1
|
Du R, Fielding LA. pH-Responsive Nanogels Generated by Polymerization-Induced Self-Assembly of a Succinate-Functional Monomer. Macromolecules 2024; 57:3496-3501. [PMID: 38681060 PMCID: PMC11044572 DOI: 10.1021/acs.macromol.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Colloidal nanogels formed from a pH-responsive poly(succinate)-functional core and a poly(sulfonate)-functional corona were prepared via a previously unreported reversible addition-fragmentation chain-transfer (RAFT)-mediated aqueous emulsion polymerization-induced self-assembly (PISA) route. Specifically, a poly(potassium 3-sulfopropyl methacrylate) (PKSPMA50) macromolecular chain-transfer agent (macro-CTA) was synthesized via RAFT solution polymerization followed by chain-extension with a hydrophobic, carboxylic acid-functional, 2-(methacryloyloxy) ethyl succinate (MES) monomer at pH 2. Colloidal nanoparticles with tunable diameters between 66 to 150 nm, depending on the core composition, and narrow particle size distributions were obtained at 20% w/w solids. Well-defined pH-responsive nanogels that swell on increasing the pH could be prepared even without the addition of a cross-linking comonomer, and introducing an additional cross-linker to the core led to smaller nanogels with lower swelling ratios. These nanogels could reversibly change in size on cycling the pH between acidic and basic conditions and remain colloidally stable over a wide pH range and at 70 °C.
Collapse
Affiliation(s)
- Ruiling Du
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Zika A, Agarwal M, Schweins R, Gröhn F. Double-Wavelength-Switchable Molecular Self-Assembly of a Photoacid and Spirooxazine in an Aqueous Solution. J Phys Chem Lett 2023; 14:9563-9568. [PMID: 37861686 DOI: 10.1021/acs.jpclett.3c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Quadruple-switchable nanoscale assemblies are built by combining two types of water-soluble molecular photoswitches through dipole-dipole interaction. Uniting the wavelength-specific proton dissociation of a photoacid and ring-opening of an anionic spirooxazine results in an assembly that can be addressed by irradiation with two different wavelengths: pH and darkness.
Collapse
Affiliation(s)
- Alexander Zika
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Mohit Agarwal
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
- DS/LSS Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble CEDEX 9, France
| | - Ralf Schweins
- DS/LSS Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble CEDEX 9, France
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| |
Collapse
|
4
|
Surapaneni SG, Choudhari SN, Avhad SV, Ambade AV. Permeable polymersomes from temperature and pH dual stimuli-responsive PVCL-b-PLL block copolymers for enhanced cell internalization and lysosome targeting. BIOMATERIALS ADVANCES 2023; 151:213454. [PMID: 37150082 DOI: 10.1016/j.bioadv.2023.213454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
A series of dual stimuli-responsive block copolymers comprising temperature-responsive poly(N-vinylcaprolactam) (PVCL) and biodegradable pH-responsive poly(l-lysine) (PLL) of varying chain length were synthesized by a combination of free radical polymerization and ring opening polymerization. The block copolymers formed micelles and vesicles (polymersomes) in response to temperature and pH, respectively, in aqueous solution. The nanoassemblies were characterized by transmission electron microscopy and dynamic light scattering techniques. Encapsulation of both hydrophobic and hydrophilic dyes in the polymersomes was shown. Doxorubicin (DOX) was loaded in the polymersomes and its controlled release in response to the two stimuli, independently and jointly, was studied. The drug was found to be released due to stimuli-induced increased permeability without disassembly of the polymersomes. A significant increase in the cellular uptake of the drug-loaded polymersomes at hyperthermia conditions was demonstrated at 41 °C and release of the drug upon localization in lysosomes was observed. Cellular internalization pathway of the polymersomes was investigated by competitive inhibition assay and a combination of endocytic pathways dominated by caveolae-mediated mechanism was found to be operative.
Collapse
Affiliation(s)
- Sai Geetika Surapaneni
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakeb N Choudhari
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Shankarrao V Avhad
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashootosh V Ambade
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Du R, Fielding LA. Preparation of polymer nanoparticle-based complex coacervate hydrogels using polymerisation-induced self-assembly derived nanogels. SOFT MATTER 2023; 19:2074-2081. [PMID: 36857682 DOI: 10.1039/d2sm01534j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This paper reports a generic method to prepare polymer nanoparticle-based complex coacervate (PNCC) hydrogels by employing rationally designed nanogels synthesised by reversible addition-fragmentation chain-transfer (RAFT)-mediated polymerisation-induced self-assembly (PISA). Specifically, a poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) macromolecular chain-transfer agent (macro-CTA) was synthesised via RAFT solution polymerisation followed by chain-extension with a statistical copolymer of benzyl methacrylate (BzMA) and methacrylic acid (MAA) at pH 2. Thus, pH-responsive nanoparticles (NPs) comprising a hydrophobic polyacid core-forming block and a sulfonate-functional stabiliser block were formed. With the introduction of methacrylic acid into the core of the NPs, they become swollen with increasing pH, as judged by dynamic light scattering (DLS), indicating nanogel-type behaviour. PNCC hydrogels were prepared by simply mixing the PISA-derived nanogels and cationic branched polyethyleneimine (bPEI) at 20% w/w. In the absence of MAA in the core of the NPs, gel formation was not observed. The mass ratio between the nanogels and bPEI affected resulting hydrogel strength and a mixture of bPEI and PKSPMA68-P(BzMA0.6-stat-MAA0.4)300 NPs with a mass ratio of 0.14 at pH ∼7 resulted in a hydrogel with a storage modulus of approximately 2000 Pa, as determined by oscillatory rheology. This PNCC hydrogel was shear-thinning and injectable, with recovery of gel strength occurring rapidly after the removal of shear.
Collapse
Affiliation(s)
- Ruiling Du
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Lee A Fielding
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
6
|
Thambi T, Jung JM, Lee DS. Recent strategies to develop pH-sensitive injectable hydrogels. Biomater Sci 2023; 11:1948-1961. [PMID: 36723174 DOI: 10.1039/d2bm01519f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
"Smart" biomaterials that are responsive to pathological abnormalities are an appealing class of therapeutic platforms for the development of personalized medications. The development of such therapeutic platforms requires novel techniques that could precisely deliver therapeutic agents to the diseased tissues, resulting in enhanced therapeutic effects without harming normal tissues. Among various therapeutic platforms, injectable pH-responsive biomaterials are promising biomaterials that respond to the change in environmental pH. Aqueous solutions of injectable pH-responsive biomaterials exhibit a phase transition from sol-to-gel in response to environmental pH changes. The injectable pH-responsive hydrogel depot can provide spatially and temporally controlled release of various bioactive agents including chemotherapeutic drugs, peptides, and proteins. Therapeutic agents are imbibed into hydrogels by simple mixing without the use of toxic solvents and used for long-term storage or in situ injection using a syringe or catheter that could form a stable gel and acts as a controlled release depot in a minimally invasive manner. Tunable physicochemical properties of the hydrogels, such as biodegradability, ability to interact with drugs and mechanical properties, can control the release of the therapeutic agent. This review highlights the advances in the design and development of biodegradable and in situ forming injectable pH-responsive biomaterials that respond to the physiological conditions. Special attention has been paid to the development of amphoteric pH-responsive biomaterials and their utilization in biomedical applications. We also highlight key challenges and future directions of pH-responsive biomaterials in clinical translation.
Collapse
Affiliation(s)
- Thavasyappan Thambi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jae Min Jung
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Doo Sung Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Ikkene D, Six JL, Ferji K. Progress in Aqueous Dispersion RAFT PISA. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Goncalves AG, Hartzell EJ, Sullivan MO, Chen W. Recombinant protein polymer-antibody conjugates for applications in nanotechnology and biomedicine. Adv Drug Deliv Rev 2022; 191:114570. [PMID: 36228897 DOI: 10.1016/j.addr.2022.114570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023]
Abstract
Currently, there are over 100 antibody-based therapeutics on the market for the treatment of various diseases. The increasing importance of antibody treatment is further highlighted by the recent FDA emergency use authorization of certain antibody therapies for COVID-19 treatment. Protein-based materials have gained momentum for antibody delivery due to their biocompatibility, tunable chemistry, monodispersity, and straightforward synthesis and purification. In this review, we discuss progress in engineering the molecular features of protein-based biomaterials, in particular recombinant protein polymers, for introducing novel functionalities and enhancing the delivery properties of antibodies and related binding protein domains.
Collapse
Affiliation(s)
- Antonio G Goncalves
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| |
Collapse
|
9
|
Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109055. [PMID: 35258117 DOI: 10.1002/adma.202109055] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Advances in wearable epidermal sensors have revolutionized the way that physiological signals are captured and measured for health monitoring. One major challenge is to convert physiological signals to easily readable signals in a convenient way. One possibility for wearable epidermal sensors is based on visible readouts. There are a range of materials whose optical properties can be tuned by parameters such as temperature, pH, light, and electric fields. Herein, this review covers and highlights a set of materials with tunable optical properties and their integration into wearable epidermal sensors for health monitoring. Specifically, the recent progress, fabrication, and applications of these materials for wearable epidermal sensors are summarized and discussed. Finally, the challenges and perspectives for the next generation wearable devices are proposed.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
10
|
Brotherton EE, Neal TJ, Kaldybekov DB, Smallridge MJ, Khutoryanskiy VV, Armes SP. Aldehyde-functional thermoresponsive diblock copolymer worm gels exhibit strong mucoadhesion. Chem Sci 2022; 13:6888-6898. [PMID: 35774174 PMCID: PMC9200053 DOI: 10.1039/d2sc02074b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
A series of thermoresponsive diblock copolymer worm gels is prepared via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate using a water-soluble methacrylic precursor bearing pendent cis-diol groups. Selective oxidation using an aqueous solution of sodium periodate affords the corresponding aldehyde-functional worm gels. The aldehyde groups are located within the steric stabilizer chains and the aldehyde content can be adjusted by varying the periodate/cis-diol molar ratio. These aldehyde-functional worm gels are evaluated in terms of their mucoadhesion performance with the aid of a fluorescence microscopy-based assay. Using porcine urinary bladder mucosa as a model substrate, we demonstrate that these worm gels offer a comparable degree of mucoadhesion to that afforded by chitosan, which is widely regarded to be a 'gold standard' positive control in this context. The optimum degree of aldehyde functionality is approximately 30%: lower degrees of functionalization lead to weaker mucoadhesion, whereas higher values compromise the desirable thermoresponsive behavior of these worm gels.
Collapse
Affiliation(s)
- Emma E Brotherton
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Thomas J Neal
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Daulet B Kaldybekov
- School of Pharmacy, University of Reading, Whiteknights PO Box 224, Reading Berkshire RG6 6DX UK
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University Almaty 050040 Kazakhstan
| | | | - Vitaliy V Khutoryanskiy
- School of Pharmacy, University of Reading, Whiteknights PO Box 224, Reading Berkshire RG6 6DX UK
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| |
Collapse
|
11
|
Wan J, Fan B, Thang SH. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem Sci 2022; 13:4192-4224. [PMID: 35509470 PMCID: PMC9006902 DOI: 10.1039/d2sc00762b] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
12
|
Zanata DDM, Felisberti MI. Thermo- and pH-responsive POEGMA-b-PDMAEMA-b-POEGMA triblock copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Kim HJ, Ishizuka F, Kuchel RP, Chatani S, Niino H, Zetterlund PB. Synthesis of low glass transition temperature worms comprising a poly(styrene- stat-n-butyl acrylate) core segment via polymerization-induced self-assembly in RAFT aqueous emulsion polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01636a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synthesis of nanodimensional polymeric worms of low glass transition temperature using aqueous polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Hiroshi Niino
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
14
|
Synthesis of High-Performance Aqueous Fluorescent Nanodispersions for Textile Printing-A Study of Influence of Moles Ratio on Fastness Properties. Molecules 2021; 26:molecules26237075. [PMID: 34885659 PMCID: PMC8658936 DOI: 10.3390/molecules26237075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
Aqueous fluorescent dispersions containing dyed acrylic-based copolymer nanoparticles possess significant credentials concerning green technology as compared to those prepared with the conventional vinyl-based monomers in textile and garment sectors; however, their essential textile fastness properties are yet to achieve. In the present work, a series of acrylic nanodispersions were synthesized by varying the moles ratio of benzyl methacrylate (BZMA), methyl methacrylate (MMA), and 2-hydroxypropyl methacrylate (HPMA) monomers. This was done to study their effect on dye aggregation and dyed polymer particles agglomeration. FT-IR spectral analysis showed the formation of polymer structures, while Malvern Analyzer, Transmission Electron Microscopy, and Scanning Electron Microscopy analysis suggested that the particles are spherical in shape and their size is less than 200 nm. The obtained nanodispersions were later applied on cotton fabrics for the evaluation of wash fastness and colour migration. Premier color scan spectrophotometer and zeta potential measurement studies suggested that colour migration of printed cotton fabrics increased with an increasing agglomeration of particles and it was also observed to increase with the moles ratio of MMA and zeta potentials.
Collapse
|
15
|
Kreuzer LP, Widmann T, Geiger C, Wang P, Vagias A, Heger JE, Haese M, Hildebrand V, Laschewsky A, Papadakis CM, Müller-Buschbaum P. Salt-Dependent Phase Transition Behavior of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9179-9191. [PMID: 34279952 DOI: 10.1021/acs.langmuir.1c01342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The water vapor-induced swelling, as well as subsequent phase-transition kinetics, of thin films of a diblock copolymer (DBC) loaded with different amounts of the salt NaBr, is investigated in situ. In dilute aqueous solution, the DBC features an orthogonally thermoresponsive behavior. It consists of a zwitterionic poly(sulfobetaine) block, namely, poly(4-(N-(3'-methacrylamidopropyl)-N,N-dimethylammonio) butane-1-sulfonate) (PSBP), showing an upper critical solution temperature, and a nonionic block, namely, poly(N-isopropylmethacrylamide) (PNIPMAM), exhibiting a lower critical solution temperature. The swelling kinetics in D2O vapor at 15 °C and the phase transition kinetics upon heating the swollen film to 60 °C and cooling back to 15 °C are followed with simultaneous time-of-flight neutron reflectometry and spectral reflectance measurements. These are complemented by Fourier transform infrared spectroscopy. The collapse temperature of PNIPMAM and the swelling temperature of PSBP are found at lower temperatures than in aqueous solution, which is attributed to the high polymer concentration in the thin-film geometry. Upon inclusion of sub-stoichiometric amounts (relative to the monomer units) of NaBr in the films, the water incorporation is significantly increased. This increase is mainly attributed to a salting-in effect on the zwitterionic PSBP block. Whereas the addition of NaBr notably shifts the swelling temperature of PSBP to lower temperatures, the collapse temperature of PNIPMAM remains unaffected by the presence of salt in the films.
Collapse
Affiliation(s)
- Lucas P Kreuzer
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Tobias Widmann
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christina Geiger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peixi Wang
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Apostolos Vagias
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Julian E Heger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Martin Haese
- German Engineering Material Science (GEMS), Helmholtz-Zentrum Hereon Outstation at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, Garchingv, Germany
| | - Viet Hildebrand
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| | - Christine M Papadakis
- Fachgebiet Physik Weicher Materie, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
16
|
The self-assembly and thermoresponsivity of poly(isoprene-b-methyl methacrylate) copolymers in non-polar solvents. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Kawano S, Lie J, Ohgi R, Shizuma M, Muraoka M. Modulating Polymeric Amphiphiles Using Thermo- and pH-Responsive Copolymers with Cyclodextrin Pendant Groups through Molecular Recognition of the Lipophilic Dye. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shintaro Kawano
- Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Jenni Lie
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology (OIT), 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
- Department of Chemical Engineering, National Taiwan University of Science and Technology (NTUST), No. 43, Keelung Rd., Sec. 4, Da’an Dist., Taipei 10607, Taiwan
| | - Ryusei Ohgi
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology (OIT), 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Motohiro Shizuma
- Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Masahiro Muraoka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology (OIT), 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
18
|
Baddam V, Välinen L, Tenhu H. Thermoresponsive Polycation-Stabilized Nanoparticles through PISA. Control of Particle Morphology with a Salt. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vikram Baddam
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| | - Lauri Välinen
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| |
Collapse
|
19
|
Panja S, Dietrich B, Shebanova O, Smith AJ, Adams DJ. Programming Gels Over a Wide pH Range Using Multicomponent Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Santanu Panja
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Bart Dietrich
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Olga Shebanova
- Diamond Light Source Ltd. Diamond House Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Andrew J. Smith
- Diamond Light Source Ltd. Diamond House Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Dave J. Adams
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
20
|
Panja S, Dietrich B, Shebanova O, Smith AJ, Adams DJ. Programming Gels Over a Wide pH Range Using Multicomponent Systems. Angew Chem Int Ed Engl 2021; 60:9973-9977. [PMID: 33605524 PMCID: PMC8252051 DOI: 10.1002/anie.202101247] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Indexed: 12/02/2022]
Abstract
Multicomponent hydrogels offer a tremendous opportunity for preparing useful and exciting materials that cannot be accessed using a single component. Here, we describe an unusual multi‐component low‐molecular weight gelling system that exhibits pH‐responsive behavior involving cooperative hydrogen bonding between the components, allowing it to maintain a gel phase across a wide pH range. Unlike traditional acid‐triggered gels, our system undergoes a change in the underlying molecular packing and maintains the β‐sheet structure both at acidic and basic pH. We further establish that autonomous programming between these two gel states is possible by an enzymatic reaction which allows us to prepare gels with improved mechanical properties.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Bart Dietrich
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Olga Shebanova
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Andrew J Smith
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
21
|
North SM, Armes SP. One-pot synthesis and aqueous solution properties of pH-responsive schizophrenic diblock copolymer nanoparticles prepared via RAFT aqueous dispersion polymerization. Polym Chem 2021. [DOI: 10.1039/d1py01114f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-defined doubly pH-responsive schizophrenic diblock copolymer nanoparticles with tunable isoelectric points are prepared via RAFT aqueous dispersion polymerization using an efficient one-pot protocol.
Collapse
Affiliation(s)
- S. M. North
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - S. P. Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
22
|
Xu S, Corrigan N, Boyer C. Forced gradient copolymerisation: a simplified approach for polymerisation-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00889c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel and versatile gradient copolymerisation approach to simplify polymeric nanoparticle synthesis through polymerisation-induced self-assembly (PISA) is reported.
Collapse
Affiliation(s)
- Sihao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
23
|
Dual pH-responsive-charge-reversal micelle platform for enhanced anticancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111527. [DOI: 10.1016/j.msec.2020.111527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/22/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
|
24
|
Selianitis D, Pispas S. PDEGMA‐b‐PDIPAEMA
copolymers via
RAFT
polymerization and their
pH
and thermoresponsive schizophrenic self‐assembly in aqueous media. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
25
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris Frankreich
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| |
Collapse
|
26
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020; 59:8368-8392. [DOI: 10.1002/anie.201911758] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM) Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris France
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| |
Collapse
|
27
|
Demarteau J, Fernandez de Añastro A, Shaplov AS, Mecerreyes D. Poly(diallyldimethylammonium) based poly(ionic liquid) di- and triblock copolymers by PISA as matrices for ionogel membranes. Polym Chem 2020. [DOI: 10.1039/c9py01552c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(diallyldimethylammonium)-b-polystyrene AB and ABA block copolymers were synthesized using MADIX under PISA conditions. Ionogels for sodium batteries were prepared using the poly(ionic liquid) triblock copolymers.
Collapse
Affiliation(s)
- Jérémy Demarteau
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta Center
- 20018 Donostia-San Sebastian
- Spain
| | | | | | - David Mecerreyes
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta Center
- 20018 Donostia-San Sebastian
- Spain
| |
Collapse
|
28
|
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 2020; 156:133-187. [PMID: 32871201 PMCID: PMC7456198 DOI: 10.1016/j.addr.2020.08.008] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Engineering protein and peptide-based materials for drug delivery applications has gained momentum due to their biochemical and biophysical properties over synthetic materials, including biocompatibility, ease of synthesis and purification, tunability, scalability, and lack of toxicity. These biomolecules have been used to develop a host of drug delivery platforms, such as peptide- and protein-drug conjugates, injectable particles, and drug depots to deliver small molecule drugs, therapeutic proteins, and nucleic acids. In this review, we discuss progress in engineering the architecture and biological functions of peptide-based biomaterials -naturally derived, chemically synthesized and recombinant- with a focus on the molecular features that modulate their structure-function relationships for drug delivery.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
29
|
Shahriari M, Torchilin VP, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. “Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems. Biomater Sci 2020; 8:5787-5803. [DOI: 10.1039/d0bm01283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the current review, we summarized the polymer and peptide-based schizophrenic copolymers which could form micellar and vesicular (polymersome) systems providing novel structures with beneficial applications.
Collapse
Affiliation(s)
- Mahsa Shahriari
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine
- Northeastern University
- Boston
- USA
- Department of Oncology
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| |
Collapse
|
30
|
Liao J, Peng H, Wei X, Song Y, Liu C, Li D, Yin Y, Xiong X, Zheng H, Wang Q. A bio-responsive 6-mercaptopurine/doxorubicin based "Click Chemistry" polymeric prodrug for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110461. [PMID: 31924029 DOI: 10.1016/j.msec.2019.110461] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/05/2019] [Accepted: 11/17/2019] [Indexed: 01/04/2023]
Abstract
A novel bio-responsive co-delivery system based on Poly(DEA)-b-Poly(ABMA-co-OEGMA) (PDPAO, prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization) copolymers was constructed for enhanced cellular internalization and effective combination therapy. Reduction-sensitive 6-mercaptopurine (6MP) based prodrug and pH-sensitive doxorubicin (DOX) based prodrug were grafted onto PDPAO by an azide-alkyne "Click Chemistry" reaction to acquire a pH/reduction-sensitive polymeric prodrug (PDPAO@imine-DOX/cis-6MP), which was able to self-aggregate to form polymeric micelles (M(DOX/6MP)) with an average particle size of 116 ± 2 nm in the water. The resultant micelles could maintain a stable sphere structure and show stability with a small particles' dispersion index in the blood. Importantly, it has been observed that the pH-sensitive surface charge-conversion accompanied pH-triggered DOX release in the biomimetic extracellular acidic environment of tumor tissue and a rapid dual-drug release triggered by pH and GSH in the intracellular environment. The in vitro evaluation of micelles on human cervical cancer (HeLa) and human promyelocytic leukemia (HL-60) cells showed an enhanced cellular uptake because of charge-conversion and exhibited a higher cell-killing performance. Moreover, the graft ratio of DOX and 6MP showed the ability to adjust the cytotoxicity; the micelles with a graft ratio of 2: 1 (M(DOX2/6MP)) displayed the higher cellular inhibition on either HeLa (combination index (CI) = 0.62) or HL-60 (CI = 0.35) cells. Overall, this novel dual-drug-conjugated delivery system might have important potential applications for combination therapy of cancer.
Collapse
Affiliation(s)
- Jianhong Liao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Haisheng Peng
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States; Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing 163319, PR China
| | - Xuan Wei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yajing Song
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Can Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yihua Yin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiong Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
31
|
Man SK, Wang X, Zheng JW, An ZS. Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2303-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Penfold NJW, Yeow J, Boyer C, Armes SP. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett 2019; 8:1029-1054. [PMID: 35619484 DOI: 10.1021/acsmacrolett.9b00464] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this Perspective, we summarize recent progress in polymerization-induced self-assembly (PISA) for the rational synthesis of block copolymer nanoparticles with various morphologies. Much of the PISA literature has been based on thermally initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Herein, we pay particular attention to alternative PISA protocols, which allow the preparation of nanoparticles with improved control over copolymer morphology and functionality. For example, initiation based on visible light, redox chemistry, or enzymes enables the incorporation of sensitive monomers and fragile biomolecules into block copolymer nanoparticles. Furthermore, PISA syntheses and postfunctionalization of the resulting nanoparticles (e.g., cross-linking) can be conducted sequentially without intermediate purification by using various external stimuli. Finally, PISA formulations have been optimized via high-throughput polymerization and recently evaluated within flow reactors for facile scale-up syntheses.
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Steven P. Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| |
Collapse
|
33
|
|
34
|
Ghamkhari A, Mahmoodzadeh F, Ghorbani M, Hamishehkar H. A novel gold nanorods coated by stimuli-responsive ABC triblock copolymer for chemotherapy of solid tumors. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Tan J, Lei H, Liaw DJ, Chen X, Ma L, Cui C, Zhong Q, Cheng Y, Zhang Y. Catalyst-Free One-Step Preparation of Self-Crosslinked pH-Responsive Vesicles. Macromol Rapid Commun 2019; 40:e1900149. [PMID: 31111990 DOI: 10.1002/marc.201900149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/28/2019] [Indexed: 01/07/2023]
Abstract
The fabrication of block copolymer (BCP) vesicles with controlled membrane permeability and promising stability remains a considerable challenge. Herein, a new type of pH-responsive and self-crosslinked vesicle based on a hydrolytically hindered urea bond is reported. This kind of vesicle is formed by the self-assembly of a pH-responsive and hydrolytically self-crosslinkable copolymer poly(ethylene glycol)-block-poly[2-(3-(tert-butyl)-3-ethylureido)ethyl methacrylate-co-2-(diethylamino)ethyl methacrylate] (PEG-b-P(TBEU-co-DEA)). The BCP can be easily synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(3-(tert-butyl)-3-ethylureido)ethyl methacrylate (TBEU) and 2-(diethylamino)ethyl methacrylate (DEA) using PEG-based macro-chain transfer agent. The copolymer could self-assemble into stable vesicles by the hydrophobic interaction and in situ cross-linking between amines and isocyanates after the hydrolysis of the hindered urea bonds without any catalyst. Dynamic light scattering (DLS) studies show that the vesicles exhibit enhanced stability against the dilution of organic solvent, and the size can be adjusted through the change of pH values. Moreover, the alkaline phosphatase-loaded vesicles can act as nano-reactor and enable free diffusion of small molecules into the vesicles, followed by the significantly improved fluorescence intensity of phosphate-caged fluorescein. This self-crosslinking and pH-sensitive vesicles may serve as a smart platform in controlled drug delivery and molecular reactor.
Collapse
Affiliation(s)
- Jidong Tan
- Department of Applied Chemistry, School of Science MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hengxin Lei
- Department of Applied Chemistry, School of Science MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Der-Jang Liaw
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Xingxing Chen
- Department of Applied Chemistry, School of Science MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Li Ma
- Department of Applied Chemistry, School of Science MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenhui Cui
- Department of Applied Chemistry, School of Science MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qianyun Zhong
- Department of Applied Chemistry, School of Science MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yilong Cheng
- Department of Applied Chemistry, School of Science MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanfeng Zhang
- Department of Applied Chemistry, School of Science MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
36
|
Xu XF, Pan CY, Zhang WJ, Hong CY. Polymerization-Induced Self-Assembly Generating Vesicles with Adjustable pH-Responsive Release Performance. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00144] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao-Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
37
|
Chen M, Li JW, Zhang WJ, Hong CY, Pan CY. pH- and Reductant-Responsive Polymeric Vesicles with Robust Membrane-Cross-Linked Structures: In Situ Cross-Linking in Polymerization-Induced Self-Assembly. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02081] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Miao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jia-Wei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
38
|
Dzhardimalieva GI, Uflyand IE. Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect 2018. [DOI: 10.1002/slct.201802516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of MetallopolymersThe Institute of Problems of Chemical Physics RAS Academician Semenov avenue 1, Chernogolovka, Moscow Region 142432 Russian Federation
| | - Igor E. Uflyand
- Department of ChemistrySouthern Federal University B. Sadovaya str. 105/42, Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
39
|
Petroff MG, Garcia EA, Dengler RA, Herrera-Alonso M, Bevan MA. kT-Scale Interactions and Stability of Colloids with Adsorbed Zwitterionic and Ethylene Oxide Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matthew G. Petroff
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elena Alexandra Garcia
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Raymond A. Dengler
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Margarita Herrera-Alonso
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael A. Bevan
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
40
|
Niu S, Bremner DH, Wu J, Wu J, Wang H, Li H, Qian Q, Zheng H, Zhu L. l-Peptide functionalized dual-responsive nanoparticles for controlled paclitaxel release and enhanced apoptosis in breast cancer cells. Drug Deliv 2018; 25:1275-1288. [PMID: 29847177 PMCID: PMC6060704 DOI: 10.1080/10717544.2018.1477863] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 11/26/2022] Open
Abstract
Nanoparticles and macromolecular carriers have been widely used to increase the efficacy of chemotherapeutics, largely through passive accumulation provided by their enhanced permeability and retention effect. However, the therapeutic efficacy of nanoscale anticancer drug delivery systems is severely truncated by their low tumor-targetability and inefficient drug release at the target site. Here, the design and development of novel l-peptide functionalized dual-responsive nanoparticles (l-CS-g-PNIPAM-PTX) for active targeting and effective treatment of GRP78-overexpressing human breast cancer in vitro and in vivo are reported. l-CS-g-PNIPAM-PTX NPs have a relative high drug loading (13.5%) and excellent encapsulation efficiency (74.3%) and an average diameter of 275 nm. The release of PTX is slow at pH 7.4 and 25 °C but greatly accelerated at pH 5.0 and 37 °C. MTT assays and confocal experiments showed that the l-CS-g-PNIPAM-PTX NPs possessed high targetability and antitumor activity toward GRP78 overexpressing MDA-MB-231 human breast cancer cells. As expected, l-CS-g-PNIPAM-PTX NPs could effectively treat mice bearing MDA-MB-231 human breast tumor xenografts with little side effects, resulting in complete inhibition of tumor growth and a high survival rate over an experimental period of 60 days. These results indicate that l-peptide-functionalized acid - and thermally activated - PTX prodrug NPs have a great potential for targeted chemotherapy in breast cancer.
Collapse
Affiliation(s)
- Shiwei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - David H. Bremner
- School of Science, Engineering and Technology, Abertay University, Dundee, Scotland, UK
| | - Junzi Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Jianrong Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Haijun Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Heyu Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Qianqian Qian
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Hong Zheng
- Department of Experimental Animal Science, Kunming Medical University, Kunming, PR China
| | - Limin Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| |
Collapse
|
41
|
Deane OJ, Lovett JR, Musa OM, Fernyhough A, Armes SP. Synthesis of Well-Defined Pyrrolidone-Based Homopolymers and Stimulus-Responsive Diblock Copolymers via RAFT Aqueous Solution Polymerization of 2-( N-Acryloyloxy)ethylpyrrolidone. Macromolecules 2018; 51:7756-7766. [PMID: 30333669 PMCID: PMC6180295 DOI: 10.1021/acs.macromol.8b01627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Indexed: 01/28/2023]
Abstract
![]()
Poly(N-vinylpyrrolidone) (PNVP) is a well-known,
highly polar, nonionic water-soluble polymer. However, N-vinylpyrrolidone (NVP) usually exhibits strongly non-ideal behavior
when copolymerized with methacrylic or styrenic monomers. Moreover,
NVP is not particularly well-controlled under living radical polymerization
conditions. For these reasons, alternative pyrrolidone-based monomers
have been investigated. For example, the reversible addition–fragmentation
chain transfer (RAFT) polymerization of 2-(N-methacryloyloxy)ethylpyrrolidone
(NMEP) has been recently investigated using various polymerization
formulations. However, PNMEP homopolymers are significantly less hydrophilic
than PNVP and exhibit inverse temperature solubility in aqueous solution.
In the present work, we studied the RAFT aqueous solution polymerization
of 2-(N-acryloyloxy)ethylpyrrolidone (NAEP)
using either AIBN at 70 °C or a low-temperature redox initiator
at 30 °C. PNAEP homopolymers are obtained in high yield (>99%)
with good control (Mw/Mn < 1.20) for target degrees of polymerization (DP)
of up to 400 using the latter initiator, which produced relatively
fast rates of polymerization. However, targeting DPs above 400 led
to lower NAEP conversions and broader molecular weight distributions.
2-Hydroxyethyl acrylate (HEA) and oligo(ethylene glycol) methyl ether
acrylate (OEGA) were chain-extended using a PNAEPx macro-CTA via RAFT aqueous solution polymerization, yielding
double-hydrophilic acrylic diblock copolymers with high conversions
(>99%) and good control (Mw/Mn < 1.31). In addition, a PNAEP95 macro-CTA
was chain-extended via RAFT aqueous solution polymerization of N-isopropylacrylamide (NIPAM) at 22 °C. Dynamic
light scattering (DLS) analysis indicated that heating above the lower
critical solution temperature of PNIPAM led to so-called “anomalous
micellization” at 35 °C and the formation of near-monodisperse
spherical micelles at 40 °C. Finally, 2-(diethylamino)ethyl
methacrylate (DEA) was polymerized using an N-morpholine-functionalized
trithiocarbonate-based RAFT chain transfer agent and subsequently
chain-extended using NAEP to form a novel pH-responsive diblock copolymer.
Above the pKa of PDEA (∼7.3), DLS
and 1H NMR studies indicated the formation of well-defined
PDEA-core spherical micelles.
Collapse
Affiliation(s)
- O J Deane
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - J R Lovett
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - O M Musa
- Ashland Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - A Fernyhough
- Ashland Specialty Ingredients, Listers Mills, Heaton Road, Bradford, West Yorkshire BD9 4SH, U.K
| | - S P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
42
|
Zhang WJ, Hong CY, Pan CY. Polymerization-Induced Self-Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromol Rapid Commun 2018; 40:e1800279. [DOI: 10.1002/marc.201800279] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| |
Collapse
|
43
|
Burridge KM, Wright TA, Page RC, Konkolewicz D. Photochemistry for Well-Defined Polymers in Aqueous Media: From Fundamentals to Polymer Nanoparticles to Bioconjugates. Macromol Rapid Commun 2018; 39:e1800093. [PMID: 29774614 DOI: 10.1002/marc.201800093] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/07/2018] [Indexed: 11/09/2022]
Abstract
This review article highlights recent developments in the field of photochemistry and photochemical reversible deactivation radical polymerization applied to aqueous polymerizations. Photochemistry is a topic of significant interest in the fields of organic, polymer, and materials chemistry because it allows challenging reactions to be performed under mild conditions. Aqueous polymerization is of significant interest because water is an environmentally benign solvent, and the use of water enables complex polymer self-assembly and bioconjugation processes to occur. This review focuses on powerful new developments in photochemical aqueous polymerization reactions and their applications to the synthesis of well-defined polymer nano-objects and bioconjugates. It is anticipated that these aqueous photopolymerizations will enable the next generation of self-assembled structures and biohybrid materials to be developed under mild and environmentally friendly conditions.
Collapse
Affiliation(s)
- Kevin M Burridge
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Thaiesha A Wright
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| |
Collapse
|
44
|
Li S, Wang J, Shen J, Wu B, He Y. Azo Coupling Reaction Induced Macromolecular Self-Assembly in Aqueous Solution. ACS Macro Lett 2018; 7:437-441. [PMID: 35619339 DOI: 10.1021/acsmacrolett.8b00049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This communication reported azo coupling reaction induced macromolecular self-assembly in aqueous solution. Diblock copolymer (PEG-b-PSNHBoc) consisting of a hydrophilic PEG block, and a hydrophobic N-Boc protected poly(p-vinylaniline) block was synthesized by RAFT polymerization. Then double hydrophilic diblock copolymer (PEG-b-PSN2+) composed of PEG and PS based macromolecular diazonium salts was prepared by the diazotization of PEG-b-PSNH2, which was obtained by deprotection of PEG-b-PSNHBoc. As N,N-dimethylaniline was gradually added into the freshly prepared PEG-b-PSN2+ aqueous solution, the azo coupling reaction between N,N-dimethylaniline and diazonium salts took place, which would lead to the generation of azobenzene pendants. Due to the poor solubility of azobenzene pendants in water, the formed hydrophobic polymeric chains aggregated to form the self-assembly colloidal particles. By incorporating a fluorescent group into the aniline, the aggregates formed through azo coupling reaction induced macromolecular self-assembly showed enzyme-triggered fluorescent behaviors.
Collapse
Affiliation(s)
- Shang Li
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, China
| | - Jilei Wang
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, China
| | - Jiajia Shen
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, China
| | - Bing Wu
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, China
| | - Yaning He
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
45
|
Guragain S, Perez-Mercader J. Light-mediated one-pot synthesis of an ABC triblock copolymer in aqueous solution via RAFT and the effect of pH on copolymer self-assembly. Polym Chem 2018. [DOI: 10.1039/c8py00775f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the triblock copolymer self-assembly resulting into different morphologies that occurred during the polymerization of a hydrophobic third block in aqueous solution.
Collapse
Affiliation(s)
- Sudhina Guragain
- Department of Earth and Planetary Science
- Origin of Life Initiative
- Harvard University
- Cambridge
- USA
| | - Juan Perez-Mercader
- Department of Earth and Planetary Science
- Origin of Life Initiative
- Harvard University
- Cambridge
- USA
| |
Collapse
|