1
|
Huang S, Ye Y, Pang X, Wang Y, Tan R, Wu T, Li H, Bai Z, Liang Y. Preparation of fluorescent sensor array based on internal self-polymerizing imprinted Janus nanosheets and its application in determination of multiple metal ions and bisphenol A. Mikrochim Acta 2025; 192:333. [PMID: 40314808 DOI: 10.1007/s00604-025-07188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Internal self-imprinting is an ingenious way to achieve the combination of imprinting and Pickering emulsions. Herein, internal self-polymerizing imprinted Janus nanosheets for detecting bisphenol A (BPA) and multiple metal ions are reported. Janus composite hollow spheres were prepared by grafting an imprinted polymer onto vinyl groups after an emulsion interfacial self-organized sol-gel process. After crushing, the external surface is further modified with thiol groups (-SH) and fluorescence signal indicators. Janus silica nanosheets (J-MIPs/SH@QDs) with bispecific artificial receptors (-SH and molecularly imprinted sites) were designed to specifically identify BPA and 4 metal ions (Hg2+, Cu2+, Cr3+, Ag+). CdTe QDs with red and yellow emissions were incorporated into the J-MIPs/SH@QDs as fluorescent signal indicators. Due to the presence of molecularly imprinted sites, BPA can be recognized with high specificity, resulting in increased fluorescence intensity. The thiol groups and metal ions formed a chelated structure with the fluorescence intensity decreasing. Linear discriminant analysis (LDA) in SPSS software can be used to analyze these specific fluorescence responses to distinguish BPA and multiple metal ions. In conclusion, J-MIPs/SH@QDs exhibit sensitivity in multi-organic-inorganic analyte combinations. Its desegregation of innovative bispecific receptors creates a multitude of opportunities for the specific and effective detection of coexisting contaminants.
Collapse
Grants
- No.20231A010043 Medical Science and Technology Project of Guangzhou,China
- No. GS2023020201A Research on Micro polluted Water Source Treatment Technology of the Scientific Research Project of Gaoming Water Supply Co., Ltd. of Foshan Water Industry Group, China
- No. GS2023020201A Research on Micro polluted Water Source Treatment Technology of the Scientific Research Project of Gaoming Water Supply Co., Ltd. of Foshan Water Industry Group, China
- No. GS2023020201A Research on Micro polluted Water Source Treatment Technology of the Scientific Research Project of Gaoming Water Supply Co., Ltd. of Foshan Water Industry Group, China
- No. GS2023020201A Research on Micro polluted Water Source Treatment Technology of the Scientific Research Project of Gaoming Water Supply Co., Ltd. of Foshan Water Industry Group, China
- No. GS2023020201A Research on Micro polluted Water Source Treatment Technology of the Scientific Research Project of Gaoming Water Supply Co., Ltd. of Foshan Water Industry Group, China
- NO. 2025A03J3699 The 2025 Guangzhou Basic Research Program Jointly Funded Project by the City and Universities (Institutes) ,China
- NO.2023B1212010010 Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, China
- No. 51478196, No. 21275057 and No. 21505026 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Shuyi Huang
- Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou, 510440, China
| | - Youai Ye
- School of Chemistry, South China Normal University, Guangzhou, 51006, China
- Guangdong Qingyuan Ecological and Environmental Monitoring Station, Qingyuan, 511500, China
| | - Xinglin Pang
- Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou, 510440, China
| | - Yuan Wang
- Foshan Sanshui Foshui Water Supply Co., Ltd, Foshan, 528100, China
| | - Rixin Tan
- Foshan Sanshui Foshui Water Supply Co., Ltd, Foshan, 528100, China
| | - Teyu Wu
- Foshan Sanshui Foshui Water Supply Co., Ltd, Foshan, 528100, China
| | - Hanjie Li
- Foshan Sanshui Foshui Water Supply Co., Ltd, Foshan, 528100, China
| | - Zhijun Bai
- Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou, 510440, China
| | - Yong Liang
- School of Chemistry, South China Normal University, Guangzhou, 51006, China.
| |
Collapse
|
2
|
Han B, Song Y, Wang S, Yang T, Sun Z, Wang A, Jin M, Yang Z, Wang X, Liang F. Biomimetic Janus Particles Induced In Situ Interfacial Remineralization for Dentin Hypersensitivity. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202412954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Indexed: 02/03/2025]
Abstract
AbstractDentin hypersensitivity (DH), caused by the exposure of dentin tubules, is a common complaint of dental patients. Although occlusion of the exposed tubules is the primary treatment approach, the complex oral environment, and multiple simultaneous requirements often hinder its implementation. In this study, strawberry‐shaped hemispheric Janus particles (JPs) are synthesized, and their use in the treatment of DH is evaluated in vitro and in an animal model. The hemispheric side of the JPs is modified with polymers of quaternary ammonium salts (QASs) to form a superhydrophobic coating with antibiofilm properties, while the flat side is modified with catechol groups able to form strong bonds with dentin. Even after 1 h of ultrasonication or 1000 rounds of thermal cycling, the dentin tubules are completely occluded by the JPs. Moreover, biofilm formation is not observed, and the area of living bacteria is less than 1% compared to the blank control and sodium fluoride (NaF)‐treated groups. In a rat model, the dentin tubules in the fixed specimens are completely occluded at day 3, much earlier than the occlusion obtained with commonly used NaF. These results demonstrate that JPs can provide a novel approach to the treatment of DH.
Collapse
Affiliation(s)
- Bing Han
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Yilin Song
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Shi Wang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Tiantian Yang
- School of Environmental and Chemical Engineering Shenyang University of Technology Shenyang 110870 P. R. China
| | - Zetao Sun
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Aijing Wang
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Moran Jin
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology Peking University School and Hospital of Stomatology National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology Beijing 100081 P. R. China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
3
|
Fang Y, Zheng Y, Chi C, Jiang S, Qin W, Zhang Y, Liu H, Chen Q. PAA-PU Janus Hydrogels Stabilized by Janus Particles and its Interfacial Performance During Hemostatic Processing. Adv Healthc Mater 2024; 13:e2303802. [PMID: 38341630 DOI: 10.1002/adhm.202303802] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Hydrogel is a very promising dressing for hemostasis and wound healing due to its good adhesion and long-term moist environment. However, secondary injury caused by tissue adhesion due to homogeneous hydrogel cannot be ignored. The obvious interface existing in Janus hydrogel will weaken its asymmetric function. Here, a hierarchical adhesive polyacrylic acid-polyurushiol water-oil Janus hydrogel (JPs@PAA-PU) without adhesive layer is fabricated by one-pot method in the stabilization of polystyrene@silica-siliver Janus particles (JPs). The morphological structure, mechanical properties, anisotropic chemical composition, and adhesion performance, in vivo, and in vitro hemostatic properties of Janus hydrogel are investigated. Result shows that the obtained Janus hydrogel possesses obvious compartmentalization in microstructure, functional groups, and chemical elements. Janus hydrogel is provided with asymmetric interfacial toughness with top 52.45 ± 2.29 Kpa and bottom 7.04 ± 0.88 Kpa on porcine liver. The adhesion properties of PAA side to tissue, red blood cells and platelets, promoting effect of PU side on coagulation cascade reaction and its physical battier endow Janus hydrogel with shorter hemostatic time and less blood loss than control group. It also exhibits excellent antibacterial effects against Escherichia coli and Staphylococcus aureus (>90%). Janus hydrogel possesses biosafety, providing safety guarantee for clinical applications in the future.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Yanyan Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chongyi Chi
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Sai Jiang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Wanbang Qin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Yicheng Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China
| |
Collapse
|
4
|
He H, Yang T, Liu T, Gao Y, Zhang Z, Yang Z, Liang F. Soft-Hard Janus Nanoparticles Triggered Hierarchical Conductors with Large Stretchability, High Sensitivity, and Superior Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312278. [PMID: 38266185 DOI: 10.1002/adma.202312278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Indexed: 01/26/2024]
Abstract
There is a long-standing conflict between the large stretchability and high sensitivity for strain sensors, a strategy of decoupling the mechanical/electrical module by constructing the hierarchical conductor has been developed in this study. The hierarchical conductor, consisting of a mechanically stretchable layer, a conductive network layer, and a strongly bonded interface, can be produced in a simple one-step process with the aid of soft-hard Janus nanoparticles (JNPs). The introduction of JNPs in the stretchable layer can evenly distribute stress and dissipate energy due to forming the rigid-flexible homogeneous networks. Specifically, JNPs can drive graphene nanosheets (GNS) to fold or curl, creating the unique JNPs-GNS building block that can further construct the conductive network. Due to its excellent deformability to hinder crack propagation, the flexible conductive network could be stretched continuously and the local conductive pathways could be reconstructed. Consequently, the hierarchical conductor could detect both subtle strain of 0-2% and large strain of up to 370%, with a gauge factor (GF) from 66.37 to 971.70, demonstrating outstanding stretchability and sensitivity. And it also owns large tensile strength (5.28 MPa) and high deformation stability. This hierarchical design will give graphene-based sensors a major boost in emerging applications.
Collapse
Affiliation(s)
- Hailing He
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Tiantian Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tianlin Liu
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yeqi Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhaoyuan Zhang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Guan J, Zhang C, Xu P, Niu D, Yang W, Zhang X, Liu T, Ma P. Biodegradable reactive compatibilizers for efficient in-situ compatibilization of poly (lactic acid)/poly (butylene adipate-terephthalate) blends. Int J Biol Macromol 2024; 262:130029. [PMID: 38340935 DOI: 10.1016/j.ijbiomac.2024.130029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The wide application of fully biodegradable polylactic acid/polybutylene terephthalate (PLA/PBAT) blends in environmentally friendly packaging were limited because of poor compatibility. Normal compatibilizers suffer from poor thermal stability and non-biodegradability. In this work, epoxy copolymer (MDOG) with different molecular structures were made of 2-methylene-1, 3-dioxoheptane, and glycidyl methacrylate as raw materials by free radical copolymerization. MDOG copolymers have good biodegradability and a high thermal decomposition temperature of 361 °C. The chemical reaction of the epoxy groups in MDOG with PLA and PBAT during the melting reaction improved the interfacial bonding by decreasing the particle size of PBAT. Compared to the PLA/PBAT blends, the tensile strength and fracture toughness of PLA/PBAT/MDOG blends were enhanced to 34.6 MPa and 115.8 MJ/m3, which are 25 % and 81 % higher, respectively. As a result, this work offers new methods for developing thermally stable and biodegradable compatibilizers, which will hopefully promote the development of packaging industry.
Collapse
Affiliation(s)
- Jieyu Guan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ce Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Deyu Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xu Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
6
|
Liu H, Long Y, Liang F. Interfacial Activity of Janus Particle: Unity of Molecular Surfactant and Homogeneous Particle. Chem Asian J 2024:e202301078. [PMID: 38221222 DOI: 10.1002/asia.202301078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Janus particles with different compositions and properties segmented to different regions on the surface of one objector provide more opportunities for interfacial engineering. As a novel interfacial active material, Janus particles integrate the amphiphilic properties of molecular surfactants and the Pickering effect of homogeneous particles. In this research, the outstanding properties of Janus particles on various interfaces are examined from both theoretical and practical perspectives, and the advantages of Janus particles over molecular surfactants and homogeneous particle surfactants are analyzed. We believe that Janus particles are ideal tools for interface regulation and functionalization in the future.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Yingchun Long
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
7
|
He HL, Liang FX. Interfacial Engineering of Polymer Blend with Janus Particle as Compatibilizer. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Xu P, Zhang C, Tan S, Niu D, Yang W, Sun Y, Ma P. Super-toughed polylactide/poly (butylene adipate-co-terephthalate) blends in-situ compatibilized by poly (glycidyl methacrylate) with different molecular weight. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Cao Q, Li J, Qi Y, Zhang S, Wang J, Wei Z, Pang H, Jian X, Weng Z. Engineering Double Load-Sharing Network in Thermosetting: Much More than Just Toughening. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qi Cao
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Jiahui Li
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Yu Qi
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Jinyan Wang
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Hongchang Pang
- School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Zhihuan Weng
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
10
|
Asymmetrically functionalized CNTs: preparation of polymer nanocomposites and investigation of interfacial properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Suzuki R, Yamauchi Y, Sugahara Y. Inorganic material-based Janus nanosheets: asymmetrically functionalized 2D-inorganic nanomaterials. Dalton Trans 2022; 51:13145-13156. [PMID: 35997213 DOI: 10.1039/d2dt01557a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the past decade, various inorganic material-based Janus nanosheets have been prepared and their applications have been proposed. Inorganic material-based Janus nanosheets have various advantages over polymer-based Janus nanosheets, including the maintenance of their characteristic two-dimensional shape, and are expected to be applied as unique functional materials. Methods for regioselective functionalization of the two sides of the individual nanosheets are extremely important for the development of inorganic material-based Janus nanosheets. In this review, the preparation methods and applications of inorganic material-based Janus nanosheets are summarized from the point of view of inorganic nanosheet functionalization.
Collapse
Affiliation(s)
- Ryoko Suzuki
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,Nikon Corporation, 1-10-1, Asamizodai, Minami-ku, Sagamihara, Kanagawa 252-0328, Japan
| | - Yusuke Yamauchi
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshiyuki Sugahara
- Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26, Nishi-waseda, Shinjuku-ku, Tokyo 169-0051, Japan. .,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
12
|
Toughening epoxy resin with liquid rubber and its hybrid composites: A systematic review. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Gui H, Li Y, Du D, Bo Meng Q, Song XM, Liang F. Preparation of asymmetric particles by controlling the phase separation of seeded emulsion polymerization with ethanol/water mixture. J Colloid Interface Sci 2022; 618:496-506. [PMID: 35366477 DOI: 10.1016/j.jcis.2022.03.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
Alcohols are discovered for the first time to tune the morphology of poly(vinyl benzyl chloride)-poly(3-methacryloxypropyltrimethoxysilane) (PVBC-PMPS) composite particles through seeded emulsion polymerization within the alcohol/water mixture. Here, monodispersed linear PVBC particles was synthesized through the dispersion polymerization and employed as the seeds. The as-obtained PVBC-PMPS composite particles could be dramatically tuned from core-shell structures to snowman-like particles, to dumbbell-shaped particles, to inverse snowman-like particles when the ethanol content in reaction mixtures is only adjusted within a narrow range. The morphology of fresh PMPS bulges was observed after removing the linear PVBC seeds with N,N'-dimethyl formamide, and their formation mechanism was studied by monitoring the free radical polymerization and sol-gel process of 3-methacryloxypropyltrimethoxysilane. It has been confirmed that the sol-gel kinetics were the main factor on the particles' morphology. In addition, morphologies of PVBC-PMPS particles were also varied by the MPS feeding amount, types of the co-solvent and pH values of alcohol/water mixtures.
Collapse
Affiliation(s)
- Haoguan Gui
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Yuanyuan Li
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Deming Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qing Bo Meng
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xi-Ming Song
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Guan J, Yang Y, Tang B, Shen X, Li Y. The synthesis of functional Janus nanosheets as compatibilizers for the immiscible polyamide 6 /polystyrene (PA6/PS): Formation of the nanosilica monolayer at the interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Zhang M, Jiang C, Wu Q, Zhang G, Liang F, Yang Z. Poly(lactic acid)/Poly(butylene succinate) (PLA/PBS) Layered Composite Gas Barrier Membranes by Anisotropic Janus Nanosheets Compartibilizers. ACS Macro Lett 2022; 11:657-662. [PMID: 35570811 DOI: 10.1021/acsmacrolett.2c00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Poly(lactic acid) (PLA), one of the most promising biodegradable polymer products, has achieved wide applications for its relatively good mechanical properties and moderate degradability. Here we report an environment-friendly filler, the organic-inorganic composite Janus nanosheets (PLA/PBS JNs), which can jam at the interface of the PLA/PBS blend with a low threshold as the compatibilizer and can simultaneously toughen the composites and improve the gas barrier performance due to better interfacial interaction and tortuous path effect. With 0.3 wt % of PLA/PBS JNs added, the tensile strength and elongation at break of the PLA/PBS blend can be improved by 37% and 224%, respectively. After a further hot-pressing process, the barrier performance of the PLA/PBS composite membranes can be significantly enhanced since PLA, PLA/PBS JNs, and PBS are arranged in a nearly lamellar structure with oxygen permeability of 0.63 × 10-15 cm3 cm·cm-2 s-1 Pa-1 with only 0.5 wt % of PLA/PBS JNs.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Chao Jiang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiuhua Wu
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Guolin Zhang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Ye Z, Yu H, Zheng Z, Hu B, Zhao Y, Wang H. Janus Nanoshards Prepared Based on High Internal Phase Emulsion Templates for Compatibilizing Immiscible Polymer Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhangfan Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Heng Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zheng Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Bintao Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yongliang Zhao
- Shanghai Dilato Materials Company Limited, Shanghai 200433, China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Chen Y, Liang Y, Wang L, Guan M, Zhu Y, Yue X, Huang X, Lu G. Preparation and applications of freestanding Janus nanosheets. NANOSCALE 2021; 13:15151-15176. [PMID: 34486634 DOI: 10.1039/d1nr04284j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the family of Janus nanomaterials, Janus nanosheets possess not only the advantages of Janus nanomaterials, but also the advantages of two-dimensional nanosheets, endowing them with many extraordinary properties. Therefore, Janus nanosheets have great potential in the fields of interfacial engineering, catalysis, and molecular recognition. This review summarizes and discusses the recent advances in both the preparation and applications of freestanding Janus nanosheets. After a short introduction to different types of Janus nanosheets, a variety of methods for preparing freestanding Janus nanosheets are introduced, including the surface reaction, interface reaction, emulsion reaction, self-assembly, and stripping of non-Janus nanosheets, as well as selective grafting of existing Janus nanosheets. Then, the wide applications of Janus nanosheets in the fields of emulsification, catalysis, polymer reinforcement, nanomotors, and molecular recognition are summarized in detail. Finally, a discussion on the remaining challenges and future perspectives in this field is included. This review will not only deepen the understanding of Janus nanosheets, but also benefit the designs and fabrications of extraordinary and multi-functional Janus nanosheets.
Collapse
Affiliation(s)
- Yaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Li Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiaoping Yue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
18
|
|
19
|
Chen H, Lian Q, Xu W, Hou X, Li Y, Wang Z, An D, Liu Y. Insights into the synergistic mechanism of reactive aliphatic soft chains and nano‐silica on toughening epoxy resins with improved mechanical properties and low viscosity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongfeng Chen
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
| | - Qingsong Lian
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
- The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| | - Weijie Xu
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
| | - Xuqi Hou
- The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| | - Yan Li
- Department of Materials Application Research AVIC Manufacturing Technology Institute Beijing China
| | - Zhi Wang
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
| | - Dong An
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
| | - Yaqing Liu
- College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi Province North University of China Taiyuan China
| |
Collapse
|
20
|
Duan Y, Zhao X, Sun M, Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04304] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xia Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Miaomiao Sun
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| |
Collapse
|
21
|
Zamanian-Fard A, Sharifzadeh E, Rajabi L. A spontaneous interfacial process to produce silica Janus nanosheets as perfect emulsifiers in pickering emulsions. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1848575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Alireza Zamanian-Fard
- Polymer Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| | - Esmail Sharifzadeh
- Polymer Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| | - Laleh Rajabi
- Polymer Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| |
Collapse
|
22
|
Fu J, An D, Song Y, Wang C, Qiu M, Zhang H. Janus nanoparticles for cellular delivery chemotherapy: Recent advances and challenges. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Muzata TS, L JP, Bose S. Nanoparticles influence miscibility in LCST polymer blends: from fundamental perspective to current applications. Phys Chem Chem Phys 2020; 22:20167-20188. [PMID: 32966418 DOI: 10.1039/d0cp01814g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymer blending is an effective method that can be used to fabricate new versatile materials with enhanced properties. The blending of two polymers can result in either a miscible or an immiscible polymer blend system. This present review provides an in-depth summary of the miscibility of LCST polymer blend systems, an area that has garnered much attention in the past few years. The initial discourse of the present review mainly focuses on process-induced changes in the miscibility of polymer blend systems, and how the preparation of polymer blends affects their final properties. This review further highlights how nanoparticles induce miscibility and describes the various methods that can be implemented to avoid nanoparticle aggregation. The concepts and different state-of-the-art experimental methods which can be used to determine miscibility in polymer blends are also highlighted. Lastly, the importance of studying miscible polymer blends is extensively explored by looking at their importance in barrier materials, EMI shielding, corrosion protection, light-emitting diodes, gas separation, and lithium battery applications. The primary goal of this review is to cover the journey from the fundamental aspects of miscible polymer blends to their applications.
Collapse
Affiliation(s)
- Tanyaradzwa S Muzata
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Jagadeshvaran P L
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
24
|
Guan J, Gui H, Zheng Y, You J, Li Y, Liang F, Yang Z. Stabilizing Polymeric Interface by Janus Nanosheet. Macromol Rapid Commun 2020; 41:e2000392. [PMID: 32833324 DOI: 10.1002/marc.202000392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Indexed: 12/19/2022]
Abstract
A strategy is proposed to stabilize the polymeric interface by using the irregular Janus nanosheet (JNS). The poly(vinylidene fluoride) (PVDF)/poly(l-lactic acid) (PLLA) at 60/40 (wt/wt) with a bi-continuous structure is selected as the model melt blend, and the PMMA/epoxy JNS is synthesized and used as the compatibilizer. The JNS is preferentially located at the interface. The interfacial coverage by the JNS reaches a saturated state forming the interconnected jamming structure at 0.5 wt% of the JNS. The interface is thus stabilized which is well preserved after annealing at high temperature. After selectively etching PLLA, the robust PVDF porous material is derived with the JNS armored at the pore skeleton surface. The porous material provides a universal scaffold to achieve stable functional materials after filling the pores.
Collapse
Affiliation(s)
- Jipeng Guan
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haoguan Gui
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanyan Zheng
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jichun You
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
25
|
Han X, Liang X, Cai L, He A, Nie H. Amphiphilic Janus nanosheets by grafting reactive rubber brushes for reinforced rubber materials. Polym Chem 2019. [DOI: 10.1039/c9py00863b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An amphiphilic Janus nanosheet with different reactive rubber brushes on two opposite sides can simultaneously strengthen and toughen rubber blends.
Collapse
Affiliation(s)
- Xiao Han
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xincheng Liang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Lei Cai
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Aihua He
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Huarong Nie
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|