1
|
Kortaberria G. Hybrid Materials Based on Self-Assembled Block Copolymers and Magnetic Nanoparticles-A Review. Polymers (Basel) 2025; 17:1292. [PMID: 40430588 DOI: 10.3390/polym17101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
In this review work, the different routes and methods for preparing hybrid materials based on nanostructured block copolymers (BCPs) and magnetic nanoparticles (MNPs) are analyzed, as they can be potentially employed in different sectors like biomedicine, electronic or optoelectronic devices, data storing devices, etc. The first procedure for their preparation consists of the nanostructuring of BCPs in the presence of previously synthesized NPs by modifying their surface for increasing compatibility with the matrix or employing magnetic fields for NP orientation, which can also promote the orientation of nanodomains. Surface modification with surfactants led to the selective confinement of NPs depending on the interaction (mainly hydrogen bonding) degree and their intensity. Surface modification with brushes can be performed by three methods, including grafting from, grafting to, or grafting through. Those methods are compared in terms of success for the positioning and confinement of NPs in the desired domains, showing the crucial importance of brush length and grafting density, as well as of NP amount and modification degree in the self-assembled morphology. Regarding the use of external magnetic fields, the importance of relative amounts of MNPs and BCPs employed and that of the magnetic field intensity for the orientation of the NPs and the nearby BCP domains is shown. The second procedure, consisting of the in situ synthesis of NPs inside the nanodomains by a reduction in the respective metallic ions or employing metal-containing BCPs for the generation of MNP patterns or arrays, is also shown. In all cases, the transference of magnetic properties to the nanocomposite was successful. Finally, a brief summary of some aspects about the use of BCPs for the synthesis, encapsulation, and release of MNPs is shown, as they present potential biomedical applications such as cancer treatment, among others.
Collapse
Affiliation(s)
- Galder Kortaberria
- Group 'Materials + Technologies' (GMT), Chemical and Environmental Engineering Department, Faculty of Engineering of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
2
|
Zhang J, Chen Y, Li MG, Sun Z, Meng Z, Wong WY. Fabrication of Ultrafine L1 0-FePt-Based Magnetic Patterns Enabled by Single-Step Nanoimprint-Assisted Block Copolymer Self-Assembly. NANO LETTERS 2024; 24:14373-14380. [PMID: 39480060 DOI: 10.1021/acs.nanolett.4c04116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The bit islands in magnetic patterns play a crucial role in advancing magnetic recording density, but the trade-off issues between miniaturization and scalable production are still challenging. Here we present a two-in-one technique of nanoimprint lithography (NIL)-assisted self-assembly using a specially engineered FePt-containing block copolymer (BCP), offering a simple one-step fabrication for L10-FePt bit-patterned media with high throughput. This method combines top-down NIL with bottom-up self-assembly to precisely control the ultrafine magnetic bits in the nanoscale patterns. The FePt-derived BCPs, designed with an equal atomic ratio of Fe and Pt, ensure the preparation of homogeneously dispersed L10-FePt nanoparticles (NPs). Subsequent BCP pyrolysis results in NPs with enhanced magnetic properties, significantly advancing high-density data storage devices. This strategy offers a novel approach to drive the innovative creation of ordered magnetic metal alloy NPs arrays for practical applications.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yi Chen
- Division of Integrative Systems and Design and Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Mitch Guijun Li
- Division of Integrative Systems and Design and Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zelin Sun
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhengong Meng
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- School of Flexible Electronics (Future Technology) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Guan J, Dong D, Khan NA, Zheng Y. Emerging Pt-based intermetallic nanoparticles for the oxygen reduction reaction. Chem Commun (Camb) 2024. [PMID: 38264768 DOI: 10.1039/d3cc05611b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The advancement of highly efficient and enduring platinum (Pt)-based electrocatalysts for the oxygen reduction reaction (ORR) is a critical determinant to enable broad utilization of clean energy conversion technologies. Pt-based intermetallic electrocatalysts offer durability and superior ORR activity over their traditional analogues due to their definite stoichiometry, ordered and extended structures, and favourable enthalpy of formation. With the advent in new synthetic methods, Pt-based intermetallic nanoparticles as a new class of advanced electrocatalysts have been studied extensively in recent years. This review discusses the preparation principles, representative preparation methods of Pt-based intermetallics and their applications in the ORR. Our review is focused on L10 Pt-based intermetallics which have gained tremendous interest recently due to their larger surface strain and enhanced M(3d)-Pt(5d) orbital coupling, particularly in the crystallographic c-axis direction. Additionally, we discuss future research directions to further improve the efficiency of Pt-based intermetallic electrocatalysts with the intention of stimulating increased research ventures in this domain.
Collapse
Affiliation(s)
- Jingyu Guan
- China Nuclear Power Engineering Co., Ltd, Beijing 100840, China.
| | - Duo Dong
- China Nuclear Power Engineering Co., Ltd, Beijing 100840, China.
| | - Niaz Ali Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Yong Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
| |
Collapse
|
5
|
Qiu S, Xue H, Wang R, Zhang C, He Q, Chang G, Bu W. Synthesis of platinum(II)-complex end-tethered polymers: spectroscopic properties and nanostructured particles. SOFT MATTER 2023; 19:2891-2901. [PMID: 37039071 DOI: 10.1039/d3sm00247k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Although metal-containing polymers have been widely studied as a novel class of functional soft materials, the microphase separation between polymeric segments and metal-ligand complexes has been less addressed, which is critical to control their structures and functions. To do this, short-chain polystyrenes (PSs) have been end-functionalized with nanosized square-planar platinum(II) complexes. The platinum(II)-comprising polymers were found to show significant luminescence enhancement in chloroform/methanol solvent mixtures upon increasing the methanol composition. By modulating both the PS length and solvent quality, various self-assembled morphologies formed controllably in the mixed solvents and typical examples include nanofibers, nanoellipsoids, and nanospheres. More interestingly, the inside structures of these polymer particles are shown to be lamellar with sub-10 nm spacings, wherein the PS blocks are alternatively aligned with the platinum(II) units. Such a luminescence enhancement and hierarchical nanostructured particles originate from a subtle combination of directional Pt(II)⋯Pt(II) and/or π-π stacking interactions between the platinum(II) units and the solvophobic effect between the PS blocks. This work suggests that by microphase separating polymer chains with nanosized metal-ligand complexes, metal-containing polymers can self-assemble to form sub-10 nm scale nanostructures showcasing desired properties and functions.
Collapse
Affiliation(s)
- Shengchao Qiu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Hua Xue
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Ran Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Chi Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
6
|
Sha Y, Zhou Z, Hu Y, Zhang H, Li X. Heterobimetallic polymers with pendant metallocenes: Correlating metallopolymer structures with properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Lian H, Cheng X, Hao H, Han J, Lau MT, Li Z, Zhou Z, Dong Q, Wong WY. Metal-containing organic compounds for memory and data storage applications. Chem Soc Rev 2022; 51:1926-1982. [PMID: 35083990 DOI: 10.1039/d0cs00569j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the upcoming trend of Big Data era, some new types of memory technologies have emerged as substitutes for the traditional Si-based semiconductor memory devices, which are encountering severe scaling down technical obstacles. In particular, the resistance random access memory (RRAM) and magnetic random access memory (MRAM) hold great promise for the in-memory computing, which are regarded as the optimal strategy and pathway to solve the von Neumann bottleneck by high-throughput in situ data processing. As far as the active materials in RRAM and MRAM are concerned, organic semiconducting materials have shown increasing application perspectives in memory devices due to their rich structural diversity and solution processability. With the introduction of metal elements into the backbone of molecules, some new properties and phenomena will emerge accordingly. Consequently, the RRAM and MRAM devices based on metal-containing organic compounds (including the small molecular metal complexes, metallopolymers, metal-organic frameworks (MOFs) and organic-inorganic-hybrid perovskites (OIHPs)) have been widely explored and attracted intense attention. In this review, we highlight the fundamentals of RRAM and MRAM, as well as the research progress of the applications of metal-containing organic compounds in both RRAM and MRAM. Finally, we discuss the challenges and future directions for the research of organic RRAM and MRAM.
Collapse
Affiliation(s)
- Hong Lian
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,School of Mechanical & Electronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China. .,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Xiaozhe Cheng
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Haotian Hao
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Jinba Han
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Mei-Tung Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhi Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Qingchen Dong
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,School of Mechanical & Electronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China. .,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
8
|
Ermakova E, Kosinova M. Organosilicon compounds as single-source precursors for SiCN films production. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Hao S, Yang J, Liu P, Xu J, Yang C, Li F. Linear-Organic-Polymer-Supported Iridium Complex as a Recyclable Auto-Tandem Catalyst for the Synthesis of Quinazolinones via Selective Hydration/Acceptorless Dehydrogenative Coupling from o-Aminobenzonitriles. Org Lett 2021; 23:2553-2558. [PMID: 33729807 DOI: 10.1021/acs.orglett.1c00475] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A linear-organic-polymer-supported iridium complex Cp*Ir@P4VP, which is designed and synthesized by the coordinative immobilization of [Cp*IrCl2]2 on poly(4-vinylpyridine), was proven to be an efficient heterogeneous autotandem catalyst for synthesizing quinazolinones via selective hydration/acceptorless dehydrogenative coupling from o-aminobenzonitriles. Furthermore, the synthesized catalyst was recycled five times without an obvious decrease in the catalytic activity.
Collapse
Affiliation(s)
- Shushu Hao
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Jiazhi Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Peng Liu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Jing Xu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Chenchen Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Feng Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| |
Collapse
|
10
|
Amin BU, Yu H, Wang L, Nazir A, Fahad S, Haq F, Mahmood S, Liang R, Uddin MA, Lin T. Recent advances on ferrocene-based compounds and polymers as a burning rate catalysts for propellants. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Usman M, Yu H, Wang L, Zhizhko PA, Lemenovskiy DA, Zarubin DN, Khan A, Naveed KUR, Nazir A, Fahad S. Synthesis of ferrocenylated-aminopyridines and ferrocenylated-aminothiazoles and their anti-migration and burning rate catalytic properties. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Meng Z, Li G, Yiu S, Zhu N, Yu Z, Leung C, Manners I, Wong W. Nanoimprint Lithography‐Directed Self‐Assembly of Bimetallic Iron–M (M=Palladium, Platinum) Complexes for Magnetic Patterning. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhengong Meng
- Department of Chemistry Hong Kong Baptist University Waterloo Road Kowloon Tong Hong Kong P. R. China
- College of Chemistry and Environmental Engineering Low-dimensional Materials Genome Initiative Shenzhen University Xueyuan Road Shenzhen Guangdong P. R. China
| | - Guijun Li
- State Key Laboratory of Ultra-Precision Machining Technology and Department of Industrial and Systems Engineering The Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China
| | - Sze‐Chun Yiu
- Department of Chemistry Hong Kong Baptist University Waterloo Road Kowloon Tong Hong Kong P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Nianyong Zhu
- Department of Chemistry Hong Kong Baptist University Waterloo Road Kowloon Tong Hong Kong P. R. China
| | - Zhen‐Qiang Yu
- College of Chemistry and Environmental Engineering Low-dimensional Materials Genome Initiative Shenzhen University Xueyuan Road Shenzhen Guangdong P. R. China
| | - Chi‐Wah Leung
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China
| | - Ian Manners
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
| | - Wai‐Yeung Wong
- Department of Chemistry Hong Kong Baptist University Waterloo Road Kowloon Tong Hong Kong P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
13
|
Meng Z, Li G, Yiu SC, Zhu N, Yu ZQ, Leung CW, Manners I, Wong WY. Nanoimprint Lithography-Directed Self-Assembly of Bimetallic Iron-M (M=Palladium, Platinum) Complexes for Magnetic Patterning. Angew Chem Int Ed Engl 2020; 59:11521-11526. [PMID: 32243037 DOI: 10.1002/anie.202002685] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 01/10/2023]
Abstract
Self-assembly of d8 metal polypyridine systems is a well-established approach for the creation of 1D organometallic assemblies but there are still challenges for the large-scale construction of nanostructured patterns from these building blocks. We describe herein the use of high-throughput nanoimprint lithography (NIL) to direct the self-assembly of the bimetallic complexes [4'-ferrocenyl-(2,2':6',2''-terpyridine)M(OAc)]+ (OAc)- (M=Pd or Pt; OAc=acetate). Uniform nanorods are fabricated from the molecular self-organization and evidenced by morphological characterization. More importantly, when top-down NIL is coupled with the bottom-up self-assembly of the organometallic building blocks, regular arrays of nanorods can be accessed and the patterns can be controlled by changing the lithographic stamp, where the mold imposes a confinement effect on the nanorod growth. In addition, patterns consisting of the products formed after pyrolysis are studied. The resulting arrays of ferromagnetic FeM alloy nanorods suggest promising potential for the scalable production of ordered magnetic arrays and fabrication of magnetic bit-patterned media.
Collapse
Affiliation(s)
- Zhengong Meng
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China.,College of Chemistry and Environmental Engineering, Low-dimensional Materials Genome Initiative, Shenzhen University, Xueyuan Road, Shenzhen, Guangdong, P. R. China
| | - Guijun Li
- State Key Laboratory of Ultra-Precision Machining Technology and Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Sze-Chun Yiu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Nianyong Zhu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Low-dimensional Materials Genome Initiative, Shenzhen University, Xueyuan Road, Shenzhen, Guangdong, P. R. China
| | - Chi-Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Wai-Yeung Wong
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|