time points is still a grand challenge up to now. This study aims to on-demand remotely manipulate RNA and drug release in real time through single delivery system to sequentially play their respective roles for optimizing and enhancing their synergistic antitumor effects. To this end, a photoresponsive mesoporous silica nanoparticle (PMSN) is fabricated as a co-delivery vehicle of P-glycoprotein (P-gp) short-hairpin RNA (shRNA) and photocaged prodrug of doxorubicin (DOX), by which the orthogonal and sequential release of shRNA and DOX can be achieved using an external light. In our design, the cationic poly[2-( N, N-dimethylaminoethyl)methacrylate] is introduced onto the PMSN surface through a light-sensitive coumarin ester derivative linker to adsorb P-gp shRNA, whereas the photocleavable o-nitrobenzyl ester derivative-caged DOX is loaded into the inner pores of the PMSN. The PMSN is found to be effectively internalized by MDR cancer cells, and the release of the shRNA and DOX is demonstrated to be independently regulated by 405 and 365 nm light irradiations due to selectively cleaved coumarin and o-nitrobenzyl ester, resulting in enhanced drug retention, and finally bring out optimized and significantly improved chemotherapeutic effects both in vitro and in vivo for MDR cancer treatment, which might hold extensive application prospects in MDR cancer treatment in future.
Collapse
Affiliation(s)
- Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Xionghong Tan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou 350002 , P. R. China
| | - Jiong Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou 350002 , P. R. China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Ai-Xian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- Liver Disease Center , The First Affiliated Hospital of Fujian Medical University , Fuzhou 350005 , P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- Liver Disease Center , The First Affiliated Hospital of Fujian Medical University , Fuzhou 350005 , P. R. China
| |
Collapse
|
40
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment. Biomacromolecules 2018; 19:1869-1887. [DOI: 10.1021/acs.biomac.8b00460] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
41
|
Sun Z, Liu G, Hu J, Liu S. Photo- and Reduction-Responsive Polymersomes for Programmed Release of Small and Macromolecular Payloads. Biomacromolecules 2018; 19:2071-2081. [DOI: 10.1021/acs.biomac.8b00253] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ziqiang Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
42
|
Qu J, Tian Z, Wang Q, Peng S, Luo JB, Zhou QH, Lin J. Surface design and preparation of multi-functional magnetic nanoparticles for cancer cell targeting, therapy, and imaging. RSC Adv 2018; 8:35437-35447. [PMID: 35547915 PMCID: PMC9088098 DOI: 10.1039/c8ra06718j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/29/2018] [Indexed: 01/04/2023] Open
Abstract
Recently, theranostic candidates based on superparamagnetic iron oxide nanoparticles (SPIONs) providing the combination of therapy and diagnosis have become one of the most promising system in cancer research. However, poor stability, premature drug release, lack of specific tumor cell targeting, and complicated multi-step synthesis processes still hinder them for potential clinical applications. In this research, the multi-functional magnetic nanoparticles (MNPs-DOX) were prepared via a simple assembly process for targeted delivery of doxorubicin (DOX) and enhanced magnetic resonance (MR) imaging detection. Firstly, the multi-functional copolymer coating, polyamidoamine (PAMAM), was designed and synthesized by Michael addition reaction, where N,N-bis(acryloyl)cystamine served as backbone linker, and DOX, dopamine (DA), and polyethylene glycol (PEG) acted as comonomers. The PAMAM was then directly assembled to the surface of SPIONs by the ligand exchange reaction with SPIONs forming the MNPs-DOX. The hydrophilic PEG moieties provide the nanoparticles with colloidal stability and good-dispersity in aqueous solution. Comparing with the quick release of free DOX, the drug release behavior of MNPs-DOX exhibited a sustained drug release. Because the chemical cleavage of disulfide in the polymer backbone, a high cumulative drug release up to 60% in GSH within 48 h was observed, rather than only 26% in PBS (pH 7.4) without GSH. The MR imaging detection experiment showed that the MNPs-DOX had an enhanced T2 relaxivity of 126 mM−1 S−1 for MR imaging. The results of the cytotoxicity assays showed a remarkable killing effect of cancer cells by MNPs-DOX due to the FA tumor-targeting ligand, comparing with non-targeted drug molecules. All the results showed that the as prepared multi-functional magnetic nanoparticles may serve as a promising theranostic candidate for targeted anticancer drug delivery and efficient detection through MR imaging in medical application. Multi-functional magnetic nanoparticles for targeted anticancer drug delivery and efficient MR imaging detection in theranostics.![]()
Collapse
Affiliation(s)
- Jing Qu
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Zhijie Tian
- School of Biomedical Sciences and Technology
- Chengdu Medical College
- Chengdu
- China
| | - Qiuyue Wang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Si Peng
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Jian-bin Luo
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Qing-han Zhou
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Juan Lin
- School of Biomedical Sciences and Technology
- Chengdu Medical College
- Chengdu
- China
| |
Collapse
|
43
|
Salili SM, Worden M, Nemati A, Miller DW, Hegmann T. Synthesis of Distinct Iron Oxide Nanomaterial Shapes Using Lyotropic Liquid Crystal Solvents. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E211. [PMID: 28767058 PMCID: PMC5575693 DOI: 10.3390/nano7080211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/20/2022]
Abstract
A room temperature reduction-hydrolysis of Fe(III) precursors such as FeCl₃ or Fe(acac)₃ in various lyotropic liquid crystal phases (lamellar, hexagonal columnar, or micellar) formed by a range of ionic or neutral surfactants in H₂O is shown to be an effective and mild approach for the preparation of iron oxide (IO) nanomaterials with several morphologies (shapes and dimensions), such as extended thin nanosheets with lateral dimensions of several hundred nanometers as well as smaller nanoflakes and nanodiscs in the tens of nanometers size regime. We will discuss the role of the used surfactants and lyotropic liquid crystal phases as well as the shape and size differences depending upon when and how the resulting nanomaterials were isolated from the reaction mixture. The presented synthetic methodology using lyotropic liquid crystal solvents should be widely applicable to several other transition metal oxides for which the described reduction-hydrolysis reaction sequence is a suitable pathway to obtain nanoscale particles.
Collapse
Affiliation(s)
- Seyyed Muhammad Salili
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001, USA.
| | - Matthew Worden
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242-0001, USA.
| | - Ahlam Nemati
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001, USA.
| | - Donald W Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada.
| | - Torsten Hegmann
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242-0001, USA.
| |
Collapse
|
44
|
Shang L, Wang QY, Chen KL, Qu J, Zhou QH, Luo JB, Lin J. SPIONs/DOX loaded polymer nanoparticles for MRI detection and efficient cell targeting drug delivery. RSC Adv 2017. [DOI: 10.1039/c7ra08348c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Reducible polydopamine coated magnetic nanoparticles (SPIONs@PDA) for both magnetic resonance imaging (MRI) detection and cell targeting drug delivery.
Collapse
Affiliation(s)
- Le Shang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Qiu-yue Wang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Kang-long Chen
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Jing Qu
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Qing-han Zhou
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Jian-bin Luo
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Juan Lin
- School of Biomedical Sciences
- Chengdu Medical College
- Chengdu
- China
| |
Collapse
|