1
|
Kimpel J, Kim Y, Schomaker H, Hinojosa DR, Asatryan J, Martín J, Kroon R, Sommer M, Müller C. Open-flask, ambient temperature direct arylation synthesis of mixed ionic-electronic conductors. SCIENCE ADVANCES 2025; 11:eadv8168. [PMID: 40333976 PMCID: PMC12057656 DOI: 10.1126/sciadv.adv8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Conjugated polymers are widely studied for application areas ranging from energy technology to wearable electronics and bioelectronics. To develop a truly sustainable technology, environmentally benign synthesis is essential. Here, the open-flask synthesis of a multitude of conjugated polymers at room temperature by ambient direct arylation polymerization (ADAP) is demonstrated. The batch synthesis of over 100 grams of polymer in a green solvent and continuous droplet flow synthesis without any solid support is described. Polymers prepared by ADAP are characterized by improved structural order compared to materials prepared by other methods. Hence, organic electrochemical transistors (OECTs) feature beyond state-of-the-art electrical properties, i.e., an OECT hole mobility μ as high as 6 cm2 V-1 s-1, a volumetric capacitance C* over 200 F cm-3, and thus a figure of merit [μC*] exceeding 1100 F cm-1 V-1 s-1. Thus, ADAP paves the way for the benign and large-scale production of high-performance conjugated polymers.
Collapse
Affiliation(s)
- Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | | - Diego R. Hinojosa
- Institut für Chemie & Forschungszentrum MAIN, Technische Universität Chemnitz, Chemnitz, Germany
| | - Jesika Asatryan
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol, Spain
| | - Jaime Martín
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol, Spain
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Michael Sommer
- Institut für Chemie & Forschungszentrum MAIN, Technische Universität Chemnitz, Chemnitz, Germany
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
- Wallenberg Wood Science Center, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Gedeon C, Del Rio N, Furlan F, Taddeucci A, Vanthuyne N, Gregoriou VG, Fuchter MJ, Siligardi G, Gasparini N, Crassous J, Chochos CL. Rational Design of New Conjugated Polymers with Main Chain Chirality for Efficient Optoelectronic Devices: Carbo[6]Helicene and Indacenodithiophene Copolymers as Model Compounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314337. [PMID: 38406997 DOI: 10.1002/adma.202314337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/18/2024] [Indexed: 02/27/2024]
Abstract
The unique properties of conjugated polymers (CPs) in various optoelectronic applications are mainly attributed to their different self-assembly processes and superstructures. Various methods are utilized to tune and control CP structure and properties with less attention paid to the use of chirality. CPs with main chain chirality are rare and their microscopic and macroscopic properties are still unknown. In this work, the first experimental results are provided along these lines by synthesizing a series of racemic and enantiopure CPs containing statistical and alternating carbo[6]helicene and indacenodithiophene moieties and evaluating their microscopic (optical, energy levels) and macroscopic properties (hole mobilities, photovoltaic performance). It is demonstrated that a small statistical insertion of either the racemic or enantiopure helicene into the polymer backbone finely tunes the microscopic and macroscopic properties as a function of the statistical content. The microscopic properties of the enantiopure versus the racemic polymers with the same helicene loading remain similar. On the contrary, the macroscopic properties, and more interestingly those between the two enantiomeric forms, are altered as a function of the statistical content. Once incorporated into a solar cell device, these chiral CPs display better performance in their enantiopure versus racemic forms.
Collapse
Affiliation(s)
- Clement Gedeon
- Advent Technologies SA., Stadiou Str, Patras, Platani, 26504, Greece
- Univ Rennes, CNRS, ISCR - UMR 6226, Rennes, 35000, France
| | | | - Francesco Furlan
- Molecular Sciences Research Hub, Department of Chemistry, White City Campus, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Andrea Taddeucci
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0GD, UK
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, 13007, France
| | - Vasilis G Gregoriou
- Advent Technologies SA., Stadiou Str, Patras, Platani, 26504, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, 11635, Greece
| | - Matthew J Fuchter
- Molecular Sciences Research Hub, Department of Chemistry, White City Campus, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Giuliano Siligardi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0GD, UK
| | - Nicola Gasparini
- Molecular Sciences Research Hub, Department of Chemistry, White City Campus, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | | | - Christos L Chochos
- Advent Technologies SA., Stadiou Str, Patras, Platani, 26504, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, 11635, Greece
| |
Collapse
|
3
|
Vogt A, Stümpges F, Bajrami J, Baumgarten D, Millan J, Mena-Osteritz E, Bäuerle P. Tunable Regioselectivity in C-H-Activated Direct Arylation Reactions of Dithieno[3,2-b:2',3'-d]pyrroles. Chemistry 2023; 29:e202301867. [PMID: 37667450 DOI: 10.1002/chem.202301867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/06/2023]
Abstract
In this study, regioselectively controlled direct arylation of dithieno[3,2-b:2,3'-d]pyrroles (DTPs) is reported. By carefully selecting the catalytic system, Pd source, ligand, and additives, we achieved either selective N-arylation or unprecedented β-arylation and β,β'-diarylation of the DTP core through C-H activation when reacting unsubstituted H-DTP with 9-anthracenyl halides. For N-substituted DTPs, we obtained regioselective carboxylate-assisted arylation of the α-position(s). Consequently, depending on the catalytic system and substitution at the DTP nitrogen, we successfully synthesized novel regioselectively substituted DTPs, including N-aryl, rarely reported β-aryl, β,β'-diaryl, α-aryl, and α,α'-diaryl scaffolds. These compounds can be straightforwardly prepared and further functionalized for applications as organic electronic materials.
Collapse
Affiliation(s)
- Astrid Vogt
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Florian Stümpges
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jessi Bajrami
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Daniel Baumgarten
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Judith Millan
- Dpto. de Química - Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, 26006, Logroño-La Rioja, España
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
4
|
Ye L, Thompson BC. Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| |
Collapse
|
5
|
Chua MH, Png ZM, Zhu Q, Xu J. Synthesis of Conjugated Polymers via Transition Metal Catalysed C-H Bond Activation. Chem Asian J 2021; 16:2896-2919. [PMID: 34390547 DOI: 10.1002/asia.202100749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/04/2021] [Indexed: 11/10/2022]
Abstract
Transition metal catalysed C-H bond activation chemistry has emerged as an exciting and promising approach in organic synthesis. This allows us to synthesize a wider range of functional molecules and conjugated polymers in a more convenient and more atom economical way. The formation of C-C bonds in the construction of pi-conjugated systems, particularly for conjugated polymers, has benefited much from the advances in C-H bond activation chemistry. Compared to conventional transition-metal catalysed cross-coupling polymerization such as Suzuki and Stille cross-coupling, pre-functionalization of aromatic monomers, such as halogenation, borylation and stannylation, is no longer required for direct arylation polymerization (DArP), which involve C-H/C-X cross-coupling, and oxidative direct arylation polymerization (Ox-DArP), which involves C-H/C-H cross-coupling protocols driven by the activation of monomers' C(sp2 )-H bonds. Furthermore, poly(annulation) via C-H bond activation chemistry leads to the formation of unique pi-conjugated moieties as part of the polymeric backbone. This review thus summarises advances to date in the synthesis of conjugated polymers utilizing transition metal catalysed C-H bond activation chemistry. A variety of conjugated polymers via DArP including poly(thiophene), thieno[3,4-c]pyrrole-4,6-dione)-containing, fluorenyl-containing, benzothiadiazole-containing and diketopyrrolopyrrole-containing copolymers, were summarized. Conjugated polymers obtained through Ox-DArP were outlined and compared. Furthermore, poly(annulation) using transition metal catalysed C-H bond activation chemistry was also reviewed. In the last part of this review, difficulties and perspective to make use of transition metal catalysed C-H activation polymerization to prepare conjugated polymers were discussed and commented.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Zhuang Mao Png
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
6
|
Kuwabara J, Kanbara T. Step-Economical Synthesis of Conjugated Polymer Materials Composed of Three Components: Donor, Acceptor, and π Units. Macromol Rapid Commun 2020; 42:e2000493. [PMID: 33225550 DOI: 10.1002/marc.202000493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/07/2020] [Indexed: 01/08/2023]
Abstract
Conjugated polymers have immense potential for their use as semiconducting materials in organic optoelectronic devices. The improvement of synthetic methods for conjugated polymers is important for the practical application of conjugated polymers. For mass production, synthetic methods must be developed by considering the concerns regarding cost and environment. Reduction in the number of synthetic steps is an efficient approach to address these concerns. The utilization of direct CH functionalization is a reasonable strategy in monomer and polymer syntheses, because the prefunctionalization steps for CC bond formation can be eliminated. This review summarizes the recent developments in the efficient syntheses of conjugated polymers as well as their monomers via direct arylation (CH/CX coupling) and cross-dehydrogenative coupling (CH/CH coupling) reactions.
Collapse
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
7
|
Pankow RM, Thompson BC. Approaches for improving the sustainability of conjugated polymer synthesis using direct arylation polymerization (DArP). Polym Chem 2020. [DOI: 10.1039/c9py01534e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Emerging strategies to enhance the sustainability of Direct Arylation Polymerization (DArP) are discussed, illustrating the great potential of this method.
Collapse
Affiliation(s)
- Robert M. Pankow
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|