1
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
2
|
Angelopoulou PP, Moutsios I, Manesi GM, Ivanov DA, Sakellariou G, Avgeropoulos A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Hung CC, Lin YC, Chuang TH, Chiang YC, Chiu YC, Mumtaz M, Borsali R, Chen WC. Harnessing of Spatially Confined Perovskite Nanocrystals Using Polysaccharide-based Block Copolymer Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30279-30289. [PMID: 35737998 DOI: 10.1021/acsami.2c09296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal halide perovskite nanocrystals (PVSK NCs) are generally unstable upon their transfer from colloidal dispersions to thin film devices. This has been a major obstacle limiting their widespread application. In this study, we proposed a new approach to maintain their exceptional optoelectronic properties during this transfer by dispersing brightly emitting cesium lead halide PVSK NCs in polysaccharide-based maltoheptaose-block-polyisoprene-block-maltoheptaose (MH-b-PI-b-MH) triblock copolymer (BCP) matrices. Instantaneous crystallization of ion precursors with favorable coordination to the sugar (maltoheptaose) domains produced ordered NCs with varied nanostructures of controlled domain size (≈10-20 nm). Confining highly ordered and low dimension PVSK NCs in polysaccharide-based BCPs constituted a powerful tool to control the self-assembly of BCPs and PVSK NCs into predictable structures. Consequently, the hybrid thin films exhibited excellent durability to humidity and stretchability with a relatively high PL intensity and photoluminescence quantum yield (>70%). Furthermore, stretchable phototransistor memory devices were produced and maintained with a good memory ratio of 105 and exhibited a long-term memory retention over 104 s at a high strain of 100%.
Collapse
Affiliation(s)
- Chih-Chien Hung
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tsung-Han Chuang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Cheng Chiu
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Muhammad Mumtaz
- University Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | | | - Wen-Chang Chen
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Hu XH, Xiong S. Fabrication of Nanodevices Through Block Copolymer Self-Assembly. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.762996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Block copolymer (BCP) self-assembly, as a novel bottom-up patterning technique, has received increasing attention in the manufacture of nanodevices because of its significant advantages of high resolution, high throughput, low cost, and simple processing. BCP self-assembly provides a very powerful approach to constructing diverse nanoscale templates and patterns that meet large-scale manufacturing practices. For the past 20 years, the self-assembly of BCPs has been extensively employed to produce a range of nanodevices, such as nonvolatile memory, bit-patterned media (BPM), fin field-effect transistors (FinFETs), photonic nanodevices, solar cells, biological and chemical sensors, and ultrafiltration membranes, providing a variety of configurations for high-density integration and cost-efficient manufacturing. In this review, we summarize the recent progress in the fabrication of nanodevices using the templates of BCP self-assembly, and present current challenges and future opportunities.
Collapse
|
5
|
Self-assembly of carbohydrate-based block copolymer systems: glyconanoparticles and highly nanostructured thin films. Polym J 2022. [DOI: 10.1038/s41428-021-00604-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021; 21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Soft nanoparticles continue to offer a promising platform for the encapsulation and controlled delivery of poorly water-soluble drugs and help enhance their bioavailability at targeted sites. Linear amphiphilic block copolymers are the most extensively investigated in formulating delivery vehicles. However, more recently, there has been increasing interest in utilizing branched macromolecules for nanomedicine, as these have been shown to lower critical micelle concentrations, form particles of smaller dimensions, facilitate the inclusion of varied compositions and function-based entities, as well as provide prolonged and sustained release of cargo. In this review, it is aimed to discuss some of the key variables that are studied in tailoring branched architecture-based assemblies, and their influence on drug loading and delivery. By understanding structure-property relationships in these formulations, one can better design branched star polymers with suitable characteristics for efficient therapeutic interventions. The role played by polymer composition, chain architecture, crosslinking, stereocomplexation, compatibility between polymers and drugs, drug/polymer concentrations, and self-assembly methods in their performance as nanocarriers is highlighted.
Collapse
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec, H3A 0B8, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec, H3A 0B8, Canada
| |
Collapse
|
7
|
Lin YC, Chen CK, Chiang YC, Hung CC, Fu MC, Inagaki S, Chueh CC, Higashihara T, Chen WC. Study on Intrinsic Stretchability of Diketopyrrolopyrrole-Based π-Conjugated Copolymers with Poly(acryl amide) Side Chains for Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33014-33027. [PMID: 32536156 DOI: 10.1021/acsami.0c07496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of a π-conjugated polymer with hydrogen-bonding moieties has aroused great attention because of the improved molecular stacking and the hydrogen-bonding network. In this study, PDPPTVT (diketopyrrolopyrrole-thiophenevinylenethiophene) and PDPPSe (diketopyrrolopyrrole-selenophene) alkylated with a carbosilane (SiC8) side chain and poly(acryl amide) (PAM)-incorporated alkyl side chain were prepared, and their structure-performance and structure-stretchability correlation were evaluated. By incorporating the DPPTVT backbone and 0, 5, 10, or 20% PAM-incorporated alkyl side chain, the μh value could reach 2.0, 0.97, 0.74, and 0.42 cm2 V-1 s-1, respectively (P1 to P4). The polymer with the PDPPSe backbone and 5% PAM-incorporated alkyl side-chain (P5) exhibited the maximum μh value of 0.96 cm2 V-1 s-1. By extending the PAM moiety from the backbone with alkyl spacers, the solid-state packing and edge-on orientation can be properly maintained. Surprisingly, the PAM-incorporated alkyl side-chain can provide a hydrogen-bonding network serving as sacrificial bonding to mechanical deformation. Therefore, the relevant changes in the crystallographic parameters including the crystalline size and the in-plane π-π stacking distance with a 100% external strain were less than 4 and 0.8%, respectively, from P1 to P3. Therefore, P3 achieved an excellent stretchability while maintaining its molecular orientation and charge-transporting performance. Even with 100% external strain, P3 still provided an orthogonal μh over 0.1 cm2 V-1 s-1. Moreover, by substituting the TVT moiety with the Se moiety, the ductility of the backbone can be further increased when the elastic modulus decreases from 0.80 to 0.36 GPa for P2 to P5. The achieved high μh retention is over 20% after 500 stretching-releasing cycles with a 60% external strain perpendicular to the channel direction for the polymer composed of PDPPSe and 5% PAM content. The results manifest that our newly designed DPP with the PAM-incorporated alkyl side chain provides a promising approach to promote the intrinsic stretchability of the π-conjugated polymers.
Collapse
Affiliation(s)
- Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Chien Hung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Mao-Chun Fu
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shin Inagaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Hsu LC, Kobayashi S, Isono T, Chiang YC, Ree BJ, Satoh T, Chen WC. Highly Stretchable Semiconducting Polymers for Field-Effect Transistors through Branched Soft–Hard–Soft Type Triblock Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Li-Che Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Saburo Kobayashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Brian J. Ree
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wen-Chang Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Isono T, Nakahira S, Hsieh HC, Katsuhara S, Mamiya H, Yamamoto T, Chen WC, Borsali R, Tajima K, Satoh T. Carbohydrates as Hard Segments for Sustainable Elastomers: Carbohydrates Direct the Self-Assembly and Mechanical Properties of Fully Bio-Based Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Hui-Ching Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | - Hiroaki Mamiya
- National Institute for Materials Science, Tsukuba 305-0047, Japan
| | | | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
10
|
Zhang S, Wang Y, Yao X, Le Floch P, Yang X, Liu J, Suo Z. Stretchable Electrets: Nanoparticle-Elastomer Composites. NANO LETTERS 2020; 20:4580-4587. [PMID: 32412245 DOI: 10.1021/acs.nanolett.0c01434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Manipulating charges is fundamental to numerous systems, and this ability is achieved through materials of diverse characteristics. Electrets are dielectrics that trap charges or dipoles. Applications include electrophotography, microphones, air filters, and energy harvesters. To trap charges or dipoles for a long time, electrets are commonly made of hard dielectrics. Stretchable dielectrics are short-lived electrets. The two properties, longevity and stretchability, conflict; existing electrets struggle to attain both. This work describes an approach to developing stretchable electrets. Nanoparticles of a hard electret are immobilized in a matrix of dielectric elastomer. The composite divides the labor of two functions: the particles trap charges with longevity, and the matrix enables stretchability. The design considerably broadens the choice of materials to enable stretchable electrets. Silica nanoparticles in the polydimethylsiloxane elastomer achieve a charge density ∼ 4 × 10-5 C m-2 and a lifetime beyond 60 days. Long-lived, stretchable electrets open extensive opportunities.
Collapse
Affiliation(s)
- Shuwen Zhang
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, United States
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yecheng Wang
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xi Yao
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, United States
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China
| | - Paul Le Floch
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xuxu Yang
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, United States
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
11
|
Jiang DH, Kobayashi S, Jao CC, Mato Y, Isono T, Fang YH, Lin CC, Satoh T, Tung SH, Kuo CC. Light Down-Converter Based on Luminescent Nanofibers from the Blending of Conjugated Rod-Coil Block Copolymers and Perovskite through Electrospinning. Polymers (Basel) 2020; 12:E84. [PMID: 31947779 PMCID: PMC7023616 DOI: 10.3390/polym12010084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 12/03/2022] Open
Abstract
We demonstrated a novel strategy for the preparation of light down-converter by combining rod-coil block copolymers with perovskite quantum dots (QDs) through electrospinning. Reports have shown that polymer deformability can be enhanced by incorporating a soft segment and controlled by varying the rod/coil ratio. Therefore, we first synthesized the rod-coil block copolymer through the click reaction of polyfluorene (PF) and poly(n-butyl acrylate) (PBA). Next, the CsPbBr3@PF8k-b-PBA12k composite fibers were fabricated by blending perovskite through electrospinning. Optical spectral evidence demonstrated the success of the strategy, as light down-converters were prepared through the controlled variance of QD/polymer ratios to achieve tunable color and stretchability. This result reveals the potential of using rod-coil block copolymers to fabricate color-tunable perovskite light down-converters.
Collapse
Affiliation(s)
- Dai-Hua Jiang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (D.-H.J.); (C.-C.J.); (Y.-H.F.); (C.-C.L.)
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan
- Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; (S.K.); (Y.M.)
| | - Saburo Kobayashi
- Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; (S.K.); (Y.M.)
| | - Chih-Chun Jao
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (D.-H.J.); (C.-C.J.); (Y.-H.F.); (C.-C.L.)
| | - Yoshinobu Mato
- Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; (S.K.); (Y.M.)
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan;
| | - Yu-Han Fang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (D.-H.J.); (C.-C.J.); (Y.-H.F.); (C.-C.L.)
| | - Chun-Che Lin
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (D.-H.J.); (C.-C.J.); (Y.-H.F.); (C.-C.L.)
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan;
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (D.-H.J.); (C.-C.J.); (Y.-H.F.); (C.-C.L.)
| |
Collapse
|
12
|
Katsuhara S, Mamiya H, Yamamoto T, Tajima K, Isono T, Satoh T. Metallopolymer-block-oligosaccharide for sub-10 nm microphase separation. Polym Chem 2020. [DOI: 10.1039/d0py00271b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel high-χ BCPs comprising poly(vinyl ferrocene) and oligosaccharides formed hexagonal cylinder morphology with d values of ∼8 nm. Lamellar morphology with d values of ∼9 nm was also realized by mixing these polymers and glucose.
Collapse
Affiliation(s)
- Satoshi Katsuhara
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Hiroaki Mamiya
- National Institute for Materials Science
- Ibaraki 305-0047
- Japan
| | - Takuya Yamamoto
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Kenji Tajima
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Takuya Isono
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Toshifumi Satoh
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| |
Collapse
|
13
|
Lin YC, Chen FH, Chiang YC, Chueh CC, Chen WC. Asymmetric Side-Chain Engineering of Isoindigo-Based Polymers for Improved Stretchability and Applications in Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34158-34170. [PMID: 31441307 DOI: 10.1021/acsami.9b10943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thus far, there is still no study systematically investigating the influence of asymmetric side-chain design on a polymer's stretchability and its associated stretchable device applications. Herein, three kinds of asymmetric side chains consisting of carbosilane side chain (Si-C8), siloxane-terminated side chain (SiO-C8), and decyltetradecane side chain (DT) are engineered in isoindigo-bithiophene (PII2T, P1-P3) and isoindigo-difluorobithiophene (PII2TF, P4-P6) conjugated polymers, and their structure-stretchability correlation is explored in field-effect transistor characterization. It is revealed that owing to the geometric difference between the side chains, different asymmetric side-chain combinations impose distinct influences on the molecular stacking and orientation of the derived polymers. Surprisingly, the combination of asymmetric side chains and backbone fluorination is shown to deliver the best stretchability and mechanical durability of the derived polymer. Consequently, P6 consisting of asymmetric Si-C8/DT side chains and fluorinated backbone possesses the best mobility preservation of 81% at 100% strain with the stretching force perpendicular to the charge-transporting direction. Moreover, it presents 90% mobility retention after 400 stretching-releasing cycles with 60% strain, greatly exceeding the value (36%) of the non-fluorinated counterpart (P3). Our results suggest that the rational design of asymmetric side chains and backbone fluorination provides an efficient way to enhance the intrinsic stretchability of conjugated polymers.
Collapse
|
14
|
Ercan E, Tsai PC, Chen JY, Lam JY, Hsu LC, Chueh CC, Chen WC. Stretchable and Ambient Stable Perovskite/Polymer Luminous Hybrid Nanofibers of Multicolor Fiber Mats and Their White LED Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23605-23615. [PMID: 31252500 DOI: 10.1021/acsami.9b05527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the fabrication and optical/mechanical properties of perovskite/thermoplastic polyurethane (TPU)-based multicolor luminescent core-shell nanofibers and their large-scale fiber mats. One-step coaxial perovskite/TPU nanofibers had a high photoluminescence quantum yield value exceeding 23.3%, surpassing that of its uniaxial counterpart, due to the homogeneous distribution of perovskite nanoparticles (NPs) by the confinement of the TPU shell. The fabricated core-shell nanofibers exhibited a high mechanical endurance owing to the well elastic properties of TPU and maintained the luminescence intensity even under a 100% stretched state after 1000 stretching-relaxing cycles. By taking advantage of the hydrophobic nature of TPU, the ambient and moisture stability of the fabricated fibers were enhanced up to 1 month. Besides, large-area stretchable nanofibers with a dimension of 15 cm × 30 cm exhibiting various visible-light emission peaks were fabricated by changing the composition of perovskite NPs. Moreover, a large-scale luminescent and stretchable fiber mat was successfully fabricated by electrospinning. Furthermore, the white-light emission from the fabricated fibers and mats was achieved by incorporating orange-light-emitting poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] into the TPU shell and coupling the turquoise blue-light-emitting perovskite NPs in the core site. Finally, the integrity of the perovskite-based TPU fibers was realized by fabricating a light-emitting diode (LED) device containing the orange-light-emitting fibers embedded in the polyfluorene emissive layer. This work demonstrated an effective way to prepare stable and stretchable luminous nanofibers and the integration of such nanofibers into LED devices, which could facilitate the future development of wearable electronic devices.
Collapse
|
15
|
Lo CT, Watanabe Y, Murakami D, Shih CC, Nakabayashi K, Mori H, Chen WC. Donor-Acceptor Core-Shell Nanoparticles and Their Application in Non-Volatile Transistor Memory Devices. Macromol Rapid Commun 2019; 40:e1900115. [PMID: 31021501 DOI: 10.1002/marc.201900115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/11/2019] [Indexed: 11/10/2022]
Abstract
Donor-acceptor crosslinked poly[poly(ethylene glycol) methyl ether-methacrylate]-block-poly[1,1'-bis(2-ethylpentyl)-6-methyl-6'-(5-methyl-3-vinylthiophen-2-yl)-[3,3'-biindoline]-2,2'-dione] (poly(PEGMA)m -b-poly(VTIID)n ) nanoparticles with various vinylthiophene donor/isoindigo acceptor ratios are synthesized successfully. The prepared nanoparticles have uniform sizes and well-defined core-shell nanostructures. The intramolecular charge transfer is effectively enhanced due to the incorporation of acceptor groups after the crosslinking reaction. A transistor memory device is assembled using the synthesized polymer and has nonvolatile flash-type memory and amphiphilic trapping behavior. The optimized devices exhibit a significant memory window of approximately 38 V, a retention ability of over 104 s, and an endurance of at least 100 cycles. This study examines multiple applications of crosslinked core-shell nanoparticles, which demonstrates their promise as charge-storage dielectric materials for use in organic memory devices.
Collapse
Affiliation(s)
- Chen-Tsyr Lo
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yu Watanabe
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Daiki Murakami
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Chien-Chung Shih
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Kazuhiro Nakabayashi
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Hideharu Mori
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.,Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
16
|
Isono T, Kawakami N, Watanabe K, Yoshida K, Otsuka I, Mamiya H, Ito H, Yamamoto T, Tajima K, Borsali R, Satoh T. Microphase separation of carbohydrate-based star-block copolymers with sub-10 nm periodicity. Polym Chem 2019. [DOI: 10.1039/c8py01745j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Star-block copolymers consisting of polycaprolactone and maltotriose segments with three, four, and six arms were synthesized to achieve sub-10 nm microphase-separated structures.
Collapse
Affiliation(s)
- Takuya Isono
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Nao Kawakami
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Kodai Watanabe
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Kohei Yoshida
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Issei Otsuka
- Univ. Grenoble Alps
- CNRS
- CERMAV
- 38000 Grenoble
- France
| | - Hiroaki Mamiya
- National Institute for Materials Science
- Ibaraki 305-0047
- Japan
| | - Hajime Ito
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)
| | - Takuya Yamamoto
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Kenji Tajima
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | | | - Toshifumi Satoh
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| |
Collapse
|
17
|
Chiang YC, Kobayashi S, Isono T, Shih CC, Shingu T, Hung CC, Hsieh HC, Tung SH, Satoh T, Chen WC. Effect of a conjugated/elastic block sequence on the morphology and electronic properties of polythiophene based stretchable block copolymers. Polym Chem 2019. [DOI: 10.1039/c9py01216h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the synthesis, morphology, and electronic properties of intrinsically stretchable AB-type, ABA-type, and BAB-type block copolymers (BCPs) of poly(3-hexylthiophene) (P3HT: A block) and elastic poly(octylene oxide) (POO: B block).
Collapse
Affiliation(s)
- Yun-Chi Chiang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Saburo Kobayashi
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Takuya Isono
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Chien-Chung Shih
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Tomoki Shingu
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Chih-Chien Hung
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Hui-Ching Hsieh
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Advanced Research Center for Green Materials Science and Technology
| | - Toshifumi Satoh
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Institute of Polymer Science and Engineering
| |
Collapse
|
18
|
Zhang Y, Guan T, Han G, Guo T, Zhang W. Star Block Copolymer Nanoassemblies: Block Sequence is All-Important. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02427] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianyun Guan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guang Han
- State Key Laboratory
of Special Functional Waterproof Materials, Beijing Oriental Yuhong
Waterproof Technology Co., Ltd, Beijing 100123, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Hsu LC, Shih CC, Hsieh HC, Chiang YC, Wu PH, Chueh CC, Chen WC. Intrinsically stretchable, solution-processable functional poly(siloxane-imide)s for stretchable resistive memory applications. Polym Chem 2018. [DOI: 10.1039/c8py01283k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A stretchable WORM-type resistive memory device was fabricated using poly(siloxane-imide) ODPA-A12 with favorable mechanical properties.
Collapse
Affiliation(s)
- Li-Che Hsu
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chien-Chung Shih
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Advanced Research Center for Green Materials Science and Technology
| | - Hui-Ching Hsieh
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Ping-Han Wu
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Advanced Research Center for Green Materials Science and Technology
| | - Wen-Chang Chen
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Department of Chemical Engineering
| |
Collapse
|