1
|
Matange K, Rajaei V, Capera-Aragones P, Costner JT, Robertson A, Kim JS, Petrov AS, Bowman JC, Williams LD, Frenkel-Pinter M. Evolution of complex chemical mixtures reveals combinatorial compression and population synchronicity. Nat Chem 2025; 17:590-597. [PMID: 39939341 DOI: 10.1038/s41557-025-01734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/06/2025] [Indexed: 02/14/2025]
Abstract
Many open questions about the origins of life are centred on the generation of complex chemical species. Past work has characterized specific chemical reactions that might lead to biological molecules. Here we establish an experimental model of chemical evolution to investigate general processes by which chemical systems continuously change. We used water as a chemical reactant, product and medium. We leveraged oscillating water activity at near-ambient temperatures to cause ratcheting of near-equilibrium reactions in mixtures of organic molecules containing carboxylic acids, amines, thiols and hydroxyl groups. Our system (1) undergoes continuous change with transitions to new chemical spaces while not converging throughout the experiment; (2) demonstrates combinatorial compression with stringent chemical selection; and (3) displays synchronicity of molecular populations. Our results suggest that chemical evolution and selection can be observed in organic mixtures and might ultimately be adapted to produce a broad array of molecules with novel structures and functions.
Collapse
Affiliation(s)
- Kavita Matange
- NASA Center for Integration of the Origins of Life, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vahab Rajaei
- NASA Center for Integration of the Origins of Life, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pau Capera-Aragones
- NASA Center for Integration of the Origins of Life, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - John T Costner
- NASA Center for Integration of the Origins of Life, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adelaide Robertson
- NASA Center for Integration of the Origins of Life, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jennifer Seoyoung Kim
- NASA Center for Integration of the Origins of Life, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anton S Petrov
- NASA Center for Integration of the Origins of Life, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- NSF-NASA Center of Chemical Evolution, Atlanta, GA, USA
| | - Jessica C Bowman
- NASA Center for Integration of the Origins of Life, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- NSF-NASA Center of Chemical Evolution, Atlanta, GA, USA
| | - Loren Dean Williams
- NASA Center for Integration of the Origins of Life, Atlanta, GA, USA.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
- NSF-NASA Center of Chemical Evolution, Atlanta, GA, USA.
| | - Moran Frenkel-Pinter
- NASA Center for Integration of the Origins of Life, Atlanta, GA, USA.
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Wang CH, Jhang YY, Yu SS. Catalytic peptide/hemin complex from ester-amide exchange reaction mediated by deep eutectic solvents. RSC Adv 2025; 15:119-123. [PMID: 39758916 PMCID: PMC11694504 DOI: 10.1039/d4ra08607d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
The functions of peptides often emerge upon their self-assembly or binding with other co-factors. However, the synthetic complexity makes these functional peptides intractable. Here, we utilize the ester-amide exchange reaction in deep eutectic solvents to generate peptide libraries from unactivated amino acids. This strategy leads to peptide mixtures that exhibit hemin-binding capability and peroxidase-like activity.
Collapse
Affiliation(s)
- Cheng-Hsi Wang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Yao-Yu Jhang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
- Core Facility Center, National Cheng Kung University Tainan 70101 Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University Tainan 70101 Taiwan
| |
Collapse
|
3
|
Edri R, Williams LD, Frenkel-Pinter M. From Catalysis of Evolution to Evolution of Catalysis. Acc Chem Res 2024; 57:3081-3092. [PMID: 39373892 PMCID: PMC11542150 DOI: 10.1021/acs.accounts.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The mystery of the origins of life is one of the most difficult yet intriguing challenges to which humanity has grappled. How did biopolymers emerge in the absence of enzymes (evolved biocatalysts), and how did long-lasting chemical evolution find a path to the highly selective complex biology that we observe today? In this paper, we discuss a chemical framework that explores the very roots of catalysis, demonstrating how standard catalytic activity based on chemical and physical principles can evolve into complex machineries. We provide several examples of how prebiotic catalysis by small molecules can be exploited to facilitate polymerization, which in biology has transformed the nature of catalysis. Thus, catalysis evolved, and evolution was catalyzed, during the transformation of prebiotic chemistry to biochemistry. Traditionally, a catalyst is defined as a substance that (i) speeds up a chemical reaction by lowering activation energy through different chemical mechanisms and (ii) is not consumed during the course of the reaction. However, considering prebiotic chemistry, which involved a highly diverse chemical space (i.e., high number of potential reactants and products) and constantly changing environment that lacked highly sophisticated catalytic machinery, we stress here that a more primitive, broader definition should be considered. Here, we consider a catalyst as any chemical species that lowers activation energy. We further discuss various demonstrations of how simple prebiotic molecules such as hydroxy acids and mercaptoacids promote the formation of peptide bonds via energetically favored exchange reactions. Even though the small molecules are partially regenerated and partially retained within the resulting oligomers, these prebiotic catalysts fulfill their primary role. Catalysis by metal ions and in complex chemical mixtures is also highlighted. We underline how chemical evolution is primarily dictated by kinetics rather than thermodynamics and demonstrate a novel concept to support this notion. Moreover, we propose a new perspective on the role of water in prebiotic catalysis. The role of water as simply a "medium" obscures its importance as an active participant in the chemistry of life, specifically as a very efficient catalyst and as a participant in many chemical transformations. Here we highlight the unusual contribution of water to increasing complexification over the course of chemical evolution. We discuss possible pathways by which prebiotic catalysis promoted chemical selection and complexification. Taken together, this Account draws a connection line between prebiotic catalysis and contemporary biocatalysis and demonstrates that the fundamental elements of chemical catalysis are embedded within today's biocatalysts. This Account illustrates how the evolution of catalysis was intertwined with chemical evolution from the very beginning.
Collapse
Affiliation(s)
- Rotem Edri
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Loren Dean Williams
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- Center
for the Origins of Life, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Moran Frenkel-Pinter
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
4
|
Rezaeerod K, Heinzmann H, Torrence AV, Patel J, Forsythe JG. Qualitative Monitoring of Proto-Peptide Condensation by Differential FTIR Spectroscopy. ACS EARTH & SPACE CHEMISTRY 2024; 8:937-944. [PMID: 38774359 PMCID: PMC11103710 DOI: 10.1021/acsearthspacechem.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
Condensation processes such as wet-dry cycling are thought to have played significant roles in the emergence of proto-peptides. Here, we describe a simple and low-cost method, differential Fourier transform infrared (FTIR) spectroscopy, for qualitative analysis of peptide condensation products in model primordial reactions. We optimize differential FTIR for depsipeptides and apply this method to investigate their polymerization in the presence of extraterrestrial dust simulants.
Collapse
Affiliation(s)
- Keon Rezaeerod
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| | - Hanna Heinzmann
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
- Analytical
and Bioanalytical Chemistry, Aalen University, 73430 Aalen, Germany
| | - Alexis V. Torrence
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| | - Jui Patel
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| | - Jay G. Forsythe
- Department
of Chemistry and Biochemistry, College of
Charleston, Charleston, South Carolina 29424, United States
| |
Collapse
|
5
|
Rangachari V. Biomolecular condensates - extant relics or evolving microcompartments? Commun Biol 2023; 6:656. [PMID: 37344557 PMCID: PMC10284869 DOI: 10.1038/s42003-023-04963-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Unprecedented discoveries during the past decade have unearthed the ubiquitous presence of biomolecular condensates (BCs) in diverse organisms and their involvement in a plethora of biological functions. A predominant number of BCs involve coacervation of RNA and proteins that demix from homogenous solutions by a process of phase separation well described by liquid-liquid phase separation (LLPS), which results in a phase with higher concentration and density from the bulk solution. BCs provide a simple and effective means to achieve reversible spatiotemporal control of cellular processes and adaptation to environmental stimuli in an energy-independent manner. The journey into the past of this phenomenon provides clues to the evolutionary origins of life itself. Here I assemble some current and historic discoveries on LLPS to contemplate whether BCs are extant biological hubs or evolving microcompartments. I conclude that BCs in biology could be extant as a phenomenon but are co-evolving as functionally and compositionally complex microcompartments in cells alongside the membrane-bound organelles.
Collapse
Affiliation(s)
- Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences and Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39402, USA.
| |
Collapse
|
6
|
C M, Frenkel-Pinter M, Smith KH, Rivera-Santana VF, Sargon AB, Jacobson KC, Guzman-Martinez A, Williams LD, Leman LJ, Liotta CL, Grover MA, Hud NV. Water-Based Dynamic Depsipeptide Chemistry: Building Block Recycling and Oligomer Distribution Control Using Hydration-Dehydration Cycles. JACS AU 2022; 2:1395-1404. [PMID: 35783166 PMCID: PMC9241005 DOI: 10.1021/jacsau.2c00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The high kinetic barrier to amide bond formation has historically placed narrow constraints on its utility in reversible chemistry applications. Slow kinetics has limited the use of amides for the generation of diverse combinatorial libraries and selection of target molecules. Current strategies for peptide-based dynamic chemistries require the use of nonpolar co-solvents or catalysts or the incorporation of functional groups that facilitate dynamic chemistry between peptides. In light of these limitations, we explored the use of depsipeptides: biorelevant copolymers of amino and hydroxy acids that would circumvent the challenges associated with dynamic peptide chemistry. Here, we describe a model system of N-(α-hydroxyacyl)-amino acid building blocks that reversibly polymerize to form depsipeptides when subjected to two-step evaporation-rehydration cycling under moderate conditions. The hydroxyl groups of these units allow for dynamic ester chemistry between short peptide segments through unmodified carboxyl termini. Selective recycling of building blocks is achieved by exploiting the differential hydrolytic lifetimes of depsipeptide amide and ester bonds, which we show are controllable by adjusting the solution pH, temperature, and time as well as the building blocks' side chains. We demonstrate that the polymerization and breakdown of the depsipeptides are facilitated by cyclic morpholinedione intermediates, and further show how structural properties dictate half-lives and product oligomer distributions using multifunctional building blocks. These results establish a cyclic mode of ester-based reversible depsipeptide formation that temporally separates the polymerization and depolymerization steps for the building blocks and may have implications for prebiotic polymer chemical evolution.
Collapse
Affiliation(s)
- Martin C
- NSF/NASA
Center for Chemical Evolution, Atlanta, Georgia 30332, United States
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- NSF/NASA
Center for Chemical Evolution, Atlanta, Georgia 30332, United States
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kelvin H. Smith
- NSF/NASA
Center for Chemical Evolution, Atlanta, Georgia 30332, United States
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | - Alyssa B. Sargon
- NSF/NASA
Center for Chemical Evolution, Atlanta, Georgia 30332, United States
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kaitlin C. Jacobson
- NSF/NASA
Center for Chemical Evolution, Atlanta, Georgia 30332, United States
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | - Loren Dean Williams
- NSF/NASA
Center for Chemical Evolution, Atlanta, Georgia 30332, United States
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Luke J. Leman
- NSF/NASA
Center for Chemical Evolution, Atlanta, Georgia 30332, United States
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Charles L. Liotta
- NSF/NASA
Center for Chemical Evolution, Atlanta, Georgia 30332, United States
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Martha A. Grover
- NSF/NASA
Center for Chemical Evolution, Atlanta, Georgia 30332, United States
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nicholas V. Hud
- NSF/NASA
Center for Chemical Evolution, Atlanta, Georgia 30332, United States
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Evolution of Realistic Organic Mixtures for the Origins of Life through Wet–Dry Cycling. SCI 2022. [DOI: 10.3390/sci4020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One of the challenges in understanding chemical evolution is the large number of starting organics and environments that were plausible on early Earth. Starting with realistic organic mixtures and using chemical analyses that are not biologically biased, understanding the interplay between organic composition and environment can be approached using statistical analysis. In this work, a mixture of 73 organics was cycled through dehydrating conditions five times, considering environmental parameters of pH, salinity, and rehydration solution. Products were analyzed by HPLC, amide and ester assays, and phosphatase and esterase assays. While all environmental factors were found to influence chemical evolution, salinity was found to play a large role in the evolution of these mixtures, with samples diverging at very high sea salt concentrations. This framework should be expanded and formalized to improve our understanding of abiogenesis.
Collapse
|
8
|
Tsai YT, Huang CW, Yu SS. The effect of temperature on the kinetics of enhanced amide bond formation from lactic acid and valine driven by deep eutectic solvents. Phys Chem Chem Phys 2021; 23:27498-27507. [PMID: 34874376 DOI: 10.1039/d1cp03243g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents have been found to facilitate the copolymerization of hydroxy acids and amino acids through an ester-amide exchange reaction, and to drive the formation of amino acid-enriched oligomers with peptide backbones. The complexity of oligomer distribution is significantly reduced in deep eutectic solvents and amide-linked oligomers can be selectively produced. In the present study, we investigated the kinetics of amide bond formation in deep eutectic solvents to understand how the solvents regulate the pathways of complex copolymerization. A mathematical model successfully simulated the reaction of a lactic acid/valine mixture in deep eutectic solvents at different temperatures and provided insight into the activation energy of each step. Our findings indicated that the esterification and the evaporation of hydroxy acids were greatly suppressed in deep eutectic solvents because of the strong interaction between the quaternary ammonium salts and the hydroxy acids. In contrast, the ester-amide exchange reaction in deep eutectic solvents was significantly enhanced by lowering the activation entropies. The synergic effect of reduced esterification and increased exchange leads to amino acid-enriched oligomers with high yield and high selectivity. Furthermore, the reduced evaporation of hydroxy acids in deep eutectic solvents may preserve limited reactants in the prebiotic scenario. These results reveal deep eutectic solvents as sustainable media for the simple synthesis of amide bonds.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Cong-Wei Huang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan. .,Core Facility Center, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
9
|
Hazra B, Prasad M, Roy R, Tarafdar PK. The microenvironment and p Ka perturbation of aminoacyl-tRNA guided the selection of cationic amino acids. Org Biomol Chem 2021; 19:8049-8056. [PMID: 34505850 DOI: 10.1039/d1ob00798j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proteinogenic lysine (Lys) and arginine (Arg) have multiple methylene groups between α-carbon and the terminal charged centre. Why nature did not select ornithine (Orn), 2,4-diamino butyric acid (Dab) and 2,3-diamino propionic acid (Dpr) with fewer methylene groups in the side chain remains an important question! The propensity of aminoacyl-tRNA (aa-tRNA) model substrates towards self-degradation via intramolecular lactamization was studied using UV spectroscopy and 1H-NMR titration, which showed that Lys and Arg remain stable, and Orn and Dab cyclize to lactam. Hydrophobicity-assisted surface mediated model peptide formation highlighted that the microenvironment and pKa perturbation led to poor regioselectivity (α-amine vs. terminal amine) in Dpr and other non-proteinogenic analogues. The α-selectivity became even poorer in the presence of phosphate, making them ill-suited for peptide synthesis. Superior regioselectivity of the Lys aa-tRNA model substrate suggests that the extra methylene bridge helped nature to separate the microenvironments of the α-amine and ε-amine to synthesize the peptide backbone.
Collapse
Affiliation(s)
- Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, PIN-741246, India.
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, PIN-741246, India.
| | - Rajat Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, PIN-741246, India.
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, PIN-741246, India.
| |
Collapse
|
10
|
Fialho DM, Karunakaran SC, Greeson KW, Martínez I, Schuster GB, Krishnamurthy R, Hud NV. Depsipeptide Nucleic Acids: Prebiotic Formation, Oligomerization, and Self-Assembly of a New Proto-Nucleic Acid Candidate. J Am Chem Soc 2021; 143:13525-13537. [PMID: 34398608 DOI: 10.1021/jacs.1c02287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanism by which informational polymers first formed on the early earth is currently unknown. The RNA world hypothesis implies that RNA oligomers were produced prebiotically, before the emergence of enzymes, but the demonstration of such a process remains challenging. Alternatively, RNA may have been preceded by an earlier ancestral polymer, or proto-RNA, that had a greater propensity for self-assembly than RNA, with the eventual transition to functionally superior RNA being the result of chemical or biological evolution. We report a new class of nucleic acid analog, depsipeptide nucleic acid (DepsiPNA), which displays several properties that are attractive as a candidate for proto-RNA. The monomers of depsipeptide nucleic acids can form under plausibly prebiotic conditions. These monomers oligomerize spontaneously when dried from aqueous solutions to form nucleobase-functionalized depsipeptides. Once formed, these DepsiPNA oligomers are capable of complementary self-assembly and are resistant to hydrolysis in the assembled state. These results suggest that the initial formation of primitive, self-assembling, informational polymers on the early earth may have been relatively facile if the constraints of an RNA-first scenario are relaxed.
Collapse
Affiliation(s)
- David M Fialho
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Suneesh C Karunakaran
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katherine W Greeson
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Isaac Martínez
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gary B Schuster
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ramanarayanan Krishnamurthy
- NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Nicholas V Hud
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Chu XY, Chen SM, Zhao KW, Tian T, Gao J, Zhang HY. Plausibility of Early Life in a Relatively Wide Temperature Range: Clues from Simulated Metabolic Network Expansion. Life (Basel) 2021; 11:738. [PMID: 34440482 PMCID: PMC8398716 DOI: 10.3390/life11080738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/29/2023] Open
Abstract
The debate on the temperature of the environment where life originated is still inconclusive. Metabolic reactions constitute the basis of life, and may be a window to the world where early life was born. Temperature is an important parameter of reaction thermodynamics, which determines whether metabolic reactions can proceed. In this study, the scale of the prebiotic metabolic network at different temperatures was examined by a thermodynamically constrained network expansion simulation. It was found that temperature has limited influence on the scale of the simulated metabolic networks, implying that early life may have occurred in a relatively wide temperature range.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (X.-Y.C.); (S.-M.C.); (K.-W.Z.); (T.T.); (J.G.)
| |
Collapse
|
12
|
Frenkel-Pinter M, Sargon AB, Glass JB, Hud NV, Williams LD. Transition metals enhance prebiotic depsipeptide oligomerization reactions involving histidine. RSC Adv 2021; 11:3534-3538. [PMID: 35424306 PMCID: PMC8694183 DOI: 10.1039/d0ra07965k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022] Open
Abstract
Biochemistry exhibits an intense dependence on metals. Here we show that during dry-down reactions, zinc and a few other transition metals increase the yield of long histidine-containing depsipeptides, which contain both ester and amide linkages. Our results suggest that interactions of proto-peptides with metal ions influenced early chemical evolution. Transition metals enhance prebiotic proto-peptide oligomerization reactions through direct association with histidine.![]()
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution USA .,School of Chemistry & Biochemistry, Georgia Institute of Technology Atlanta GA 30332 USA.,NASA Center for the Origins of Life, Georgia Institute of Technology Atlanta GA 30332 USA
| | - Alyssa B Sargon
- NSF/NASA Center for Chemical Evolution USA .,School of Chemistry & Biochemistry, Georgia Institute of Technology Atlanta GA 30332 USA
| | - Jennifer B Glass
- NASA Center for the Origins of Life, Georgia Institute of Technology Atlanta GA 30332 USA.,School of Earth and Atmospheric Science, Georgia Institute of Technology Atlanta GA 30332 USA
| | - Nicholas V Hud
- NSF/NASA Center for Chemical Evolution USA .,School of Chemistry & Biochemistry, Georgia Institute of Technology Atlanta GA 30332 USA.,NASA Center for the Origins of Life, Georgia Institute of Technology Atlanta GA 30332 USA
| | - Loren Dean Williams
- NSF/NASA Center for Chemical Evolution USA .,School of Chemistry & Biochemistry, Georgia Institute of Technology Atlanta GA 30332 USA.,NASA Center for the Origins of Life, Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
13
|
Chien CY, Yu SS. Ester-mediated peptide formation promoted by deep eutectic solvents: a facile pathway to proto-peptides. Chem Commun (Camb) 2020; 56:11949-11952. [PMID: 32929424 DOI: 10.1039/d0cc03319g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ester-amide exchange reaction enables spontaneous formation of prebiotic proto-peptides under mild conditions. However, this reaction also leads to oligomers with a vast sequence diversity of ester and amide linkages. Here, we demonstrate using deep eutectic solvents as a universal strategy to regulate the reaction pathways and promote the formation of amino acid-enriched oligomers with peptide backbones.
Collapse
Affiliation(s)
- Chen-Yu Chien
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City, 70101, Taiwan, Republic of China.
| | | |
Collapse
|
14
|
Parker ET, Karki M, Glavin DP, Dworkin JP, Krishnamurthy R. A sensitive quantitative analysis of abiotically synthesized short homopeptides using ultraperformance liquid chromatography and time-of-flight mass spectrometry. J Chromatogr A 2020; 1630:461509. [PMID: 32927393 DOI: 10.1016/j.chroma.2020.461509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/04/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
In the origins of life field understanding the abiotic polymerization of simple organic monomers (e.g., amino acids) into larger biomolecules (e.g., oligopeptides), remains a seminal challenge. Recently, preliminary observations showed a limited set of peptides formed in the presence of the plausible prebiotic phosphorylating agent, diamidophosphate (DAP), highlighting the need for an analytical tool to critically evaluate the ability of DAP to induce oligomerization of simple organics under aqueous conditions. However, performing accurate and precise, targeted analyses of short oligopeptides remains a distinct challenge in the analytical chemistry field. Here, we developed a new technique to detect and quantitate amino acids and their homopeptides in a single run using ultraperformance liquid chromatography-fluorescence detection/time of flight mass spectrometry. Over an 8-minute retention time window, 18 target analytes were identified and quantitated, 16 of which were chromatographically separated at, or near baseline resolution. Compound identity was confirmed by accurate mass analysis using a 10 ppm mass tolerance window. This method featured limits of detection < 5 nM (< 1 fmol on column) and limits of quantitation (LOQs) <15 nM (< 3 fmol on column). The LODs and LOQs were upwards of ∼28x and ∼788x lower, respectively, than previous methods for the same analytes, highlighting the quantifiable advantages of this new method. Both detectors provided good quantitative linearity (R2 > 0.985) for all analytes spanning concentration ranges ∼3 - 4 orders of magnitude. We performed a series of laboratory experiments to investigate DAP-mediated oligomerization of amino acids and peptides and analyzed experimental products with the new method. DAP readily polymerized amino acids and peptides under a range of simulated environmental conditions. This research underscores the potential of DAP to have generated oligopeptides on the primordial Earth, enhancing prebiotic chemical diversity and complexity at or near the origin of life.
Collapse
Affiliation(s)
- Eric T Parker
- NASA Goddard Space Flight Center, Solar System Exploration Division, 8800 Greenbelt Road, Greenbelt, MD 20771, United States
| | - Megha Karki
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, 8800 Greenbelt Road, Greenbelt, MD 20771, United States
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Solar System Exploration Division, 8800 Greenbelt Road, Greenbelt, MD 20771, United States.
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
15
|
Damer B, Deamer D. The Hot Spring Hypothesis for an Origin of Life. ASTROBIOLOGY 2020; 20:429-452. [PMID: 31841362 PMCID: PMC7133448 DOI: 10.1089/ast.2019.2045] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/23/2019] [Indexed: 05/05/2023]
Abstract
We present a testable hypothesis related to an origin of life on land in which fluctuating volcanic hot spring pools play a central role. The hypothesis is based on experimental evidence that lipid-encapsulated polymers can be synthesized by cycles of hydration and dehydration to form protocells. Drawing on metaphors from the bootstrapping of a simple computer operating system, we show how protocells cycling through wet, dry, and moist phases will subject polymers to combinatorial selection and draw structural and catalytic functions out of initially random sequences, including structural stabilization, pore formation, and primitive metabolic activity. We propose that protocells aggregating into a hydrogel in the intermediate moist phase of wet-dry cycles represent a primitive progenote system. Progenote populations can undergo selection and distribution, construct niches in new environments, and enable a sharing network effect that can collectively evolve them into the first microbial communities. Laboratory and field experiments testing the first steps of the scenario are summarized. The scenario is then placed in a geological setting on the early Earth to suggest a plausible pathway from life's origin in chemically optimal freshwater hot spring pools to the emergence of microbial communities tolerant to more extreme conditions in dilute lakes and salty conditions in marine environments. A continuity is observed for biogenesis beginning with simple protocell aggregates, through the transitional form of the progenote, to robust microbial mats that leave the fossil imprints of stromatolites so representative in the rock record. A roadmap to future testing of the hypothesis is presented. We compare the oceanic vent with land-based pool scenarios for an origin of life and explore their implications for subsequent evolution to multicellular life such as plants. We conclude by utilizing the hypothesis to posit where life might also have emerged in habitats such as Mars or Saturn's icy moon Enceladus. "To postulate one fortuitously catalyzed reaction, perhaps catalyzed by a metal ion, might be reasonable, but to postulate a suite of them is to appeal to magic." -Leslie Orgel.
Collapse
Affiliation(s)
- Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| |
Collapse
|
16
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Deamer D, Damer B, Kompanichenko V. Hydrothermal Chemistry and the Origin of Cellular Life. ASTROBIOLOGY 2019; 19:1523-1537. [PMID: 31596608 DOI: 10.1089/ast.2018.1979] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two processes required for life's origin are condensation reactions that produce essential biopolymers by a nonenzymatic reaction, and self-assembly of membranous compartments that encapsulate the polymers into populations of protocells. Because life today thrives not just in the temperate ocean and lakes but also in extreme conditions of temperature, salinity, and pH, there is a general assumption that any form of liquid water would be sufficient to support the origin of life as long as there are sources of chemical energy and simple organic compounds. We argue here that the first forms of life would be physically and chemically fragile and would be strongly affected by ionic solutes and pH. A hypothesis emerges from this statement that hot springs associated with volcanic land masses have an ionic composition more conducive to self-assembly and polymerization than seawater. Here we have compared the ionic solutes of seawater with those of terrestrial hot springs. We then describe preliminary experimental results that show how the hypothesis can be tested in a prebiotic analog environment.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| | - Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| | | |
Collapse
|
18
|
Bouza M, Li A, Forsythe JG, Petrov A, Wang ZL, Fernández FM. Compositional characterization of complex protopeptide libraries via triboelectric nanogenerator Orbitrap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1293-1300. [PMID: 31021462 DOI: 10.1002/rcm.8469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/27/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Understanding of the molecular processes that led to the first biomolecules on Earth is one of the key aspects of origins-of-life research. Depsipeptides, or polymers with mixed amide and ester backbones, have been proposed as plausible prebiotic precursors for peptide formation. Chemical characterization of depsipeptides in complex prebiotic-like mixtures should benefit from more efficient ion sources and ultrahigh-resolution mass spectrometry (UHR-MS) for elemental composition elucidation. METHODS A sliding freestanding (SF) Triboelectric Nanogenerator (TENG) was coupled to glass nanoelectrospray emitters for the analysis of a depsipeptide library created using 11 amino acids and 3 alpha-hydroxy acids subjected to environmentally driven polymerization. The TENG nanoelectrospray ionization (nanoESI) source was coupled to an UHR Orbitrap mass spectrometer operated at 1,000,000 resolution for detecting depsipeptides and oligoesters in such libraries. Tandem mass spectrometry (MS/MS) experiments were performed on an Orbitrap Q-Exactive mass spectrometer. RESULTS Our previous proteomics-like approach to depsipeptide library characterization showed the enormous complexity of these dynamic combinatorial systems. Here, direct infusion UHR-MS along with de novo sequencing enabled the identification of 524 sequences corresponding to 320 different depsipeptide compositions. Van Krevelen and mass defect diagrams enabled better visualization of the chemical diversity in these synthetic libraries. CONCLUSIONS TENG nanoESI coupled to UHR-MS is a powerful method for depsipeptide library characterization in an origins-of-life context.
Collapse
Affiliation(s)
- Marcos Bouza
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30033, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anyin Li
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30033, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jay G Forsythe
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA
| | - Anton Petrov
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30033, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Facundo M Fernández
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, 30033, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
19
|
Frenkel-Pinter M, Haynes JW, C M, Petrov AS, Burcar BT, Krishnamurthy R, Hud NV, Leman LJ, Williams LD. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc Natl Acad Sci U S A 2019; 116:16338-16346. [PMID: 31358633 PMCID: PMC6697887 DOI: 10.1073/pnas.1904849116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous long-standing questions in origins-of-life research center on the history of biopolymers. For example, how and why did nature select the polypeptide backbone and proteinaceous side chains? Depsipeptides, containing both ester and amide linkages, have been proposed as ancestors of polypeptides. In this paper, we investigate cationic depsipeptides that form under mild dry-down reactions. We compare the oligomerization of various cationic amino acids, including the cationic proteinaceous amino acids (lysine, Lys; arginine, Arg; and histidine, His), along with nonproteinaceous analogs of Lys harboring fewer methylene groups in their side chains. These analogs, which have been discussed as potential prebiotic alternatives to Lys, are ornithine, 2,4-diaminobutyric acid, and 2,3-diaminopropionic acid (Orn, Dab, and Dpr). We observe that the proteinaceous amino acids condense more extensively than these nonproteinaceous amino acids. Orn and Dab readily cyclize into lactams, while Dab and Dpr condense less efficiently. Furthermore, the proteinaceous amino acids exhibit more selective oligomerization through their α-amines relative to their side-chain groups. This selectivity results in predominantly linear depsipeptides in which the amino acids are α-amine-linked, analogous to today's proteins. These results suggest a chemical basis for the selection of Lys, Arg, and His over other cationic amino acids for incorporation into proto-proteins on the early Earth. Given that electrostatics are key elements of protein-RNA and protein-DNA interactions in extant life, we hypothesize that cationic side chains incorporated into proto-peptides, as reported in this study, served in a variety of functions with ancestral nucleic acid polymers in the early stages of life.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jay W Haynes
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Martin C
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anton S Petrov
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| | - Bradley T Burcar
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Ramanarayanan Krishnamurthy
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicholas V Hud
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Luke J Leman
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332;
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Loren Dean Williams
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332;
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
20
|
Campbell T, Febrian R, Kleinschmidt HE, Smith KA, Bracher PJ. Quantitative Analysis of Glycine Oligomerization by Ion-Pair Chromatography. ACS OMEGA 2019; 4:12745-12752. [PMID: 31460397 PMCID: PMC6681977 DOI: 10.1021/acsomega.9b01492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
This paper describes a method for the quantitative analysis of mixtures of glycine and its oligomers by ion-pair high-performance liquid chromatography (IP-HPLC), with a particular focus on applications in origins-of-life research. We demonstrate the identification of glycine oligomers (Gly n ) up to 14 residues long-the approximate detectable limit of their solubility in water-and measurement of the concentration of these species in the product mixture of an oligomerization reaction. The molar response factors for higher oligomers of glycine-which are impractical to obtain as pure samples-are extrapolated from direct analysis of pure standards of n = 3-6, which established a clear linear trend. We compare and contrast our method to those in previous reports with respect to accuracy and practicality. While the data reported here are specific to the analysis of oligomers of glycine, the approach should be applicable to the design of methods for the analysis of oligomerization of other amino acids.
Collapse
|
21
|
Doran D, Abul‐Haija YM, Cronin L. Emergence of Function and Selection from Recursively Programmed Polymerisation Reactions in Mineral Environments. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Doran
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| | | | - Leroy Cronin
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
22
|
Doran D, Abul-Haija YM, Cronin L. Emergence of Function and Selection from Recursively Programmed Polymerisation Reactions in Mineral Environments. Angew Chem Int Ed Engl 2019; 58:11253-11256. [PMID: 31206983 PMCID: PMC6772075 DOI: 10.1002/anie.201902287] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/21/2019] [Indexed: 01/06/2023]
Abstract
Living systems are characterised by an ability to sustain chemical reaction networks far-from-equilibrium. It is likely that life first arose through a process of continual disruption of equilibrium states in recursive reaction networks, driven by periodic environmental changes. Herein, we report the emergence of proto-enzymatic function from recursive polymerisation reactions using amino acids and glycolic acid. Reactions were kept out of equilibrium by diluting products 9:1 in fresh starting solution at the end of each recursive cycle, and the development of complex high molecular weight species is explored using a new metric, the Mass Index, which allows the complexity of the system to be explored as a function of cycle. This process was carried out on a range of different mineral environments. We explored the hypothesis that disrupting equilibrium via recursive cycling imposes a selection pressure and subsequent boundary conditions on products. After just four reaction cycles, product mixtures from recursive reactions exhibit greater catalytic activity and truncation of product space towards higher-molecular-weight species compared to non-recursive controls.
Collapse
Affiliation(s)
- David Doran
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
23
|
Matveev VV. Cell theory, intrinsically disordered proteins, and the physics of the origin of life. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:114-130. [PMID: 30965040 DOI: 10.1016/j.pbiomolbio.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/30/2022]
Abstract
Cell theory, as formulated by Theodor Schwann in 1839, introduced the idea that the cell is the main structural unit of living nature. Later, in solving the problem of cell multiplication, Rudolf Virchow expanded the cell theory with a postulate: all cells only arise from pre-existing cells. But what did the very first cell arise from? This paper proposes extending the Virchow's law by the assumption that between the nonliving protocell and the first living cell the continuity of fundamental physical properties (the principle of invariance of physical properties) is preserved. The protocell is understood here as a cell-shaped physical system on the basis of the self-organized biologically significant prebiotic macromolecules, primarily peptides, having a potential to transform into the living cell. Biophase is considered as the physical basis of the membraneless protocell, the internal environment of which is separated from the external environment due to the phase of adsorbed water. The evidence is given that the first protocells may have been formed on the basis of intrinsically disordered peptides. Data on the similarity of the physical properties of living cells and the following model systems are given: protein and artificial polymer solutions, coacervate droplets, and ion-exchange resin granules. Available data on the similarity of the physical properties of cell models and living cells allow us to rephrase the Virchow's postulate as follows: the physical properties of a living cell could only arise from pre-existing physical properties of the protocell.
Collapse
Affiliation(s)
- Vladimir V Matveev
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
24
|
McKee AD, Solano M, Saydjari A, Bennett CJ, Hud NV, Orlando TM. A Possible Path to Prebiotic Peptides Involving Silica and Hydroxy Acid‐Mediated Amide Bond Formation. Chembiochem 2018; 19:1913-1917. [DOI: 10.1002/cbic.201800217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Aaron D. McKee
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Martin Solano
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Andrew Saydjari
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
| | - Christopher J. Bennett
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
- Department of Physics University of Central Florida Physical Sciences Bldg. 430 4111 Libra Drive Orlando FL 32816 USA
| | - Nicholas V. Hud
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Thomas M. Orlando
- NSF/NASA Center for Chemical Evolution 901 Atlantic Drive Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| |
Collapse
|
25
|
Forsythe JG, English SL, Simoneaux RE, Weber AL. Synthesis of β-Peptide Standards for Use in Model Prebiotic Reactions. ORIGINS LIFE EVOL B 2018; 48:201-211. [PMID: 29796877 DOI: 10.1007/s11084-018-9558-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
A one-pot method was developed for the preparation of a series of β-alanine standards of moderate size (2 to ≥12 residues) for studies concerning the prebiotic origins of peptides. The one-pot synthesis involved two sequential reactions: (1) dry-down self-condensation of β-alanine methyl ester, yielding β-alanine peptide methyl ester oligomers, and (2) subsequent hydrolysis of β-alanine peptide methyl ester oligomers, producing a series of β-alanine peptide standards. These standards were then spiked into a model prebiotic product mixture to confirm by HPLC the formation of β-alanine peptides under plausible reaction conditions. The simplicity of this approach suggests it can be used to prepare a variety of β-peptide standards for investigating differences between α- and β-peptides in the context of prebiotic chemistry.
Collapse
Affiliation(s)
- Jay G Forsythe
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA
| | - Sloane L English
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA
| | - Rachel E Simoneaux
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA
| | - Arthur L Weber
- Ames Research Center, SETI Institute, Mail Stop 239-4, Moffett Field, CA, 94035, USA.
| |
Collapse
|