1
|
Zhou H, Cheng Z, Pan G, Hu L, Zhang F. Effect of Alkyl Side Chain Length on Electrical Performance of Ion-Gel-Gated OFETs Based on Difluorobenzothiadiazole-Based D-A Copolymers. Polymers (Basel) 2024; 16:3287. [PMID: 39684034 DOI: 10.3390/polym16233287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The performance of organic field-effect transistors (OFETs) is highly dependent on the dielectric-semiconductor interface, especially in ion-gel-gated OFETs, where a significantly high carrier density is induced at the interface at a low gate voltage. This study investigates how altering the alkyl side chain length of donor-acceptor (D-A) copolymers impacts the electrical performance of ion-gel-gated OFETs. Two difluorobenzothiadiazole-based D-A copolymers, PffBT4T-2OD and PffBT4T-2DT, are compared, where the latter features longer alkyl side chains. Although PffBT4T-2DT shows a 2.4-fold enhancement of charge mobility in the SiO2-gated OFETs compared to its counterpart due to higher crystallinity in the film, PffBT4T-2OD outperforms PffBT4T-2DT in the ion-gel-gated OFETs, manifested by an extraordinarily high mobility of 17.7 cm2/V s. The smoother surface morphology, as well as stronger interfacial interaction between the ion-gel dielectric and PffBT4T-2OD, enhances interfacial charge accumulation, which leads to higher mobility. Furthermore, PffBT4T-2OD is blended with a polymeric elastomer SEBS to achieve ion-gel-gated flexible OFETs. The blend devices exhibit high mobility of 8.6 cm2/V s and high stretchability, retaining 45% of initial mobility under 100% tensile strain. This study demonstrates the importance of optimizing the chain structure of polymer semiconductors and the semiconductor-dielectric interface to develop low-voltage and high-performance flexible OFETs for wearable electronics applications.
Collapse
Affiliation(s)
- Han Zhou
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science lsland Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Zaitian Cheng
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science lsland Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Guoxing Pan
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lin Hu
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Fapei Zhang
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
2
|
Feng E, Zhang C, Chang J, Zhao F, Hu B, Han Y, Sha M, Li H, Du XJ, Long C, Ding Y, Yang ZJ, Yin H, Luo Q, Ma CQ, Lu G, Ma Z, Hao XT, Yang J. Constraining the Excessive Aggregation of Non-Fullerene Acceptor Molecules Enables Organic Solar Modules with the Efficiency >16. ACS NANO 2024; 18:28026-28037. [PMID: 39350442 DOI: 10.1021/acsnano.4c06931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Translating high-performance organic solar cell (OSC) materials from spin-coating to scalable processing is imperative for advancing organic photovoltaics. For bridging the gap between laboratory research and industrialization, it is essential to understand the structural formation dynamics within the photoactive layer during printing processes. In this study, two typical printing-compatible solvents in the doctor-blading process are employed to explore the intricate mechanisms governing the thin-film formation in the state-of-the-art photovoltaic system PM6:L8-BO. Our findings highlight the synergistic influence of both the donor polymer PM6 and the solvent with a high boiling point on the structural dynamics of L8-BO within the photoactive layer, significantly influencing its morphological properties. The optimized processing strategy effectively suppresses the excessive aggregation of L8-BO during the slow drying process in doctor-blading, enhancing thin-film crystallization with preferential molecular orientation. These improvements facilitate more efficient charge transport, suppress thin-film defects and charge recombination, and finally enhance the upscaling potential. Consequently, the optimized PM6:L8-BO OSCs demonstrate power conversion efficiencies of 18.42% in small-area devices (0.064 cm2) and 16.02% in modules (11.70 cm2), respectively. Overall, this research provides valuable insights into the interplay among thin-film formation kinetics, structure dynamics, and device performance in scalable processing.
Collapse
Affiliation(s)
- Erming Feng
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Chujun Zhang
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Jianhui Chang
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Feixiang Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bin Hu
- Frontier Institute of Science and Technology, and School of Chemistry, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yunfei Han
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mengzhen Sha
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hengyue Li
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Xiao-Jing Du
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Caoyu Long
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Yang Ding
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Zhong-Jian Yang
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Qun Luo
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chang-Qi Ma
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, and School of Chemistry, Xi'an Jiaotong University, Xi'an 710054, China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Junliang Yang
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Cao Z, Tolba SA, Li Z, Mason GT, Wang Y, Do C, Rondeau-Gagné S, Xia W, Gu X. Molecular Structure and Conformational Design of Donor-Acceptor Conjugated Polymers to Enable Predictable Optoelectronic Property. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302178. [PMID: 37318244 DOI: 10.1002/adma.202302178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Tuning the optoelectronic properties of donor-acceptor conjugated polymers (D-A CPs) is of great importance in designing various organic optoelectronic devices. However, there remains a critical challenge in precise control of bandgap through synthetic approach, since the chain conformation also affects molecular orbital energy levels. Here, D-A CPs with different acceptor units are explored that show an opposite trend in energy band gaps with the increasing length of oligothiophene donor units. By investigating their chain conformation and molecular orbital energy, it is found that the molecular orbital energy alignment between donor and acceptor units plays a crucial role in dictating the final optical bandgap of D-A CPs. For polymers with staggered orbital energy alignment, the higher HOMO with increasing oligothiophene length leads to a narrowing of the optical bandgap despite decreased chain rigidity. On the other hand, for polymers with sandwiched orbital energy alignment, the increased band gap with increasing oligothiophene length originates from the reduction of bandwidth due to more localized charge density distribution. Thus, this work provides a molecular understanding of the role of backbone building blocks on the chain conformation and bandgaps of D-A CPs for organic optoelectronic devices through the conformation design and segment orbital energy alignment.
Collapse
Affiliation(s)
- Zhiqiang Cao
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Sara A Tolba
- Materials and Nanotechnology Program, North Dakota State University, Fargo, ND, 58108, USA
| | - Zhaofan Li
- Department of Civil, Construction, and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA
| | - Gage T Mason
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada
| | - Yang Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada
| | - Wenjie Xia
- Department of Civil, Construction, and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA
- Department of Aerospace Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
4
|
Domain size control in all-polymer solar cells. iScience 2022; 25:104090. [PMID: 35372809 PMCID: PMC8971947 DOI: 10.1016/j.isci.2022.104090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
In all polymer solar cells (all-PSCs), the domain size is critical for device performance. In highly crystalline polymer blends, however, precisely adjusting the domain size remains a significant challenge because of the simultaneous crystallization of both components. Herein, a strategy that promotes acceptor and donor to crystallize separately was proposed. Take PBDB-T/N2200 blends for instance; the solution state and confined crystallization were combined, which induced the crystallization of N2200, and PBDB-T occurred during the film-forming process and at thermal annealing stage. This separated crystallization process lowers the driving force of phase separation without affecting the degree of crystallinity of the blends. Thus, an interpenetrating network with high crystallinity and proper domain size was obtained, which boosted the power conversion efficiency to 7.59%. Importantly, the relation between pre-aggregation and domain size was established, which may be a guide to precisely adjust the active layer’s domain size in all-PSCs. This strategy decreases domain size without sacrificing crystallinity A phase diagram about solution state and domain size was proposed
Collapse
|
5
|
Ma Z, Dong Y, Su YJ, Yu R, Gao H, Gong Y, Lee ZY, Yang C, Hsu CS, Tan Z. Morphological Stabilization in Organic Solar Cells via a Fluorene-Based Crosslinker for Enhanced Efficiency and Thermal Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1187-1194. [PMID: 34958190 DOI: 10.1021/acsami.1c21746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Power conversion efficiencies (PCEs) and device stability are two key technical factors restricting the commercialization of organic solar cells (OSCs). In the past decades, though the PCEs of OSCs have been significantly enhanced, device instability, especially in the state-of-the-art nonfullerene system, still needs to be solved. In this work, an effective crosslinker (namely, DTODF-4F), with conjugated fluorene-based backbone and crosslinkable epoxy side-chains, has been designed and synthesized, which is introduced to enhance the morphological stabilization of the PM6:Y6-based film. This crosslinker with two epoxy groups can be in situ crosslinked into a stable network structure under ultraviolet radiation. We demonstrate that DTODF-4F, which acted as a third component, can promote the exciton dissociation rate and reduce traps/defects, finally resulting in the enhancement of efficiency. In particular, the OSC devices exhibit better stability under continuous heating owing to the morphology fixation of the bulk heterojunction. This work drives the development direction of morphological stabilization to further improve the performance and stability of OSCs.
Collapse
Affiliation(s)
- Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiman Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi-Jia Su
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huaizhi Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongshuai Gong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ze-Ye Lee
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chunhe Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Chain-Shu Hsu
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Gaspar H, Parnell AJ, Pérez GE, Viana JC, King SM, Mendes A, Pereira L, Bernardo G. Graded Morphologies and the Performance of PffBT4T-2OD:PC 71BM Devices Using Additive Choice. NANOMATERIALS 2021; 11:nano11123367. [PMID: 34947716 PMCID: PMC8709449 DOI: 10.3390/nano11123367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
The impact of several solvent processing additives (1-chloronaphthalene, methylnaphthalene, hexadecane, 1-phenyloctane, and p-anisaldehyde), 3% v/v in o-dichlorobenzene, on the performance and morphology of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2′,5′,22033,5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM)-based polymer solar cells was investigated. Some additives were shown to enhance the power conversion efficiency (PCE) by ~6%, while others decreased the PCE by ~17–25% and a subset of the additives tested completely eliminated any power conversion efficiency and the operation as a photovoltaic device. Grazing-Incidence Wide Angle X-ray Scattering (GIWAXS) revealed a clear stepwise variation in the crystallinity of the systems when changing the additive between the two extreme situations of maximum PCE (1-chloronaphthalene) and null PCE (hexadecane). Small-Angle Neutron Scattering (SANS) revealed that the morphology of devices with PCE ~0% was composed of large domains with correlation lengths of ~30 nm, i.e., much larger than the typical exciton diffusion length (~12 nm) in organic semiconductors. The graded variations in crystallinity and in nano-domain size observed between the two extreme situations (1-chloronaphthalene and hexadecane) were responsible for the observed graded variations in device performance.
Collapse
Affiliation(s)
- Hugo Gaspar
- Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (H.G.); (J.C.V.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Andrew J. Parnell
- Department of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, UK;
| | - Gabriel E. Pérez
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK;
| | - Júlio C. Viana
- Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (H.G.); (J.C.V.)
| | - Stephen M. King
- ISIS Pulsed Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Harwell, Oxon OX11 0QX, UK;
| | - Adélio Mendes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luiz Pereira
- Department of Physics and i3N—Institute for Nanostructures, Nanomodelling and Nanofabrication, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (L.P.); (G.B.)
| | - Gabriel Bernardo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Correspondence: (L.P.); (G.B.)
| |
Collapse
|
7
|
Zhang R, Yan Y, Zhang Q, Liang Q, Zhang J, Yu X, Liu J, Han Y. To Reveal the Importance of the Crystallization Sequence on Micro-Morphological Structures of All-Crystalline Polymer Blends by In Situ Investigation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21756-21764. [PMID: 33908242 DOI: 10.1021/acsami.1c02984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In crystalline/crystalline polymer blend systems, complex competition and coupling of crystallization and morphology usually happen due to the different crystal nucleation and growth processes of polymers, making the morphology and crystallization behavior difficult to control. Herein, we probe the crystallization sequence during the film formation process (crystallize simultaneously, component A crystallizes prior to B or inverse) to illustrate the micro-morphology evolution process in poly(3-hexylthiophene) (P3HT) and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5, 5'-(2,2'-bithiophene)] (N2200) blend using in situ UV-vis absorption spectra and in situ two-dimensional grazing incidence X-ray diffraction (2D GIXRD). When P3HT and N2200 crystallize simultaneously, a large-sized morphology structure is formed. When strengthening the solution aggregation of P3HT by increasing the solvent-polymer interaction, P3HT crystallizes prior to N2200. A P3HT-based micro-morphology structure is obtained. As the molecular weight of N2200 increases to a critical value (72.0 kDa), the crystallization of N2200 dominates the film formation process. A N2200-based micro-morphology is formed guided by N2200 domains. The results confirm that the crystallization sequence is one of the most important factors to determine the micro-morphology structure in all-crystalline polymer blends.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 581 83, Sweden
| | - Ye Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Qiuju Liang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Jiangang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
8
|
Du B, Yi J, Yan H, Wang T. Temperature Induced Aggregation of Organic Semiconductors. Chemistry 2020; 27:2908-2919. [DOI: 10.1002/chem.202002559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Baocai Du
- School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 China
| | - Jicheng Yi
- Department of Chemistry and Energy Institute The Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - He Yan
- Department of Chemistry and Energy Institute The Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Tao Wang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
9
|
Yang D, Löhrer FC, Körstgens V, Schreiber A, Cao B, Bernstorff S, Müller‐Buschbaum P. In Operando GISAXS and GIWAXS Stability Study of Organic Solar Cells Based on PffBT4T-2OD:PC 71BM with and without Solvent Additive. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001117. [PMID: 32832364 PMCID: PMC7435237 DOI: 10.1002/advs.202001117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Indexed: 05/25/2023]
Abstract
Solvent additives are known to modify the morphology of bulk heterojunction active layers to achieve high efficiency organic solar cells. However, the knowledge about the influence of solvent additives on the morphology degradation is limited. Hence, in operando grazing-incidence small and wide angle X-ray scattering (GISAXS and GIWAXS) measurements are applied on a series of PffBT4T-2OD:PC71BM-based solar cells prepared without and with solvent additives. The solar cells fabricated without a solvent additive, with 1,8-diiodoctane (DIO), and with o-chlorobenzaldehyde (CBA) additive show differences in the device degradation and changes in the morphology and crystallinity of the active layers. The mesoscale morphology changes are correlated with the decay of the short-circuit current J sc and the evolution of crystalline grain sizes is codependent with the decay of open-circuit voltage V oc. Without additive, the loss in J sc dominates the degradation, whereas with solvent additive (DIO and CBA) the loss in V oc rules the degradation. CBA addition increases the overall device stability as compared to DIO or absence of additive.
Collapse
Affiliation(s)
- Dan Yang
- Lehrstuhl für Funktionelle MaterialienPhysik‐DepartmentTechnische Universität MünchenJames‐Franck‐Str. 1Garching85748Germany
| | - Franziska C. Löhrer
- Lehrstuhl für Funktionelle MaterialienPhysik‐DepartmentTechnische Universität MünchenJames‐Franck‐Str. 1Garching85748Germany
| | - Volker Körstgens
- Lehrstuhl für Funktionelle MaterialienPhysik‐DepartmentTechnische Universität MünchenJames‐Franck‐Str. 1Garching85748Germany
| | - Armin Schreiber
- Lehrstuhl für Funktionelle MaterialienPhysik‐DepartmentTechnische Universität MünchenJames‐Franck‐Str. 1Garching85748Germany
| | - Bing Cao
- Department of ChemistryUniversity of AlbertaEdmontonABT6G 2G2Canada
| | - Sigrid Bernstorff
- Elettra—Sincrotrone Trieste S.C.p.A.Strada Statale 14‐km 163.5 in AREA Science Park, BasovizzaTrieste34149Italy
| | - Peter Müller‐Buschbaum
- Lehrstuhl für Funktionelle MaterialienPhysik‐DepartmentTechnische Universität MünchenJames‐Franck‐Str. 1Garching85748Germany
- Heinz Maier‐Leibnitz Zentrum (MLZ)Technische Universität MünchenLichtenbergstr. 1Garching85748Germany
| |
Collapse
|
10
|
Galuska LA, McNutt WW, Qian Z, Zhang S, Weller DW, Dhakal S, King ER, Morgan SE, Azoulay JD, Mei J, Gu X. Impact of Backbone Rigidity on the Thermomechanical Properties of Semiconducting Polymers with Conjugation Break Spacers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00889] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Luke A. Galuska
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - William W. McNutt
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhiyuan Qian
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Song Zhang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Daniel W. Weller
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Sujata Dhakal
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Eric R. King
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Sarah E. Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jason D. Azoulay
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
11
|
Abstract
AbstractPhotoinduced charge generation forms the physical basis for energy conversion in organic photovoltaic (OPV) technology. The fundamental initial steps involved are absorption of light by organic semiconductors (generally π-conjugated polymers) to generate photoexcited states (Frenkel excitons) followed by charge transfer and charge separation processes in presence of suitable acceptor. The absorbed photon energy must be utilized completely for achieving maximum device efficiency. However progressive relaxation losses of instantaneously generated high-energy or hot-excited states form major bottleneck for maximum derivable voltage. This efficiency limiting factor has been challenged recently by the role of hot-carriers in efficient generation of charges. Therefore tailoring the dissociation of hot-exciton to be temporally faster than all relaxation processes could minimize the energy loss pathways. Implementation of this concept of hot-carrier photovoltaics demands critical understanding of molecular parameters that circumvent all energy relaxation processes and favor hot-carrier generation. In my dissertation work, I have examined the fate of photo-generated excitons in the context of polymer backbone and morphology, and therefore obtain a fundamental structure-function correlation in organic semiconductors.
Collapse
Affiliation(s)
- Palas Roy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| |
Collapse
|
12
|
Gaspar H, Figueira F, Strutyński K, Melle-Franco M, Ivanou D, Tomé JPC, Pereira CM, Pereira L, Mendes A, Viana JC, Bernardo G. Thiophene- and Carbazole-Substituted N-Methyl-Fulleropyrrolidine Acceptors in PffBT4T-2OD Based Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1267. [PMID: 32168798 PMCID: PMC7142714 DOI: 10.3390/ma13061267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
The impact of fullerene side chain functionalization with thiophene and carbazole groups on the device properties of bulk-heterojunction polymer:fullerene solar cells is discussed through a systematic investigation of material blends consisting of the conjugated polymer poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2';5',2″;5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD) as donor and C60 or C70 fulleropyrrolidines as acceptors. The photovoltaic performance clearly depended on the molecular structure of the fulleropyrrolidine substituents although no direct correlation with the surface morphology of the photoactive layer, as determined by atomic force microscopy, could be established. Although some fulleropyrrolidines possess favorable lowest unoccupied molecular orbital levels, when compared to the standard PC71BM, they originated OPV cells with inferior efficiencies than PC71BM-based reference cells. Fulleropyrrolidines based on C60 produced, in general, better devices than those based on C70, and we attribute this observation to the detrimental effect of the structural and energetic disorder that is present in the regioisomer mixtures of C70-based fullerenes, but absent in the C60-based fullerenes. These results provide new additional knowledge on the effect of the fullerene functionalization on the efficiency of organic solar cells.
Collapse
Affiliation(s)
- Hugo Gaspar
- IPC/i3N—Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800–058 Guimarães, Portugal; (H.G.); (J.C.V.)
| | - Flávio Figueira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal;
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal; (K.S.); (M.M.-F.)
| | - Karol Strutyński
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal; (K.S.); (M.M.-F.)
| | - Manuel Melle-Franco
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal; (K.S.); (M.M.-F.)
| | - Dzmitry Ivanou
- LEPABE, Department of Chemical Engineering, University of Porto, 4200–465 Porto, Portugal; (D.I.); (A.M.)
| | - João P. C. Tomé
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810–193 Aveiro, Portugal;
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n1, 1049–001 Lisboa, Portugal
| | - Carlos M. Pereira
- Department of Chemistry, University of Porto, Rua do Campo Alegre, s/n, 4169–007 Porto, Portugal;
| | - Luiz Pereira
- Department of Physics and i3N—Institute for Nanostructures, Nanomodelling and Nanofabrication, University of Aveiro, 3810–193 Aveiro, Portugal;
| | - Adélio Mendes
- LEPABE, Department of Chemical Engineering, University of Porto, 4200–465 Porto, Portugal; (D.I.); (A.M.)
| | - Júlio C. Viana
- IPC/i3N—Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800–058 Guimarães, Portugal; (H.G.); (J.C.V.)
| | - Gabriel Bernardo
- LEPABE, Department of Chemical Engineering, University of Porto, 4200–465 Porto, Portugal; (D.I.); (A.M.)
| |
Collapse
|
13
|
Li M, Bin H, Jiao X, Wienk MM, Yan H, Janssen RAJ. Controlling the Microstructure of Conjugated Polymers in High-Mobility Monolayer Transistors via the Dissolution Temperature. Angew Chem Int Ed Engl 2020; 59:846-852. [PMID: 31709705 PMCID: PMC6973252 DOI: 10.1002/anie.201911311] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/13/2019] [Indexed: 11/08/2022]
Abstract
It remains a challenge to precisely tailor the morphology of polymer monolayers to control charge transport. Herein, the effect of the dissolution temperature (Tdis ) is investigated as a powerful strategy for morphology control. Low Tdis values cause extended polymer aggregation in solution and induce larger nanofibrils in a monolayer network with more pronounced π-π stacking. The field-effect mobility of the corresponding monolayer transistors is significantly enhanced by a factor of four compared to devices obtained from high Tdis with a value approaching 1 cm2 V-1 s-1 . Besides that, the solution kinetics reveal a higher growth rate of aggregates at low Tdis , and filtration experiments further confirm that the dependence of the fibril width in monolayers on Tdis is consistent with the aggregate size in solution. The generalizability of the Tdis effect on polymer aggregation is demonstrated using three other conjugated polymer systems. These results open new avenues for the precise control of polymer aggregation for high-mobility monolayer transistors.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Microelectronic Devices and Integrated TechnologyInstitute of MicroelectronicsChinese Academy of SciencesBeijing100029China
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
- Dutch Institute For Fundamental Energy ResearchDe Zaale 205612AJEindhovenThe Netherlands
| | - Haijun Bin
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Xuechen Jiao
- Australian Synchrotron, ANSTO800 Blackburn RoadClaytonVictoria3168Australia
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Martijn M. Wienk
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - He Yan
- Department of Chemistry and Energy InstituteThe Hong Kong University of Science and TechnologyClear Water BayHong KongHong Kong
| | - René A. J. Janssen
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
- Dutch Institute For Fundamental Energy ResearchDe Zaale 205612AJEindhovenThe Netherlands
| |
Collapse
|
14
|
Li M, Bin H, Jiao X, Wienk MM, Yan H, Janssen RAJ. Controlling the Microstructure of Conjugated Polymers in High‐Mobility Monolayer Transistors via the Dissolution Temperature. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Microelectronic Devices and Integrated TechnologyInstitute of MicroelectronicsChinese Academy of Sciences Beijing 100029 China
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
- Dutch Institute For Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| | - Haijun Bin
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Xuechen Jiao
- Australian Synchrotron, ANSTO 800 Blackburn Road Clayton Victoria 3168 Australia
- Department of Materials Science and EngineeringMonash University Wellington Road Clayton Victoria 3800 Australia
| | - Martijn M. Wienk
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - He Yan
- Department of Chemistry and Energy InstituteThe Hong Kong University of Science and Technology Clear Water Bay Hong Kong Hong Kong
| | - René A. J. Janssen
- Molecular Materials and NanosystemsInstitute for Complex Molecular SystemsEindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
- Dutch Institute For Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| |
Collapse
|
15
|
Zhang W, Hu R, Zeng X, Su X, Chen Z, Zou X, Peng J, Zhang C, Yartsev A. Effect of Post-Thermal Annealing on the Performance and Charge Photogeneration Dynamics of PffBT4T-2OD/PC 71BM Solar Cells. Polymers (Basel) 2019; 11:E408. [PMID: 30960392 PMCID: PMC6473355 DOI: 10.3390/polym11030408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/05/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
In this work, we studied influence of post thermal annealing on the performance and charge photogeneration processes of PffBT4T-2OD/PC71BM solar cells. As-prepared device exhibits a high-power conversion efficiency of 9.5%, much higher than that after thermal annealing. To understand this phenomenon, we studied charge photogeneration processes in these solar cells by means of time resolved spectroscopy. We associate the degradation of solar cell performance with the reduction of exciton dissociation efficiency and with increased bimolecular recombination of photogenerated charges as a result of annealing. We correlate the generation of localized PffBT4T-2OD polarons observed via spectro-electrochemical measurements with enhancement of the bimolecular charge recombination of annealed solar cells.
Collapse
Affiliation(s)
- Wei Zhang
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Rong Hu
- Research Institute for New Materials Technology, Chongqing University of Arts and Science, Chongqing 402160, China.
| | - Xiaokang Zeng
- Research Institute for New Materials Technology, Chongqing University of Arts and Science, Chongqing 402160, China.
| | - Xiaojun Su
- NanoLund and Division of Chemical Physics, Lund University, Lund 22100, Sweden.
| | - Zhifeng Chen
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Xianshao Zou
- NanoLund and Division of Chemical Physics, Lund University, Lund 22100, Sweden.
| | - Jun Peng
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Chengyun Zhang
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Arkady Yartsev
- NanoLund and Division of Chemical Physics, Lund University, Lund 22100, Sweden.
| |
Collapse
|
16
|
Facchetti A. Across the Board: Antonio Facchetti. CHEMSUSCHEM 2018; 11:3829-3833. [PMID: 30362260 DOI: 10.1002/cssc.201802343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 06/08/2023]
Abstract
In this series of articles, the board members of ChemSusChem discuss recent research articles that they consider of exceptional quality and importance for sustainability. This entry features Prof. Dr. Antonio Facchetti, who discusses the use of organic photovoltaic (OPV) devices as a source of renewable energy, and challenges that must be met for OPVs to serve as a viable fully sustainable technology for future energy production, taking into account the components used in such devices and their stability and durability.
Collapse
Affiliation(s)
- Antonio Facchetti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|