1
|
Hu C, Wang Y, Lee YM. Ether-Free Alkaline Polyelectrolytes for Water Electrolyzers: Recent Advances and Perspectives. Angew Chem Int Ed Engl 2025; 64:e202418324. [PMID: 39485307 DOI: 10.1002/anie.202418324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/03/2024]
Abstract
Anion exchange membrane (AEM) water electrolyzers (AEMWEs) have attracted great interest for their potential as sustainable, environmentally friendly, low-cost sources of renewable energy. Alkaline polyelectrolytes play a crucial role in AEMWEs, determining their performance and longevity. Because heteroatom-containing polymers have been shown to have poor durability in alkaline conditions, this review focuses on ether-free alkaline polyelectrolytes, which are more chemically stable. The merits, weaknesses, and challenges in preparing ether-free AEMs are summarized and highlighted. The evaluation of synthesis methods for polymers, modification strategies, and cationic stability will provide insights valuable for the structural design of future alkaline polyelectrolytes. Moreover, the in situ degradation mechanisms of AEMs and ionomers during AEMWE operation are revealed. This review provides insights into the design of alkaline polyelectrolytes for AEMWEs to accelerate their widespread commercialization.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- School of Energy and Environment, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yong Wang
- School of Energy and Environment, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
2
|
Liu L, Ma H, Khan M, Hsiao BS. Recent Advances and Challenges in Anion Exchange Membranes Development/Application for Water Electrolysis: A Review. MEMBRANES 2024; 14:85. [PMID: 38668113 PMCID: PMC11051812 DOI: 10.3390/membranes14040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
In recent years, anion exchange membranes (AEMs) have aroused widespread interest in hydrogen production via water electrolysis using renewable energy sources. The two current commercial low-temperature water electrolysis technologies used are alkaline water electrolysis (AWE) and proton exchange membrane (PEM) water electrolysis. The AWE technology exhibited the advantages of high stability and increased cost-effectiveness with low hydrogen production efficiency. In contrast, PEM water electrolysis exhibited high hydrogen efficiency with low stability and cost-effectiveness, respectively. Unfortunately, the major challenges that AEMs, as well as the corresponding ion transportation membranes, including alkaline hydrogen separator and proton exchange membranes, still face are hydrogen production efficiency, long-term stability, and cost-effectiveness under working conditions, which exhibited critical issues that need to be addressed as a top priority. This review comprehensively presented research progress on AEMs in recent years, providing a thorough understanding of academic studies and industrial applications. It focused on analyzing the chemical structure of polymers and the performance of AEMs and established the relationship between the structure and efficiency of the membranes. This review aimed to identify approaches for improving AEM ion conductivity and alkaline stability. Additionally, future research directions for the commercialization of anion exchange membranes were discussed based on the analysis and assessment of the current applications of AEMs in patents.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Madani Khan
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
3
|
Gjoshi S, Loukopoulou P, Plevova M, Hnat J, Bouzek K, Deimede V. Cycloaliphatic Quaternary Ammonium Functionalized Poly(oxindole biphenyl) Based Anion-Exchange Membranes for Water Electrolysis: Stability and Performance. Polymers (Basel) 2023; 16:99. [PMID: 38201764 PMCID: PMC10780940 DOI: 10.3390/polym16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Mechanically robust anion-exchange membranes (AEMs) with high conductivity and long-term alkali resistance are needed for water electrolysis application. In this work, aryl-ether free polyaromatics containing isatin moieties were prepared via super acid-catalyzed copolymerization, followed by functionalization with alkaline stable cyclic quaternary ammonium (QA) cationic groups, to afford high performance AEMs for application in water electrolysis. The incorporation of side functional cationic groups (pyrrolidinium and piperidinium) onto a polymer backbone via a flexible alkyl spacer aimed at conductivity and alkaline stability improvement. The effect of cation structure on the properties of prepared AEMs was thoroughly studied. Pyrrolidinium- and piperidinium-based AEMs showed similar electrolyte uptakes and no obvious phase separation, as revealed by SAXS and further supported by AFM and TEM data. In addition, these AEMs displayed high conductivity values (81. 5 and 120 mS cm-1 for pyrrolidinium- and piperidinium-based AEM, respectively, at 80 °C) and excellent alkaline stability after 1 month aging in 2M KOH at 80 °C. Especially, a pyrrolidinium-based AEM membrane preserved 87% of its initial conductivity value, while at the same time retaining its flexibility and mechanical robustness after storage in alkaline media (2M KOH) for 1 month at 80 °C. Based on 1H NMR data, the conductivity loss observed after the aging test is mainly related to the piperidinium degradation that took place, probably via ring-opening Hofmann elimination, alkyl spacer scission and nucleophilic substitution reactions as well. The synthesized AEMs were also tested in an alkaline water electrolysis cell. Piperidinium-based AEM showed superior performance compared to its pyrrolidinium analogue, owing to its higher conductivity as revealed by EIS data, further confirming the ex situ conductivity measurements.
Collapse
Affiliation(s)
- Sara Gjoshi
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (S.G.); (P.L.)
| | - Paraskevi Loukopoulou
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (S.G.); (P.L.)
| | - Michaela Plevova
- Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic; (M.P.); (J.H.); (K.B.)
| | - Jaromir Hnat
- Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic; (M.P.); (J.H.); (K.B.)
| | - Karel Bouzek
- Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, 16628 Prague, Czech Republic; (M.P.); (J.H.); (K.B.)
| | - Valadoula Deimede
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (S.G.); (P.L.)
| |
Collapse
|
4
|
Abstract
Poly(xanthene)s (PXs) carrying trimethylammonium, methylpiperidinium, and quinuclidinium cations were synthesized and studied as a new class of anion exchange membranes (AEMs). The polymers were prepared in a superacid-mediated polyhydroxyalkylation involving 4,4'-biphenol and 1-bromo-3-(trifluoroacetylphenyl)-propane, followed by quaternization reactions with the corresponding amines. The architecture with a rigid PX backbone decorated with cations via flexible alkyl spacer chains resulted in AEMs with high ionic conductivity, thermal stability and alkali-resistance. For example, hydroxide conductivities up to 129 mS cm-1 were reached at 80 °C, and all the AEMs showed excellent alkaline stability with less than 4% ionic loss after treatment in 2 M aq. NaOH at 90 °C during 720 h. Critically, the diaryl ether links of the PX backbone remained intact after the harsh alkaline treatment, as evidenced by both 1H NMR spectroscopy and thermogravimetry. Our combined findings suggest that PX AEMs are viable materials for application in alkaline fuel cells and electrolyzers.
Collapse
|
5
|
Imidazolium structural isomer pyrazolium: A better alkali-stable anion conductor for anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Nara Y, Tanaka M, Nagasawa K, Kuroda Y, Mitsushima S, Kawakami H. Development of highly alkaline stable anion conductive polymers with fluorene backbone for water electrolysis. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuri Nara
- Department of Applied Chemistry Tokyo Metropolitan University Tokyo Japan
| | - Manabu Tanaka
- Department of Applied Chemistry Tokyo Metropolitan University Tokyo Japan
- Research Center for Hydrogen Energy‐based Society (ReHES) Tokyo Metropolitan University Tokyo Japan
| | - Kensaku Nagasawa
- Institute of Advanced Sciences Yokohama National University Yokohama Kanagawa Japan
| | - Yoshiyuki Kuroda
- Institute of Advanced Sciences Yokohama National University Yokohama Kanagawa Japan
- Graduate School of Engineering Science Yokohama National University Yokohama Kanagawa Japan
| | - Shigenori Mitsushima
- Institute of Advanced Sciences Yokohama National University Yokohama Kanagawa Japan
- Graduate School of Engineering Science Yokohama National University Yokohama Kanagawa Japan
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry Tokyo Metropolitan University Tokyo Japan
- Research Center for Hydrogen Energy‐based Society (ReHES) Tokyo Metropolitan University Tokyo Japan
| |
Collapse
|
7
|
Liu J, Gao L, Di M, Hu L, Sun X, Wu X, Jiang X, Dai Y, Yan X, He G. Low boiling point solvent-soluble, highly conductive and stable poly (ether phenylene piperidinium) anion exchange membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
|
9
|
Ma L, Hussain M, Li L, Qaisrani NA, Bai L, Jia Y, Yan X, Zhang F, He G. Octopus-like side chain grafted poly(arylene piperidinium) membranes for fuel cell application. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
|
11
|
|
12
|
You W, Hugar KM, Selhorst RC, Treichel M, Peltier CR, Noonan KJT, Coates GW. Degradation of Organic Cations under Alkaline Conditions. J Org Chem 2020; 86:254-263. [PMID: 33236908 DOI: 10.1021/acs.joc.0c02051] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the degradation mechanisms of organic cations under basic conditions is extremely important for the development of durable alkaline energy conversion devices. Cations are key functional groups in alkaline anion exchange membranes (AAEMs), and AAEMs are critical components to conduct hydroxide anions in alkaline fuel cells. Previously, we have established a standard protocol to evaluate cation alkaline stability within KOH/CD3OH solution at 80 °C. Herein, we are using the protocol to compare 26 model compounds, including benzylammonium, tetraalkylammonium, spirocyclicammonium, imidazolium, benzimidazolium, triazolium, pyridinium, guanidinium, and phosphonium cations. The goal is not only to evaluate their degradation rate, but also to identify their degradation pathways and lead to the advancement of cations with improved alkaline stabilities.
Collapse
Affiliation(s)
- Wei You
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States.,Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kristina M Hugar
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Ryan C Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Megan Treichel
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2617, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
13
|
Zhang Y, Chen W, Li T, Yan X, Zhang F, Wang X, Wu X, Pang B, He G. Tuning hydrogen bond and flexibility of N-spirocyclic cationic spacer for high performance anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118507] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Zhang F, Li T, Chen W, Yan X, Wu X, Jiang X, Zhang Y, Wang X, He G. High-Performance Anion Exchange Membranes with Para-Type Cations on Electron-Withdrawing C═O Links Free Backbone. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wanting Chen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoming Yan
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhou Wang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Salma U, Nagao Y. Alkaline stability of ether bond free fluorene-based anion exchange polymer containing cycloaliphatic quaternary ammonium groups. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Son TY, Kim DJ, Vijayakumar V, Kim K, Kim DS, Nam SY. Anion exchange membrane using poly(ether ether ketone) containing imidazolium for anion exchange membrane fuel cell (AEMFC). J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Quaternized Tröger’s base polymer with crown ether unit for alkaline stable anion exchange membranes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Pan J, Sun Z, Zhu H, Cao H, Wang B, Zhao J, Yan F. Synthesis and characterization of main-chain type polyimidazolium-based alkaline anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Zhang Y, Chen W, Yan X, Zhang F, Wang X, Wu X, Pang B, Wang J, He G. Ether spaced N-spirocyclic quaternary ammonium functionalized crosslinked polysulfone for high alkaline stable anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
|
21
|
Zhu T, Sha Y, Firouzjaie HA, Peng X, Cha Y, Dissanayake DMMM, Smith MD, Vannucci AK, Mustain WE, Tang C. Rational Synthesis of Metallo-Cations Toward Redox- and Alkaline-Stable Metallo-Polyelectrolytes. J Am Chem Soc 2019; 142:1083-1089. [DOI: 10.1021/jacs.9b12051] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
|