1
|
Nisal R, Kambale P, Pathan S, Jayakannan M. ROPISA Strategy for In-Situ Loading in Polypeptide Nanoparticles. Chem Asian J 2025:e202401949. [PMID: 40289878 DOI: 10.1002/asia.202401949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
We report a ring-opening polymerization induced self-assembly (ROPISA) synthetic strategy for in-situ encapsulation of fluorescent dye molecules in poly(ʟ-serine) based polypeptide nano-assemblies and demonstrate their cellular bioimaging application. A bulky ʟ-serine N-carboxyanhydride monomer is tailor-made and polymerized using PEG-amine as hydrophilic macroinitiator in water at pH 8.5 to obtain polypeptide block copolymer as stable dispersions in the form of opalescent solutions. Both water soluble fluorescent dyes like Rhodamine B, HPTS and water insoluble fluorescent dye like Nile red are readily encapsulated in-situ in the ROPISA process which afforded stable fluorescent polypeptide nanoformulation for direct application in biological system. The polypeptide nanoparticle dispersion is found to be stable, and they are found to have spherical nanoparticle morphology of 25 nm in size. Both the nascent and fluorescent dye encapsulated polypeptide nanoparticles were found to be nontoxic to mammalian cells up to 100 µg/mL and non-hemolytic to Red Blood Cells. These polypeptide nanoparticles were readily endocytosed across the cell membrane and internalized in the cytosol, and the proof-of-concept was established by confocal microscopy. This newly developed in-situ ROPISA process for fluorescent dye loading opens up new platform for polypeptide nano-formulations for application in both material and biomedical fields.
Collapse
Affiliation(s)
- Rahul Nisal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Parshuram Kambale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
2
|
Zhu C, Beauseroy H, Mougin J, Lages M, Nicolas J. In situ synthesis of degradable polymer prodrug nanoparticles. Chem Sci 2025; 16:2619-2633. [PMID: 39822905 PMCID: PMC11733764 DOI: 10.1039/d4sc07746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
The in situ synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (e.g., low nanoparticle concentrations) and those of the physical encapsulation of drugs (e.g., burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content. This novel approach was exemplified with two different CKA monomers and two different anticancer drugs, namely paclitaxel and gemcitabine, to demonstrate its versatility. After transferring to water, remarkably stable aqueous suspensions of core-degradable polymer prodrug nanoparticles, 56-225 nm in diameter, with tunable amounts of CKA units (7-26 mol%) and drug loadings of up to 33 wt% were obtained. The incorporation of ester groups in the copolymers was demonstrated by hydrolytic degradation of both the copolymers and the nanoparticles under accelerated conditions. The nanoparticles showed significant cytotoxicity against A549 cells, used as a lung cancer model. Fluorescence labeling of the solvophilic block also enabled effective monitoring of cell internalization by confocal microscopy, with potential for theranostic applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Hannah Beauseroy
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Maëlle Lages
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| |
Collapse
|
3
|
Sbordone F, Frisch H. Plenty of Space in the Backbone: Radical Ring-Opening Polymerization. Chemistry 2024; 30:e202401547. [PMID: 38818742 DOI: 10.1002/chem.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Radical polymerization is the most widely applied technique in both industry and fundamental science. However, its major drawback is that it typically yields polymers with non-functional, non-degradable all-carbon backbones-a limitation that radical ring-opening polymerization (rROP) allows to overcome. The last decade has seen a surge in rROP, primarily focused on creating degradable polymers. This pursuit has resulted in the creation of the first readily degradable materials through radical polymerization. Recent years have witnessed innovations in new monomers that address previous design limitations, such as ring strain and reactivity ratios. Furthermore, advances in integrating rROP with reversible deactivation radical polymerization (RDRP) have facilitated the incorporation of complex, customizable chemical payloads into the main polymer chain. This short review discusses the latest developments in monomer design with a focused analysis of their limitations in a broader historical context. Recently evolving strategies for compatibility of rROP monomers with RDRP are discussed, which are key to precision polymer synthesis. The latest chemistry surveyed expands the horizon beyond mere hydrolytic degradation. Now is the time to explore the chemical potential residing in the previously inaccessible polymer backbone.
Collapse
Affiliation(s)
- Federica Sbordone
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
4
|
Morrell AH, Warren NJ, Thornton PD. The Production of Polysarcosine-Containing Nanoparticles by Ring-Opening Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2024; 45:e2400103. [PMID: 38597209 DOI: 10.1002/marc.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Indexed: 04/11/2024]
Abstract
N-carboxyanhydride ring-opening polymerization-induced self-assembly (NCA ROPISA) offers a convenient route for generating poly(amino acid)-based nanoparticles in a single step, crucially avoiding the need for post-polymerization self-assembly. Most examples of NCA ROPISA make use of a poly(ethylene glycol) (PEG) hydrophilic stabilizing block, however this non-biodegradable, oil-derived polymer may cause an immunological response in some individuals. Alternative water-soluble polymers are therefore highly sought. This work reports the synthesis of wholly poly(amino acid)-based nanoparticles, through the chain-extension of a polysarcosine macroinitiator with L-Phenylalanine-NCA (L-Phe-NCA) and Alanine-NCA (Ala-NCA), via aqueous NCA ROPISA. The resulting polymeric structures comprise of predominantly anisotropic, rod-like nanoparticles, with morphologies primarily influenced by the secondary structure of the hydrophobic poly(amino acid) that enables their formation.
Collapse
Affiliation(s)
- Anna H Morrell
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicholas J Warren
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul D Thornton
- Leeds Institute of Textiles and Colour (LITAC), School of Design, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Zhang S, Li R, An Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202315849. [PMID: 38155097 DOI: 10.1002/anie.202315849] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and in situ self-assembly of block copolymers in one system and has become a widely used method to prepare block copolymer nanoparticles at high concentrations. The persistence of polymers in the environment poses a huge threat to the ecosystem and represents a significant waste of resources. There is an urgent need to develop novel chemical approaches to synthesize degradable polymers. To meet with this demand, it is crucial to install degradability into PISA nanoparticles. Most recently, degradable PISA nanoparticles have been synthesized by introducing degradation mechanisms into either shell-forming or core-forming blocks. This Minireview summarizes the development in degradable block copolymer nanoparticles synthesized by PISA, including shell-degradable, core-degradable, and all-degradable nanoparticles. Future development will benefit from expansion of polymerization techniques with new degradation mechanisms and adaptation of high-throughput approaches for both PISA syntheses and degradation studies.
Collapse
Affiliation(s)
- Shudi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Zheng Y, Niino H, Chatani S, Goto A. Preparation of Block Copolymer Self-Assemblies via Pisa in a Non-Polar Medium Based on RCMP. Macromol Rapid Commun 2024; 45:e2300635. [PMID: 38284465 DOI: 10.1002/marc.202300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Polymerization-induced self-assembly (PISA) is conducted in a non-polar medium (n-dodecane) via reversible complexation-mediated polymerization (RCMP). Stearyl methacrylate (SMA) is used to synthesize a macroinitiator, and subsequent block polymerization of benzyl methacrylate (BzMA) from the macroinitiator in n-dodecane afforded a PSMA-PBzMA block copolymer, where PSMA is poly(stearyl methacrylate) and PBzMA is poly(benzyl methacrylate). Because PSMA is soluble but PBzMA is insoluble in n-dodecane, the block copolymer formed a self-assembly during the block polymerization (PISA). Spherical micelles, worms, and vesicles are obtained, depending on the degrees of polymerization of PSMA and PBzMA. "One-pot" PISA is also attained; namely, BzMA is directly added to the reaction mixture of the macroinitiator synthesis, and PISA is conducted in the same pot without purification of the macroinitiator. The spherical micelle and vesicle structures are also fixed using a crosslinkable monomer during PISA. RCMP-PISA is highly attractive as it is odorless and metal-free. The "one-pot" synthesis does not require the purification of the macroinitiator. RCMP-PISA can provide a practical approach to synthesize self-assemblies in non-polar media.
Collapse
Affiliation(s)
- Yichao Zheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Hiroshi Niino
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan
| | - Atsushi Goto
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| |
Collapse
|
8
|
Jiang NC, Zhou Z, Niu J. Quantitative, Regiospecific, and Stereoselective Radical Ring-Opening Polymerization of Monosaccharide Cyclic Ketene Acetals. J Am Chem Soc 2024; 146:5056-5062. [PMID: 38345300 DOI: 10.1021/jacs.3c14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Cyclic ketene acetals (CKAs) are among the most well-studied monomers for radical ring-opening polymerization (rROP). However, ring-retaining side reactions and low reactivities in homopolymerization and copolymerization remain significant challenges for the existing CKAs. Here, we report that a class of monosaccharide CKAs can be facilely prepared from a short and scalable synthetic route and can undergo quantitative, regiospecific, and stereoselective rROP. NMR analyses and degradation experiments revealed a reaction mechanism involving a propagating radical at the C2 position of pyranose with different monosaccharides exhibiting distinct stereoselectivity in the radical addition of the monomer. Furthermore, the addition of maleimide was found to improve the incorporation efficiency of monosaccharide CKA in the copolymerization with vinyl monomers and produced unique degradable terpolymers with carbohydrate motifs in the polymer backbone.
Collapse
Affiliation(s)
- Na-Chuan Jiang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zefeng Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
9
|
Farmer MH, Musa OM, Haug I, Naumann S, Armes SP. Synthesis of Poly(propylene oxide)-Poly( N,N'-dimethylacrylamide) Diblock Copolymer Nanoparticles via Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Solution. Macromolecules 2024; 57:317-327. [PMID: 38222027 PMCID: PMC10782481 DOI: 10.1021/acs.macromol.3c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Sterically-stabilized diblock copolymer nanoparticles comprising poly(propylene oxide) (PPO) cores are prepared via reverse sequence polymerization-induced self-assembly (PISA) in aqueous solution. N,N'-Dimethylacrylamide (DMAC) acts as a cosolvent for the weakly hydrophobic trithiocarbonate-capped PPO precursor. Reversible addition-fragmentation chain transfer (RAFT) polymerization of DMAC is initially conducted at 80% w/w solids with deoxygenated water. At 30-60% DMAC conversion, the reaction mixture is diluted to 5-25% w/w solids. The PPO chains become less solvated as the DMAC monomer is consumed, which drives in situ self-assembly to form aqueous dispersions of PPO-core nanoparticles of 120-190 nm diameter at 20 °C. Such RAFT polymerizations are well-controlled (Mw/Mn ≤ 1.31), and more than 99% DMAC conversion is achieved. The resulting nanoparticles exhibit thermoresponsive character: dynamic light scattering and transmission electron microscopy studies indicate the formation of more compact spherical nanoparticles of approximately 33 nm diameter on heating to 70 °C. Furthermore, 15-25% w/w aqueous dispersions of such nanoparticles formed micellar gels that undergo thermoreversible (de)gelation on cooling to 5 °C.
Collapse
Affiliation(s)
- Matthew
A. H. Farmer
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Osama M. Musa
- Ashland
Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Iris Haug
- Institute
of Polymer Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefan Naumann
- Institute
of Polymer Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
10
|
Hardy C, Levere ME, Kociok-Köhn G, Buchard A. Radical Ring Opening Polymerization of Cyclic Ketene Acetals Derived From d-Glucal. ACS Macro Lett 2023; 12:1443-1449. [PMID: 37824416 PMCID: PMC10666543 DOI: 10.1021/acsmacrolett.3c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
A cyclic ketene acetal (CKA) derived from d-glucal was synthesized, and its polymerization using free radicals has been investigated. NMR analysis of the resulting polymers revealed the formation of polyacetal-polyester copolymers, with up to 78% of ester linkages formed by radical ring-opening polymerization (rROP). Conversely, the polymerization of the monomer-saturated analogue only produced acetal linkages, demonstrating that the alkene functionality within the d-glucal pyranose ring is essential to promote ring-opening and ester formation, likely via the stabilization of an allyl radical. The thermal properties of the polymers were linked to the ratio of the ester and acetal linkages. Copolymerization with methyl methacrylate (MMA) afforded statistically PMMA-rich copolymers (66-98%) with linkages prone to hydrolytic degradation and decreased glass-transition temperatures. The retention of the pseudoglucal alkene function offers opportunities to functionalize further these bioderived (co)polymers.
Collapse
Affiliation(s)
- Craig Hardy
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Martin E. Levere
- Materials
and Chemical Characterisation Facility (MC), University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | - Gabriele Kociok-Köhn
- Materials
and Chemical Characterisation Facility (MC), University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | - Antoine Buchard
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
- University
of Bath Institute for Sustainability, Claverton Down, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
11
|
György C, Armes SP. Recent Advances in Polymerization-Induced Self-Assembly (PISA) Syntheses in Non-Polar Media. Angew Chem Int Ed Engl 2023; 62:e202308372. [PMID: 37409380 PMCID: PMC10952376 DOI: 10.1002/anie.202308372] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
It is well-known that polymerization-induced self-assembly (PISA) is a powerful and highly versatile technique for the rational synthesis of colloidal dispersions of diblock copolymer nanoparticles, including spheres, worms or vesicles. PISA can be conducted in water, polar solvents or non-polar media. In principle, the latter formulations offer a wide range of potential commercial applications. However, there has been just one review focused on PISA syntheses in non-polar media and this prior article was published in 2016. The purpose of the current review article is to summarize the various advances that have been reported since then. In particular, PISA syntheses conducted using reversible addition-fragmentation chain-transfer (RAFT) polymerization in various n-alkanes, poly(α-olefins), mineral oil, low-viscosity silicone oils or supercritical CO2 are discussed in detail. Selected formulations exhibit thermally induced worm-to-sphere or vesicle-to-worm morphological transitions and the rheological properties of various examples of worm gels in non-polar media are summarized. Finally, visible absorption spectroscopy and small-angle X-ray scattering (SAXS) enable in situ monitoring of nanoparticle formation, while small-angle neutron scattering (SANS) can be used to examine micelle fusion/fission and chain exchange mechanisms.
Collapse
Affiliation(s)
- Csilla György
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldSouth YorkshireS3 7HFUK
| | - Steven P. Armes
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldSouth YorkshireS3 7HFUK
| |
Collapse
|
12
|
Farmer MAH, Musa OM, Armes SP. Efficient Synthesis of Hydrolytically Degradable Block Copolymer Nanoparticles via Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Media. Angew Chem Int Ed Engl 2023; 62:e202309526. [PMID: 37522648 PMCID: PMC10952355 DOI: 10.1002/anie.202309526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Hydrolytically degradable block copolymer nanoparticles are prepared via reverse sequence polymerization-induced self-assembly (PISA) in aqueous media. This efficient protocol involves the reversible addition-fragmentation chain transfer (RAFT) polymerization of N,N'-dimethylacrylamide (DMAC) using a monofunctional or bifunctional trithiocarbonate-capped poly(ϵ-caprolactone) (PCL) precursor. DMAC monomer is employed as a co-solvent to solubilize the hydrophobic PCL chains. At an intermediate DMAC conversion of 20-60 %, the reaction mixture is diluted with water to 10-25 % w/w solids. The growing amphiphilic block copolymer chains undergo nucleation to form sterically-stabilized PCL-core nanoparticles with PDMAC coronas. 1 H NMR studies confirm more than 99 % DMAC conversion while gel permeation chromatography (GPC) studies indicate well-controlled RAFT polymerizations (Mw /Mn ≤1.30). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) indicate spheres of 20-120 nm diameter. As expected, hydrolytic degradation occurs within days at 37 °C in either acidic or alkaline solution. Degradation is also observed in phosphate-buffered saline (PBS) (pH 7.4) at 37 °C. However, no degradation is detected over a three-month period when these nanoparticles are stored at 20 °C in deionized water (pH 6.7). Finally, PDMAC30 -PCL16 -PDMAC30 nanoparticles are briefly evaluated as a dispersant for an agrochemical formulation based on a broad-spectrum fungicide (azoxystrobin).
Collapse
Affiliation(s)
- Matthew A. H. Farmer
- Department of ChemistryThe University of SheffieldBrook HillS3 7HFSheffieldSouth YorkshireUK
| | - Osama M. Musa
- Ashland Specialty Ingredients1005 US 202/20608807BridgewaterNJUSA
| | - Steven P. Armes
- Department of ChemistryThe University of SheffieldBrook HillS3 7HFSheffieldSouth YorkshireUK
| |
Collapse
|
13
|
Zhao X, Sun C, Xiong F, Wang T, Li S, Huo F, Yao X. Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms. RESEARCH (WASHINGTON, D.C.) 2023; 6:0113. [PMID: 37223484 PMCID: PMC10202185 DOI: 10.34133/research.0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/19/2023] [Indexed: 05/25/2023]
Abstract
Amphiphilic copolymers can self-assemble into nano-objects in aqueous solution. However, the self-assembly process is usually performed in a diluted solution (<1 wt%), which greatly limits scale-up production and further biomedical applications. With recent development of controlled polymerization techniques, polymerization-induced self-assembly (PISA) has emerged as an efficient approach for facile fabrication of nano-sized structures with a high concentration as high as 50 wt%. In this review, after the introduction, various polymerization method-mediated PISAs that include nitroxide-mediated polymerization-mediated PISA (NMP-PISA), reversible addition-fragmentation chain transfer polymerization-mediated PISA (RAFT-PISA), atom transfer radical polymerization-mediated PISA (ATRP-PISA), and ring-opening polymerization-mediated PISA (ROP-PISA) are discussed carefully. Afterward, recent biomedical applications of PISA are illustrated from the following aspects, i.e., bioimaging, disease treatment, biocatalysis, and antimicrobial. In the end, current achievements and future perspectives of PISA are given. It is envisioned that PISA strategy can bring great chance for future design and construction of functional nano-vehicles.
Collapse
|
14
|
Hurst PJ, Graham AA, Patterson JP. Gaining Structural Control by Modification of Polymerization Rate in Ring-Opening Polymerization-Induced Crystallization-Driven Self-Assembly. ACS POLYMERS AU 2022; 2:501-509. [PMID: 36536891 PMCID: PMC9756957 DOI: 10.1021/acspolymersau.2c00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/17/2023]
Abstract
Polymerization-induced self-assembly (PISA) has become an important one pot method for the preparation of well-defined block copolymer nanoparticles. In PISA, morphology is typically controlled by changing molecular architecture and polymer concentration. However, several computational and experimental studies have suggested that changes in polymerization rate can lead to morphological differences. Here, we demonstrate that catalyst selection can be used to control morphology independent of polymer structure and concentration in ring-opening polymerization-induced crystallization-driven self-assembly (ROPI-CDSA). Slower rates of polymerization give rise to slower rates of self-assembly, resulting in denser lamellae and more 3D structures when compared to faster rates of polymerization. Our explanation for this is that the fast samples transiently exist in a nonequilibrium state as self-assembly starts at a higher solvophobic block length when compared to the slow polymerization. We expect that subsequent examples of rate variation in PISA will allow for greater control over morphological outcome.
Collapse
Affiliation(s)
- Paul Joshua Hurst
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
| | - Annissa A. Graham
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
15
|
Yang Y, Xing F, Zhou Y, Xiao P. Hydrolysis/Photolysis Dual-Stimuli-Responsive Backbone-Degradable Copolymers Featuring Cyclic Ketene Acetal and ortho-Nitrobenzyl Pendants. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Shirinichi F, Ibrahim T, Rodriguez M, Sun H. Assembling the best of two worlds: Biomolecule‐polymer nanoparticles via polymerization‐induced self‐assembly. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Farbod Shirinichi
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Tarek Ibrahim
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Mia Rodriguez
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| |
Collapse
|
17
|
Lages M, Gil N, Galanopoulo P, Mougin J, Lefay C, Guillaneuf Y, Lansalot M, D’Agosto F, Nicolas J. Degradable Vinyl Copolymer Nanoparticles/Latexes by Aqueous Nitroxide-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maëlle Lages
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F–91400 Orsay, France
| | - Noémie Gil
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Paul Galanopoulo
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne F-69616, France
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F–91400 Orsay, France
| | - Catherine Lefay
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Yohann Guillaneuf
- Aix-Marseille-Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Muriel Lansalot
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne F-69616, France
| | - Franck D’Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne F-69616, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F–91400 Orsay, France
| |
Collapse
|
18
|
Damsongsang P, Yusa SI, Hoven VP. Zwitterionic nano-objects having functionalizable hydrophobic core: Formation via polymerization-induced self-assembly and their morphology. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
20
|
Bossion A, Zhu C, Guerassimoff L, Mougin J, Nicolas J. Vinyl copolymers with faster hydrolytic degradation than aliphatic polyesters and tunable upper critical solution temperatures. Nat Commun 2022; 13:2873. [PMID: 35610204 PMCID: PMC9130262 DOI: 10.1038/s41467-022-30220-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Vinyl polymers are the focus of intensive research due to their ease of synthesis and the possibility of making well-defined, functional materials. However, their non-degradability leads to environmental problems and limits their use in biomedical applications, allowing aliphatic polyesters to still be considered as the gold standards. Radical ring-opening polymerization of cyclic ketene acetals is considered the most promising approach to impart degradability to vinyl polymers. However, these materials still exhibit poor hydrolytic degradation and thus cannot yet compete with traditional polyesters. Here we show that a simple copolymerization system based on acrylamide and cyclic ketene acetals leads to well-defined and cytocompatible copolymers with faster hydrolytic degradation than that of polylactide and poly(lactide-co-glycolide). Moreover, by changing the nature of the cyclic ketene acetal, the copolymers can be either water-soluble or can exhibit tunable upper critical solution temperatures relevant for mild hyperthermia-triggered drug release. Amphiphilic diblock copolymers deriving from this system can also be formulated into degradable, thermosensitive nanoparticles by an all-water nanoprecipitation process.
Collapse
Affiliation(s)
- Amaury Bossion
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Léa Guerassimoff
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
21
|
Liu J, Wu WJ, Sun XL, Qian QR, Xiao LR. Degradable polymeric nanomaterials with a high solid content and multiple morphologies by polymerization-induced self-assembly. Chem Commun (Camb) 2022; 58:3182-3185. [PMID: 35171182 DOI: 10.1039/d2cc00014h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The preparation of degradable polymeric nanomaterials with a high solid content and multiple morphologies is highly desirable but still challenging. Here, the RAFT dispersion polymerization of styrene and 5,6-benzo-2-methylene-1,3-dioxepane was demonstrated to achieve various morphologies, including spheres, vesicles, worms, and large compound vesicles, with a high solid content through polymerization-induced self-assembly, which opens up a new avenue for the preparation of degradable polymeric nanomaterials.
Collapse
Affiliation(s)
- Jing Liu
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China. .,Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China.
| | - Wen-Jun Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China. .,College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Xiao-Li Sun
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China. .,College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Qing-Rong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China. .,College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Li-Ren Xiao
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China. .,Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
22
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring‐Opening Cascade Copolymerization**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenqi Wang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Zefeng Zhou
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Devavrat Sathe
- School of Polymer Science and Polymer Engineering University of Akron Akron OH 44325 USA
| | - Xuanting Tang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Stephanie Moran
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jing Jin
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Fredrik Haeffner
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering University of Akron Akron OH 44325 USA
| | - Jia Niu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
23
|
Wang W, Zhou Z, Sathe D, Tang X, Moran S, Jin J, Haeffner F, Wang J, Niu J. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring-Opening Cascade Copolymerization. Angew Chem Int Ed Engl 2021; 61:e202113302. [PMID: 34890493 DOI: 10.1002/anie.202113302] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/12/2022]
Abstract
Degradable vinyl polymers by radical ring-opening polymerization are promising solutions to the challenges caused by non-degradable vinyl plastics. However, achieving even distributions of labile functional groups in the backbone of degradable vinyl polymers remains challenging. Herein, we report a photocatalytic approach to degradable vinyl random copolymers via radical ring-opening cascade copolymerization (rROCCP). The rROCCP of macrocyclic allylic sulfones and acrylates or acrylamides mediated by visible light at ambient temperature achieved near-unity comonomer reactivity ratios over the entire range of the feed compositions. Experimental and computational evidence revealed an unusual reversible inhibition of chain propagation by in situ generated sulfur dioxide (SO2), which was successfully overcome by reducing the solubility of SO2. This study provides a powerful approach to degradable vinyl random copolymers with comparable material properties to non-degradable vinyl polymers.
Collapse
Affiliation(s)
- Wenqi Wang
- Boston College, Chemistry, UNITED STATES
| | | | - Devavrat Sathe
- University of Akron, School of Polymer Science and Polymer Engineering, UNITED STATES
| | | | | | - Jing Jin
- Boston College, Chemistry, UNITED STATES
| | | | - Junpeng Wang
- University of Akron, School of Polymer Science and Polymer Engineering, UNITED STATES
| | - Jia Niu
- Boston College, Department of Chemistry, 2609 Beacon St., Merkert Chemistry Center 214B, 02467, Chestnut Hill, UNITED STATES
| |
Collapse
|
24
|
Sarkar J, Lim YF, Goto A. Synthesis of Biologically Decomposable Terpolymer Nanocapsules and Higher‐Order Nanoassemblies Using RCMP‐PISA. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jit Sarkar
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| | - Ying Faye Lim
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Nanyang 637371 Singapore
| |
Collapse
|
25
|
Shi Q, Chen Y, Yang J, Yang J. Ring-opening polymerization-induced self-assembly (ROPISA) of salicylic acid o-carboxyanhydride. Chem Commun (Camb) 2021; 57:11390-11393. [PMID: 34647932 DOI: 10.1039/d1cc04630f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here is the first report on polyester-based nanocarriers fabricated via the ring-opening polymerization-induced self-assembly (ROPISA) of salicylic acid o-carboxyanhydride (SAOCA). This ROPISA process affords well-defined diblock copolymers that interestingly form an original cylindrical morphology.
Collapse
Affiliation(s)
- Qianqian Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yibing Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Junjiao Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
26
|
Oh XY, Ge Y, Goto A. Synthesis of degradable and chemically recyclable polymers using 4,4-disubstituted five-membered cyclic ketene hemiacetal ester (CKHE) monomers. Chem Sci 2021; 12:13546-13556. [PMID: 34777774 PMCID: PMC8528068 DOI: 10.1039/d1sc03560f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
Novel degradable and chemically recyclable polymers were synthesized using five-membered cyclic ketene hemiacetal ester (CKHE) monomers. The studied monomers were 4,4-dimethyl-2-methylene-1,3-dioxolan-5-one (DMDL) and 5-methyl-2-methylene-5-phenyl-1,3-dioxolan-4-one (PhDL). The two monomers were synthesized in high yields (80-90%), which is an attractive feature. DMDL afforded its homopolymer with a relatively high molecular weight (M n >100 000, where M n is the number-average molecular weight). DMDL and PhDL were copolymerized with various families of vinyl monomers, i.e., methacrylates, acrylates, styrene, acrylonitrile, vinyl pyrrolidinone, and acrylamide, and various functional methacrylates and acrylate. Such a wide scope of the accessible polymers is highly useful for material design. The obtained homopolymers and random copolymers of DMDL degraded in basic conditions (in the presence of a hydroxide or an amine) at relatively mild temperatures (room temperature to 65 °C). The degradation of the DMDL homopolymer generated 2-hydroxyisobutyric acid (HIBA). The generated HIBA was recovered and used as an ingredient to re-synthesize DMDL monomer, and this monomer was further used to re-synthesize the DMDL polymer, demonstrating the chemical recycling of the DMDL polymer. Such degradability and chemical recyclability of the DMDL polymer may contribute to the circular materials economy.
Collapse
Affiliation(s)
- Xin Yi Oh
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Science, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yicen Ge
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Science, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Science, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
27
|
Abstract
The development of degradable polymers has commanded significant attention over the past half century. Approaches have predominantly relied on ring-opening polymerization of cyclic esters (e.g., lactones, lactides) and N-carboxyanhydrides, as well as radical ring-opening polymerizations of cyclic ketene acetals. In recent years, there has been a significant effort applied to expand the family of degradable polymers accessible via olefin metathesis polymerization. Given the excellent functional group tolerance of olefin metathesis polymerization reactions generally, a broad range of conceivable degradable moieties can be incorporated into appropriate monomers and thus into polymer backbones. This approach has proven particularly versatile in synthesizing a broad spectrum of degradable polymers including poly(ester), poly(amino acid), poly(acetal), poly(carbonate), poly(phosphoester), poly(phosphoramidate), poly(enol ether), poly(azobenzene), poly(disulfide), poly(sulfonate ester), poly(silyl ether), and poly(oxazinone) among others. In this review, we will highlight the main olefin metathesis polymerization strategies that have been used to access degradable polymers, including (i) acyclic diene metathesis polymerization, (ii) entropy-driven and (iii) enthalpy-driven ring-opening metathesis polymerization, as well as (iv) cascade enyne metathesis polymerization. In addition, the livingness or control of polymerization reactions via different strategies are highlighted and compared. Potential applications, challenges and future perspectives of this new library of degradable polyolefins are discussed. It is clear from recent and accelerating developments in this field that olefin metathesis polymerization represents a powerful synthetic tool towards degradable polymers with novel structures and properties inaccessible by other polymerization approaches.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Matthew P. Thompson
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering,
Department of Biomedical Engineering, Department of Pharmacology, Chemistry of Life
Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
28
|
Damsongsang P, Hoven VP, Yusa SI. Core-functionalized nanoaggregates: preparation via polymerization-induced self-assembly and their applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj01791h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Core-functionalized nanoaggregates can be prepared by a combination of polymerization-induced self-assembly (PISA) and post-polymerization modification.
Collapse
Affiliation(s)
- Panittha Damsongsang
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Voravee P. Hoven
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Shin-ichi Yusa
- Department of Applied Chemistry
- Graduate School of Engineering
- University of Hyogo
- Himeji
- Japan
| |
Collapse
|
29
|
Dorsman IR, Derry MJ, Cunningham VJ, Brown SL, Williams CN, Armes SP. Tuning the vesicle-to-worm transition for thermoresponsive block copolymer vesicles prepared via polymerisation-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py01713b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Does statistical copolymerization of n-butyl methacrylate with benzyl methacrylate lower the critical temperature required for vesicle-to-worm and worm-to-sphere transitions for diblock copolymer nano-objects in mineral oil?
Collapse
Affiliation(s)
| | - Matthew J. Derry
- Department of Chemistry
- The University of Sheffield
- South Yorkshire
- UK
| | | | | | | | - Steven P. Armes
- Department of Chemistry
- The University of Sheffield
- South Yorkshire
- UK
| |
Collapse
|
30
|
Zhu C, Nicolas J. Towards nanoparticles with site-specific degradability by ring-opening copolymerization induced self-assembly in organic medium. Polym Chem 2021. [DOI: 10.1039/d0py01425g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radical ring-opening copolymerization-induced self-assembly (rROPISA) was successfully applied to the synthesis of core-, surface- or surface plus core-degradable nanoparticles in heptane, leading to site-specific degradability by rROPISA.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay
- CNRS
- Institut Galien Paris-Saclay
- 92296 Châtenay-Malabry
- France
| | - Julien Nicolas
- Université Paris-Saclay
- CNRS
- Institut Galien Paris-Saclay
- 92296 Châtenay-Malabry
- France
| |
Collapse
|
31
|
Grazon C, Salas-Ambrosio P, Antoine S, Ibarboure E, Sandre O, Clulow AJ, Boyd BJ, Grinstaff MW, Lecommandoux S, Bonduelle C. Aqueous ROPISA of α-amino acid N-carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy. Polym Chem 2021. [DOI: 10.1039/d1py00995h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ring-Opening Polymerization-Induced Self-Assembly (ROPISA) of N-carboxyanhydride is an efficient one-step process to obtain nanomaterials made of polypeptides.
Collapse
Affiliation(s)
- Chloé Grazon
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, USA
- Univ. Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), 33405 Talence, France
| | | | - Ségolène Antoine
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Olivier Sandre
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Andrew J. Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Ben J. Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre of Excellence in Convergent Bionano Science and Technology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Mark W. Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Colin Bonduelle
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| |
Collapse
|
32
|
Pesenti T, Nicolas J. 100th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges. ACS Macro Lett 2020; 9:1812-1835. [PMID: 35653672 DOI: 10.1021/acsmacrolett.0c00676] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radical ring-opening polymerization (rROP) allows facile incorporation of labile groups (e.g., ester) into the main chain of vinyl polymers to obtain (bio)degradable materials. rROP has focused a lot of attention especially since the advent of reversible deactivation radical polymerization (RDRP) techniques and is still incredibly moving forward, as attested by the numerous achievements in terms of monomer synthesis, macromolecular engineering, and potential biomedical applications of the resulting degradable polymers. In the present Viewpoint, we will cover the latest progress made in rROP in the last ∼5 years, such as its recent directions, its remaining limitations, and the ongoing challenges. More specifically, this will be achieved through the three different classes of monomers that recently caught most of the attention: cyclic ketene acetals (CKA), thionolactones, and macrocyclic monomers.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
33
|
Hurst PJ, Rakowski AM, Patterson JP. Ring-opening polymerization-induced crystallization-driven self-assembly of poly-L-lactide-block-polyethylene glycol block copolymers (ROPI-CDSA). Nat Commun 2020; 11:4690. [PMID: 32943622 PMCID: PMC7499262 DOI: 10.1038/s41467-020-18460-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
The self-assembly of block copolymers into 1D, 2D and 3D nano- and microstructures is of great interest for a wide range of applications. A key challenge in this field is obtaining independent control over molecular structure and hierarchical structure in all dimensions using scalable one-pot chemistry. Here we report on the ring opening polymerization-induced crystallization-driven self-assembly (ROPI-CDSA) of poly-L-lactide-block-polyethylene glycol block copolymers into 1D, 2D and 3D nanostructures. A key feature of ROPI-CDSA is that the polymerization time is much shorter than the self-assembly relaxation time, resulting in a non-equilibrium self-assembly process. The self-assembly mechanism is analyzed by cryo-transmission electron microscopy, wide-angle x-ray scattering, Fourier transform infrared spectroscopy, and turbidity studies. The analysis revealed that the self-assembly mechanism is dependent on both the polymer molecular structure and concentration. Knowledge of the self-assembly mechanism enabled the kinetic trapping of multiple hierarchical structures from a single block copolymer.
Collapse
Affiliation(s)
- Paul J Hurst
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Alexander M Rakowski
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA.
| |
Collapse
|
34
|
Dao TPT, Vezenkov L, Subra G, Amblard M, In M, Le Meins JF, Aubrit F, Moradi MA, Ladmiral V, Semsarilar M. Self-Assembling Peptide—Polymer Nano-Objects via Polymerization-Induced Self-Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- T. P. Tuyen Dao
- Institut Européen des Membranes, IEM, University Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut Charles Gerhardt Montpellier, ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Martin In
- Laboratoire Charles Coulomb, L2C, Univ Montpellier, CNRS, Montpellier 34095, France
| | - Jean-François Le Meins
- Laboratoire de Chimie des Polymères Organiques, LCPO UMR 5629, Université Bordeaux, CNRS, Pessac 33607, France
| | - Florian Aubrit
- Laboratoire de Chimie des Polymères Organiques, LCPO UMR 5629, Université Bordeaux, CNRS, Pessac 33607, France
| | - Mohammad-Amin Moradi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier, ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Mona Semsarilar
- Institut Européen des Membranes, IEM, University Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
35
|
Tardy A, Gil N, Plummer CM, Siri D, Gigmes D, Lefay C, Guillaneuf Y. Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angew Chem Int Ed Engl 2020; 59:14517-14526. [DOI: 10.1002/anie.202005114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Antoine Tardy
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Noémie Gil
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | | | - Didier Siri
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Didier Gigmes
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Catherine Lefay
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Yohann Guillaneuf
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| |
Collapse
|
36
|
Tardy A, Gil N, Plummer CM, Siri D, Gigmes D, Lefay C, Guillaneuf Y. Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Antoine Tardy
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Noémie Gil
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | | | - Didier Siri
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Didier Gigmes
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Catherine Lefay
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| | - Yohann Guillaneuf
- Aix-Marseille Univ CNRS Institut de Chimie Radicalaire UMR 7273 Marseille France
| |
Collapse
|
37
|
Updating radical ring-opening polymerisation of cyclic ketene acetals from synthesis to degradation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Reddy Mothe S, Tan JSJ, Chennamaneni LR, Aidil F, Su Y, Kang HC, Lim FCH, Thoniyot P. A systematic investigation of the ring size effects on the free radical ring‐opening polymerization (
rROP
) of cyclic ketene acetal (
CKA
) using both experimental and theoretical approach. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Srinivasa Reddy Mothe
- Institute of Chemical and Engineering SciencesAgency for Science, Technology and Research Singapore Singapore
| | - Jacqueline S. J. Tan
- Institute of High Performance Computing, Agency for Science, Technology and Research Singapore Singapore
| | - Lohitha R. Chennamaneni
- Institute of Chemical and Engineering SciencesAgency for Science, Technology and Research Singapore Singapore
| | - Farhan Aidil
- Institute of Chemical and Engineering SciencesAgency for Science, Technology and Research Singapore Singapore
| | - Yi Su
- Institute of High Performance Computing, Agency for Science, Technology and Research Singapore Singapore
| | - Hway C. Kang
- Department of ChemistryNational University of Singapore Singapore Singapore
| | - Freda C. H. Lim
- Institute of High Performance Computing, Agency for Science, Technology and Research Singapore Singapore
| | - Praveen Thoniyot
- Institute of Chemical and Engineering SciencesAgency for Science, Technology and Research Singapore Singapore
| |
Collapse
|
39
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris Frankreich
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| |
Collapse
|
40
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020; 59:8368-8392. [DOI: 10.1002/anie.201911758] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM) Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris France
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| |
Collapse
|
41
|
Jimaja S, Varlas S, Xie Y, Foster JC, Taton D, Dove AP, O’Reilly RK. Nickel-Catalyzed Coordination Polymerization-Induced Self-Assembly of Helical Poly(aryl isocyanide)s. ACS Macro Lett 2020; 9:226-232. [PMID: 35638685 DOI: 10.1021/acsmacrolett.9b00972] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interest in helix-containing nanostructures is currently growing as a consequence of their potential applications in areas such as nanomedicine, nanomaterial design, chiral recognition, and asymmetric catalysis. Herein, we present a facile and tunable one-pot methodology to achieve chiral nano-objects. The nickel-catalyzed coordination polymerization-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers was realized and allowed access to various nano-object morphologies (spheres, worm-like micelles, and polymersomes). The helicity of the core block was confirmed via circular dichroism (CD) spectroscopy for all morphologies, proving their chiral nature. Small-molecule uptake by the spherical nanoparticles was investigated by encapsulating Nile Red into the core of the spheres and subsequent transfer into aqueous media. The presence of a CD signal for the otherwise CD-inactive dye proved the chiral induction effect of the nano-objects' helical core. This demonstrates the potential of NiCCo-PISA to prepare nanoparticles for applications in nanomaterials, catalysis, and recognition.
Collapse
Affiliation(s)
- Sètuhn Jimaja
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/CNRS École Nationale Supérieure de Chimie, de Biologie & de Physique, 33607 Cedex Pessac, France
| | - Spyridon Varlas
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Yujie Xie
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/CNRS École Nationale Supérieure de Chimie, de Biologie & de Physique, 33607 Cedex Pessac, France
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| |
Collapse
|
42
|
Abstract
This review discusses the history of reversible-deactivation radical ring-opening polymerization of cyclic ketene acetals, focusing on the preparation of degradable complex polymeric architectures.
Collapse
Affiliation(s)
- Alexander W. Jackson
- Agency for Science
- Technology and Engineering (A*Star)
- Institute of Chemical and Engineering Sciences (ICES)
- Functional Molecules and Polymers (FMP) Division
- Jurong Island
| |
Collapse
|
43
|
Jiang J, Zhang X, Fan Z, Du J. Ring-Opening Polymerization of N-Carboxyanhydride-Induced Self-Assembly for Fabricating Biodegradable Polymer Vesicles. ACS Macro Lett 2019; 8:1216-1221. [PMID: 35651173 DOI: 10.1021/acsmacrolett.9b00606] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymerization-induced self-assembly (PISA) is regarded as one of the most important strategies in macromolecular nanotechnology, as it can create a wide range of nanoparticles at high concentrations and on a large scale. However, open-to-air PISA with biodegradable product is still a complicated challenge, as traditional PISA is usually carried out under oxygen-free conditions to afford nonbiodegradable polymers. To meet the above challenges, we propose a convenient one-pot open-to-air ring-opening polymerization (ROP) of N-carboxyanhydride (NCA)-induced self-assembly (NCA-PISA) at 10 °C, without the need for degassing, heating, catalysts, or chain transfer agents. The morphologies of nanoparticles depend on the ratio of the initiator to the monomer and the solid content. Polymer vesicles can be fabricated when the ratio and the solid content are 1:20 and 20%, respectively. Overall, this versatile one-pot NCA-PISA provides an insight into facilely fabricating biodegradable nanoparticles in air.
Collapse
Affiliation(s)
- Jinhui Jiang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Xinyue Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
44
|
Folini J, Huang CH, Anderson JC, Meier WP, Gaitzsch J. Novel monomers in radical ring-opening polymerisation for biodegradable and pH responsive nanoparticles. Polym Chem 2019. [DOI: 10.1039/c9py01103j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the first amine-bearing cyclic ketene acetals (CKAs) for radical ring-opening polymerisation (RROP). The resulting polyesters and their corresponding nanoparticles were biodegradable and showed the desired pH sensitive behaviour.
Collapse
Affiliation(s)
- Jenny Folini
- Departement Chemie
- Universität Basel
- 4058 Basel
- Switzerland
| | - Chao-Hung Huang
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | | | | | - Jens Gaitzsch
- Departement Chemie
- Universität Basel
- 4058 Basel
- Switzerland
- Leibniz-Institut für Polymerforschung Dresden e.V
| |
Collapse
|
45
|
Varlas S, Foster JC, O'Reilly RK. Ring-opening metathesis polymerization-induced self-assembly (ROMPISA). Chem Commun (Camb) 2019; 55:9066-9071. [DOI: 10.1039/c9cc04445k] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ring-opening metathesis polymerization-induced self-assembly (ROMPISA) has expanded the preparation of PISA nano-objects beyond radical polymerization approaches. In this highlight article, we summarize current advances and existing challenges in ROMPISA methodologies.
Collapse
Affiliation(s)
- Spyridon Varlas
- School of Chemistry
- University of Birmingham
- Edgbaston
- Birmingham
- UK
| | | | | |
Collapse
|