1
|
Li J, Kim JS, Fan J, Peng X, Matějíček P. Boron cluster leveraged polymeric building blocks. Chem Soc Rev 2025; 54:4104-4134. [PMID: 40202815 DOI: 10.1039/d4cs01288g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Boron cluster compounds (BCCs) are inorganic molecules characterized by their unique physical and chemical properties. Polymeric materials incorporating BCCs exhibit significant chemical and thermal stability, making them valuable for applications in biomedical fields, energy storage, ultrahigh stability materials, and π-conjugated luminochromic polymers. This review article aims to explore the primary methods for integrating these distinctive clusters into traditional carbon-based polymers. Both boron and carbon atoms possess catenation abilities, enabling the formation of extensive macromolecular structures. While carbon forms long linear chains, boron typically leads to three-dimensional polyhedral clusters. We first examine hybrid nanostructures, focusing on weak non-covalent interactions such as dihydrogen bonding, hydrophobic, and chaotropic effects between boron clusters and polymer chains. We then discuss classical chemical bonding approaches. Despite their inorganic nature, boron clusters can undergo exoskeletal substitution akin to organic counterparts, allowing their attachment as side groups to polymer repeating units. Additionally, polyhedral boron clusters can be incorporated into polymer backbones primarily through polycondensation reactions, resulting in hybrid macromolecules with exceptional physical and chemical attributes. Finally, we summarize the applications of BCC-containing polymeric materials, including their use in boron neutron capture therapy (BNCT), solid polymer electrolytes (SPEs) for metal ion batteries, and as electron acceptor groups in stimuli-responsive luminescent materials. In summary, BCC-containing polymeric materials are increasingly considered viable alternatives to traditional hydrocarbon-based polymers for biomedical applications, ion-conducting materials, luminescent materials, and temperature-resistant materials.
Collapse
Affiliation(s)
- Jianwei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo 315016, China
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague 2, Czech Republic.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague 2, Czech Republic.
| |
Collapse
|
2
|
Yu C, Wang X, Sun J, Wang J, An B, Zhang X, Song Y. Heat Resistant Poly(carborane-siloxane) Adhesives. Macromol Rapid Commun 2025:e2500170. [PMID: 40304132 DOI: 10.1002/marc.202500170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Organic adhesives have been extensively utilized in electronic manufacturing, automotive assembly, and household applications owing to their ease of processing, lightweight nature, and robust adhesion. However, organic chain oxidation and degradation under high temperatures induced catastrophic material failure in harsh environments like aerospace systems. To overcome this limitation, a series of vinyl-functionalized poly(carborane-siloxane) (PCS-x%) is synthesized via a one-pot method, subsequently crosslinked with 0.9 wt.% 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane to fabricate high-temperature adhesives (c-PCS-x%). The crosslinking density of the c-PCS-x% is modulated by adjusting the vinyl side group content in the PCS-x%. All c-PCS-x% demonstrated good thermal stability with less than 10% weight loss during degradation, particularly c-PCS-75% achieving the lowest weight loss of 3.6%. Thermal stabilization mechanisms are attributed to the crosslinked networks' suppressed borane fragment volatilization through covalent bonding and enhance cohesive energy by increased cross-linking density. The crosslinked c-PCS-x% adhesives surpass the linear analog (c-PCS-0%) in adhesion strength across temperatures ranging from room temperature to 250 °C. Notably, c-PCS-25% maintain 5.68 MPa adhesion strength post-aging at 200 °C/24 h and endure an ablation test for 10 min while sustaining a 1 kg load. This work establishes a novel molecular design for harsh environment adhesives through topology-controlled poly(carborane-siloxane) networks.
Collapse
Affiliation(s)
- Chongwen Yu
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xuejie Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jiaqi Sun
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jing Wang
- Science and Technology Strategy and Policy Research Center, Shandong Academy Of Innovation And Development, Jinan, 250000, China
| | - Bingjian An
- General Affairs Department, Shandong Academy Of Innovation And Development, Jinan, 250000, China
| | - Xiaoxiao Zhang
- Key Laboratory of Deep Petroleum Intelligent Exploration and Development, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yujie Song
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
Rodriguez-Madrid R, Sinha S, Parejo L, Hernando J, Núñez R. Fluorescent molecular systems based on carborane-perylenediimide conjugates. Dalton Trans 2024; 53:17841-17851. [PMID: 39420813 DOI: 10.1039/d4dt02477j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study presents the successful synthesis of two perylenediimide (PDI)-based ortho-carborane (o-carborane) derivatives, PDI-CB1 and PDI-CB2, through the insertion of decaborane into alkyne-terminated PDIs (PDI1 and PDI2). The introduction of o-carborane groups did not alter the optical properties of the PDI units in solution compared to their carborane-free counterparts, maintaining excellent fluorescence quantum yields of around 100% in various solvents. This was achieved by using a methylene linker to minimize electronic interaction between PDI and o-carborane, and by incorporating bulky o-carborane groups at imide- position to enhance solubility and prevent π-π stacking-induced aggregation. Aggregation studies demonstrated that PDI-CB1 and PDI-CB2 have greater solubility than PDI1 and PDI2 in both nonpolar and aqueous solvents. Despite the steric hindrance imparted by the o-carborane units, the solid state emission of PDI-CB1 and PDI-CB2 was affected by aggregation-caused fluorescence quenching. However, solid PDI-CB1 preserved bright red excimer-type emission, which persisted in water-dispersible nanoparticles, indicating potential for application as a theranostic agent combining fluorescence bioimaging with anticancer boron neutron capture therapy (BNCT) due to its high boron content.
Collapse
Affiliation(s)
- Ruben Rodriguez-Madrid
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
- Departament de Química. Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| | - Sohini Sinha
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Laura Parejo
- Departament de Química. Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| | - Jordi Hernando
- Departament de Química. Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
4
|
Kim N, You DK, Kim S, Kim D, Cho K, Lee KM. Influence of Intermolecular Structural Effects on Radiative Efficiency in Xanthene-Based Carboranyl Luminophores. Inorg Chem 2024; 63:15044-15052. [PMID: 39074868 DOI: 10.1021/acs.inorgchem.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Two o-carboranes with (i) 9,9-dimethyl-9H-xanthene and (ii) spiro[fluorene-9,9'-xanthene] moieties (XTC and sXTC, respectively) were prepared and characterized. Single X-ray crystallography analysis revealed the presence of intermolecular hydrogen bonds in XTC crystals. Although both compounds did not exhibit emission in tetrahydrofuran solutions at 298 K, intense bluish emission was observed in the solid states and frozen tetrahydrofuran solutions at 77 K. According to the results of theoretical calculations, this emission originated from an intramolecular charge transfer (ICT) transition with the o-carborane moiety. The absolute quantum efficiency (Φem) of the ICT-based emission in the film state equaled 49% for XTC and 20% for sXTC but was as high as 90% for the crystals of both compounds. The crystal structures of XTC and sXTC revealed that the o-carboranyl-appended phenyl plane was orthogonal (85-89°) to the carbon-carbon bonding axis in the o-carborane, indicating the existence of a strong exo-π-interaction, which was identified as the structural basis for the ICT-based transition. These results implied that the intermolecular structural effect of XTC in the randomly aggregated solid state (film) helped maintain the above orthogonality and, hence, the high efficiency from the ICT radiative mechanism. Thus, we concluded that the ICT radiative efficiency of o-carboranyl luminophores in the aggregated solid state can be controlled by specific intermolecular interactions and that the molecular geometric design inducing this feature can be important for developing highly efficient carboranyl luminophores.
Collapse
Affiliation(s)
- Namkyun Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dong Kyun You
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Soyeon Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kanghee Cho
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
5
|
Zhu M, Wang P, Wu Z, Zhong Y, Su L, Xin Y, Spokoyny AM, Zou C, Mu X. A Pd-catalyzed route to carborane-fused boron heterocycles. Chem Sci 2024; 15:10392-10401. [PMID: 38994428 PMCID: PMC11234826 DOI: 10.1039/d4sc02214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Due to the expanding applications of icosahedral carboranes in medicinal and materials chemistry research, their functionalizations have become one of the central themes in boron-rich cluster chemistry. Although several strategies for incorporating nitrogen-containing nucleophiles on a single boron vertex of the icosahedral carboranes (C2B10H12) have been developed, methods for preparing clusters with vicinal B-N moieties are still lacking. The steric bulk of icosahedral carboranes and disparate electronic and steric nature of the N-containing groups have rendered the vicinal diamination challenging. In this article, we show how a developed Pd-catalyzed process is used to incorporate an array of NH-heterocycles, anilines, and heteroanilines with various electronic and steric profiles onto the vicinal boron vertices of a meta-carborane cluster via sequential or one-pot fashion. Importantly, oxidative cyclizations of the cross-coupling products with indoles and pyrroles appended to boron vertices generate a previously unknown class of all-boron-vertex bound carborane-fused six- and seven-membered ring heterocycles. Photophysical studies of the meta-carborane-fused heterocycles show that these structures can exhibit luminescence with high quantum yields and are amenable to further manipulations.
Collapse
Affiliation(s)
- Mengjie Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Puzhao Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Zhengqiu Wu
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Yangfa Zhong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Laiman Su
- School of Biotechnology, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Yuquan Xin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095 USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles Los Angeles California 90095 USA
| | - Chao Zou
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Xin Mu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| |
Collapse
|
6
|
Zhang X, Rendina LM, Müllner M. Carborane-Containing Polymers: Synthesis, Properties, and Applications. ACS POLYMERS AU 2024; 4:7-33. [PMID: 38371730 PMCID: PMC10870755 DOI: 10.1021/acspolymersau.3c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024]
Abstract
Carboranes are an important class of electron-delocalized icosahedral carbon-boron clusters with unique physical and chemical properties, which can offer various functions to polymers including enhanced heat-resistance, tuned electronic properties and hydrophobicity, special ability of dihydrogen bond formation, and thermal neutron capture. Carborane-containing polymers have been synthesized mainly by means of step-growth polymerizations of disubstituted carborane monomers, with chain-growth polymerizations of monosubstituted carborane monomers including ATRP, RAFT, and ROMP only utilized recently. Carborane-containing polymers may find application as harsh-environment resistant materials, ceramic precursors, fluorescent materials with tuned emissive properties, novel optoelectronic devices, potential BNCT agents, and drug carriers with low cytotoxicity. This review highlights carborane-containing polymer synthesis strategies and potential applications, showcasing the versatile properties and possibilities that this unique family of boron compounds can provide to the polymeric systems.
Collapse
Affiliation(s)
- Xinyi Zhang
- School
of Chemistry, The University of Sydney, Sydney 2006 New South Wales, Australia
| | - Louis M. Rendina
- School
of Chemistry, The University of Sydney, Sydney 2006 New South Wales, Australia
- The
University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 New South Wales, Australia
| | - Markus Müllner
- Key
Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 New South Wales, Australia
- The
University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 New South Wales, Australia
| |
Collapse
|
7
|
You DK, Kim M, Kim D, Kim N, Lee KM. Improvement in Radiative Efficiency Via Intramolecular Charge Transfer in ortho-Carboranyl Luminophores Modified with Functionalized Biphenyls. Inorg Chem 2023. [PMID: 37311712 DOI: 10.1021/acs.inorgchem.3c01242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we found that the electronic effects of the functional groups on aromatic units attached to o-carboranyl species can enhance the efficiency of intramolecular charge transfer (ICT)-based radiative decay processes. Six o-carboranyl-based luminophores having attached functionalized biphenyl groups with CF3, F, H, CH3, C(CH3)3, and OCH3 substituents were prepared and fully characterized by multinuclear magnetic resonance spectroscopy. In addition, their molecular structures were determined by single-crystal X-ray diffractometry, which revealed that the distortion of the biphenyl rings and the geometries around the o-carborane cages were similar. All compounds exhibited ICT-based emissions in the rigid state (solution at 77 K and film). Intriguingly, the quantum efficiencies (Φem) of five compounds (that of the group with CF3 could not be measured because of its extremely weak emissions) in the film state increased gradually as the electron-donating power of the terminal functional group modifying the biphenyl moiety increased. Furthermore, the nonradiative decay constants (knr) for the group with OCH3 were estimated to be one-tenth of those for the group with F, whereas the radiative decay constants (kr) for the five compounds were similar. The dipole moments (μ) calculated for the optimized first excited state (S1) structures gradually increased, from that of the group with CF3 to that of the group with OCH3, implying that the inhomogeneity of the molecular charge distribution was enhanced by electron donation. The electron-rich environment formed as a result of electron donation led to efficient charge transfer to the excited state. Both experimental and theoretical findings revealed that the electronic environment of the aromatic moiety in o-carboranyl luminophores can be controlled to accelerate or interrupt the ICT process in the radiative decay of excited states.
Collapse
Affiliation(s)
- Dong Kyun You
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mingi Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Namkyun Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
8
|
Anderson KP, Djurovich PI, Rubio VP, Liang A, Spokoyny AM. Metal-Catalyzed and Metal-Free Nucleophilic Substitution of 7-I-B 18H 21. Inorg Chem 2022; 61:15051-15057. [PMID: 36098984 DOI: 10.1021/acs.inorgchem.2c02116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, two pathways of reactivity are investigated to generate site-specific substitutions at the B7 vertex of the luminescent boron cluster, anti-B18H22. First, a palladium-catalyzed cross-coupling reaction utilizing the precursor 7-I-B18H21 and a series of model nucleophiles was developed, ultimately producing several B-N- and B-O-substituted species. Interestingly, the B-I bond in this cluster can also be substituted in an uncatalyzed fashion, leading to the formation of various B-N, B-O, and B-S products. This work highlights intricate differences corresponding to these two reaction pathways and analyzes the role of solvents and additives on product distributions. As a result of our synthetic studies, seven new B18-based clusters were synthesized, isolated, and characterized by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. The photoluminescence properties of two structurally similar ether and thioether products were further investigated, with both exhibiting blue fluorescence in solution at 298 K and long-lived green or yellow phosphorescence at 77 K. Overall, this work shows, for the first time, the ability to perform substitution of a boron-halogen bond with nucleophiles in a B18-based cluster, resulting in the formation of photoluminescent molecules.
Collapse
Affiliation(s)
- Kierstyn P Anderson
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Victoria P Rubio
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Aimee Liang
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Anderson KP, Rheingold AL, Djurovich PI, Soman O, Spokoyny AM. Synthesis and luminescence of monohalogenated B18H22 clusters. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Kim M, Ryu CH, You DK, Hong JH, Lee KM. Crucial Factors Regulating Intramolecular Charge-Transfer-Based Radiative Efficiency in ortho-Carboranyl Luminophores: Planarity between Substituted Biphenyl Rings. ACS OMEGA 2022; 7:24027-24039. [PMID: 35847313 PMCID: PMC9281304 DOI: 10.1021/acsomega.2c03344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
o-Carboranyl compounds contain specific geometries, ranging from planar to orthogonally distorted biphenyl rings. Herein, 13 o-carboranyl compounds, 1HF-13PP, were synthesized and fully characterized to determine the impact of structural formation of the aromatic group appended with the o-carborane to estimate the efficiency of their radiative decay process. All the compounds exhibited significant intramolecular charge transfer (ICT)-based emission in the crystalline state at 298 K. Remarkably, increasing the distorted dihedral angles between biphenyl rings gradually decreased the emission efficiencies. Furthermore, their radiative decay constants decreased linearly with increasing dihedral angles, which demonstrated the inversely proportional relationship between these two factors. These findings distinctly suggest that the planar or distorted geometry of substituted aryl groups can strongly affect the efficiency of the ICT-based radiative process in o-carboranyl luminophores.
Collapse
|
11
|
Sinha S, Kelemen Z, Hümpfner E, Ratera I, Malval JP, Jurado JP, Viñas C, Teixidor F, Núñez R. o-Carborane-based fluorophores as efficient luminescent systems both as solids and as water-dispersible nanoparticles. Chem Commun (Camb) 2022; 58:4016-4019. [PMID: 35266927 DOI: 10.1039/d1cc07211k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A set of o-carborane-appended π-conjugated fluorophores and their light-emitting properties in the solid state are reported. The aggregation-induced emission enhancement (AIEE) exhibited for one of the fluorenyl derivatives paved the way to successfully preparing o-carborane-containing organic nanoparticles (NPs) homogeneously dispersed in aqueous media that maintain their luminescence properties. Notably, NPs processed as thin films also show high fluorescence efficiency, suggesting potential optical and optoelectronic applications.
Collapse
Affiliation(s)
- Sohini Sinha
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A.B., 08193, Bellaterra, Barcelona, Spain.
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Mũegyetem Rkp 3, H-1111 Budapest, Hungary
| | - Evelyn Hümpfner
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Mũegyetem Rkp 3, H-1111 Budapest, Hungary
| | - Imma Ratera
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A.B., 08193, Bellaterra, Barcelona, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jean-Pierre Malval
- Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse (CNRS-UMR7361), 15 rue Jean Starcky BP 2488, 68057 Mulhouse, France
| | - José Piers Jurado
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A.B., 08193, Bellaterra, Barcelona, Spain.
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A.B., 08193, Bellaterra, Barcelona, Spain.
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A.B., 08193, Bellaterra, Barcelona, Spain.
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A.B., 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
12
|
Im S, Ryu CH, Kim M, You DK, Yi S, Lee W, Lee KM. Effects of molecular geometry on the efficiency of intramolecular charge transfer-based luminescence in o-carboranyl-substituted 1H-phenanthro[9,10-d]imidazoles. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01405f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distinct difference in solid-state emission efficiency between 1H-phenanthro[9,10-d]imidazole–o-carboranyl luminophores showed that the geometric orientation is a key factor for controlling intramolecular charge transfer-based radiative decay.
Collapse
Affiliation(s)
- Sehee Im
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Chan Hee Ryu
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mingi Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dong Kyun You
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sanghee Yi
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Wonchul Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
13
|
Ryu CH, Lee SH, Yi S, Hong JH, Im S, Lee KM. Naphthyl‐ and Quinoline‐Appended
o
‐Carboranyl Luminophores: Intramolecular Charge Transfer‐Based Radiative Decay Controlled by Structural Geometry around C−C Bond Axis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chan Hee Ryu
- Department of Chemistry Institute for Molecular Science and Fusion Technology Kangwon National University Chuncheon, Gangwon 24341 Republic of Korea
| | - Seok Ho Lee
- Department of Chemistry Institute for Molecular Science and Fusion Technology Kangwon National University Chuncheon, Gangwon 24341 Republic of Korea
| | - Sanghee Yi
- Department of Chemistry Institute for Molecular Science and Fusion Technology Kangwon National University Chuncheon, Gangwon 24341 Republic of Korea
| | - Ju Hyun Hong
- Department of Chemistry Institute for Molecular Science and Fusion Technology Kangwon National University Chuncheon, Gangwon 24341 Republic of Korea
| | - Sehee Im
- Department of Chemistry Institute for Molecular Science and Fusion Technology Kangwon National University Chuncheon, Gangwon 24341 Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry Institute for Molecular Science and Fusion Technology Kangwon National University Chuncheon, Gangwon 24341 Republic of Korea
| |
Collapse
|
14
|
Conway-Kenny R, Ferrer-Ugalde A, Careta O, Cui X, Zhao J, Nogués C, Núñez R, Cabrera-González J, Draper SM. Ru(ii) and Ir(iii) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT. Biomater Sci 2021; 9:5691-5702. [PMID: 34264257 DOI: 10.1039/d1bm00730k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four novel transition metal-carborane photosensitisers were prepared by Sonogashira cross-coupling of 1-(4-ethynylbenzyl)-2-methyl-o-carborane (A-CB) with halogenated Ru(ii)- or Ir(iii)-phenanthroline complexes. The resulting boron-rich complexes with one (RuCB and IrCB) or two carborane cages (RuCB2 and IrCB2) were spectroscopically characterised, and their photophysical properties investigated. RuCB displayed the most attractive photophysical properties in solution (λem 635 nm, τT 2.53 μs, and φp 20.4%). Nanosecond time-resolved transient absorption studies were used to explore the 3MLCT nature of the triplet excited states, and the highest singlet oxygen quantum yields (ΦΔ) were obtained for the mono-carborane-phenanthroline complexes (RuCB: 52% and IrCB: 25%). None of the complexes produce dark toxicity in SKBR-3 cells after incubation under photodynamic therapy (PDT) conditions. Remarkably, mono-carboranes RuCB and IrCB were the best internalised by the SKBR-3 cells, demonstrating the first examples of tris-bidentate transition metal-carborane complexes acting as triplet photosensitisers for PDT with a high photoactivity; RuCB or IrCB killed ∼50% of SKBR-3 cells at 10 μM after irradiation. Therefore, the high-boron content and the photoactive properties of these photosensitisers make them potential candidates as dual anti-cancer agents for PDT and Boron Neutron Capture Therapy (BNCT).
Collapse
Affiliation(s)
- Robert Conway-Kenny
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Albert Ferrer-Ugalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | - Oriol Careta
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Xiaoneng Cui
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland. and State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | | | - Sylvia M Draper
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
15
|
Lee SH, Mun MS, Kim M, Lee JH, Hwang H, Lee W, Lee KM. Alteration of intramolecular electronic transition via deboronation of carbazole-based o-carboranyl compound and intriguing 'turn-on' emissive variation. RSC Adv 2021; 11:24057-24064. [PMID: 35479040 PMCID: PMC9036662 DOI: 10.1039/d1ra03716a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023] Open
Abstract
The conversion of closo-o-carborane-containing compounds to the nido-o-species via deboronation causes photophysical changes that could be used for sensing applications. 9-Methyl-9H-carbazole-based closo- (closo-Cz) and nido-o-carboranyl (nido-Cz) compounds were prepared and fully characterised by multinuclear NMR spectroscopy and elemental analysis, and the solid-state molecular structure of closo-Cz was analysed by X-ray crystallography. Although the closo-compound exhibited an emissive pattern centred at λ em = ca. 530 nm in the rigid state only (in THF at 77 K and as a film), nido-Cz demonstrated intense emission in the near-UV region (λ em = ca. 380 nm) in both solution and film states at 298 K. The positive solvatochromic effect of nido-Cz and the results of theoretical calculations for both the o-carboranyl compounds supported that these emissive features originate from intramolecular charge transfer (ICT) corresponding to the o-carborane. Furthermore, the calculations verified that the electronic role of the o-carboranyl unit changed from acceptor to donor upon deboronation from closo-Cz to nido-Cz. Investigations of the radiative decay mechanisms of closo-Cz and nido-Cz according to their quantum efficiencies (Φ em) and decay lifetimes (τ obs) suggested that the ICT-based radiative decays of closo-Cz and nido-Cz readily occur in the film (solid) and solution state, respectively. These observations implied that the emission of closo-Cz in the solution state could be drastically enhanced by deboronation to nido-Cz upon exposure to an increasing concentration of fluoride anions. Indeed, turn-on emissive features in an aqueous solution were observed upon deboronation, strongly suggesting the potential of closo-Cz as a turn-on and visually detectable chemodosimeter for fluoride ion sensing.
Collapse
Affiliation(s)
- Seok Ho Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Min Sik Mun
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Mingi Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Wonchul Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| |
Collapse
|
16
|
Feng W, Liu K, Zang J, Wang G, Miao R, Ding L, Liu T, Kong J, Fang Y. Flexible and Transparent Oligothiophene- o-Carborane-Containing Hybrid Films for Nonlinear Optical Limiting Based on Efficient Two-Photon Absorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28985-28995. [PMID: 34121390 DOI: 10.1021/acsami.1c07835] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Structure-property relationship for fluorophores with favorable nonlinear optical (NLO) properties are promising topics in organic chemistry and material science. Herein, a series of terthiophene-o-carborane dyads and triads covalently linked with different end-capping styles were readily synthesized and comprehensively investigated. Quantitative values of the crystal and packing structures, photophysical parameters including aggregation-induced emission (AIE) and two-photon absorption (2PA) were provided. Significant impact of carborane unit for introducing the AIE characteristic has been investigated in contrast to the parent oligothiophene. All the obtained fluorophores exhibit maximum absorption around 370 nm in THF and emit bright reddish photoluminscence with absolute fluorescence quantum yields above 16% in solid states. Intramolecular charge communication between oligothiophene and carborane plays important roles in the related NLO properties. These results are supported well by the time-dependent DFT theoretical calculations. Effective 2PA cross sections (δ2PA = 95-355 GM@650 nm) and transition dipole moments of the derivatives are variable for different end-capping styles. Their potential applications as optical limiting materials based on the 2PA mechanism in solutions and doped PDMS films were further evaluated. Taken together, this work provides an understanding of their structure-property relationship, and flexible PDMS films as outstanding candidates for practical applications in optical limiting.
Collapse
Affiliation(s)
- Wan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jianyang Zang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jinglin Kong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205,P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
17
|
You DK, So H, Ryu CH, Kim M, Lee KM. Strategic molecular design of closo-ortho-carboranyl luminophores to manifest thermally activated delayed fluorescence. Chem Sci 2021; 12:8411-8423. [PMID: 34221322 PMCID: PMC8221186 DOI: 10.1039/d1sc00791b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
In this paper, we propose a strategic molecular design of closo-o-carborane-based donor-acceptor dyad system that exhibits thermally activated delayed fluorescence (TADF) in the solution state at ambient temperature. Planar 9,9-dimethyl-9H-fluorene-based compounds with closo- and nido-o-carborane cages appended at the C2-, C3-, and C4-positions of each fluorene moiety (closo-type: 2FC, 3FC, 4FC, and 4FCH, and nido-type: nido-4FC = [nido-form of 4FC]·[NBu4]) were prepared and characterized. The solid-state molecular structure of 4FC exhibited a significantly distorted fluorene plane, which suggests the existence of severe intramolecular steric hindrance. In photoluminescence measurements, 4FC exhibits a noticeable intramolecular charge transition (ICT)-based emission in all states (solution at 298 K and 77 K, and solid states); however, emissions by other closo-compounds were observed in only the rigid state (solution at 77 K and film). Furthermore, nido-4FC did not exhibit emissive traces in any state. These observations verify that all radiative decay processes correspond to ICT transitions triggered by closo-o-carborane, which acts as an electron acceptor. Relative energy barriers calculated by TD-DFT as dihedral angles around o-carborane cages change in closo-compounds, which indicates that the structural formation of 4FC is nearly fixed around its S0-optimized structure. This differs from that for other closo-compounds, wherein the free rotation of their o-carborane cages occurs easily at ambient temperature. Such rigidity in the structural geometry of 4FC results in ICT-based emission in solution at 298 K and enhancement of quantum efficiency and radiative decay constants compared to those for other closo-compounds. Furthermore, 4FC displays short-lived (∼0.5 ns) and long-lived (∼30 ns) PL decay components in solution at 298 K and in the film state, respectively, which can be attributed to prompt fluorescence and TADF, respectively. The calculated energy difference (ΔE ST) between the first excited singlet and triplet states of the closo-compounds demonstrate that the TADF characteristic of 4FC originates from a significantly small ΔE ST maintained by the rigid structural fixation around its S0-optimized structure. Furthermore, the strategic molecular design of the o-carborane-appended π-conjugated (D-A) system, which forms a rigid geometry due to severe intramolecular steric hindrance, can enhance the radiative efficiency for ICT-based emission and trigger the TADF nature.
Collapse
Affiliation(s)
- Dong Kyun You
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Hyunhee So
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Chan Hee Ryu
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Mingi Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| |
Collapse
|
18
|
Lee SH, Mun MS, Lee JH, Im S, Lee W, Hwang H, Lee KM. Impact of the Electronic Environment in Carbazole-Appended o-Carboranyl Compounds on the Intramolecular-Charge-Transfer-Based Radiative Decay Efficiency. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Seok Ho Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Min Sik Mun
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sehee Im
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Wonchul Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
19
|
Lee SH, Lee JH, Mun MS, Yi S, Yoo E, Hwang H, Lee KM. Influence of Electronic Environment on the Radiative Efficiency of 9-Phenyl-9 H-carbazole-Based ortho-Carboranyl Luminophores. Molecules 2021; 26:molecules26061763. [PMID: 33801078 PMCID: PMC8003977 DOI: 10.3390/molecules26061763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
The photophysical properties of closo-ortho-carboranyl-based donor–acceptor dyads are known to be affected by the electronic environment of the carborane cage but the influence of the electronic environment of the donor moiety remains unclear. Herein, four 9-phenyl-9H-carbazole-based closo-ortho-carboranyl compounds (1F, 2P, 3M, and 4T), in which an o-carborane cage was appended at the C3-position of a 9-phenyl-9H-carbazole moiety bearing various functional groups, were synthesized and fully characterized using multinuclear nuclear magnetic resonance spectroscopy and elemental analysis. Furthermore, the solid-state molecular structures of 1F and 4T were determined by X-ray diffraction crystallography. For all the compounds, the lowest-energy absorption band exhibited a tail extending to 350 nm, attributable to the spin-allowed π–π* transition of the 9-phenyl-9H-carbazole moiety and weak intramolecular charge transfer (ICT) between the o-carborane and the carbazole group. These compounds showed intense yellowish emission (λem = ~540 nm) in rigid states (in tetrahydrofuran (THF) at 77 K and in films), whereas considerably weak emission was observed in THF at 298 K. Theoretical calculations on the first excited states (S1) of the compounds suggested that the strong emission bands can be assigned to the ICT transition involving the o-carborane. Furthermore, photoluminescence experiments in THF‒water mixtures demonstrated that aggregation-induced emission was responsible for the emission in rigid states. Intriguingly, the quantum yields and radiative decay constants in the film state were gradually enhanced with the increasing electron-donating ability of the substituent on the 9-phenyl group (‒F for 1F < ‒H for 2P < ‒CH3 for 3M < ‒C(CH3)3 for 4T). These features indicate that the ICT-based radiative decay process in rigid states is affected by the electronic environment of the 9-phenyl-9H-carbazole group. Consequently, the efficient ICT-based radiative decay of o-carboranyl compounds can be achieved by appending the o-carborane cage with electron-rich aromatic systems.
Collapse
|
20
|
Tuning the Liquid Crystallinity of Cholesteryl-o-Carborane Dyads: Synthesis, Structure, Photoluminescence, and Mesomorphic Properties. CRYSTALS 2021. [DOI: 10.3390/cryst11020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A set of mesomorphic materials in which the o-carborane cluster is covalently bonded to a cholesteryl benzoate moiety (mesogen group) through a suitably designed linker is described. The olefin cross-metathesis between appropriately functionalized styrenyl-o-carborane derivatives and a terminal alkenyl cholesteryl benzoate mesogen (all type I terminal olefins) leads to the desired trans-regioisomer, which is the best-suited configuration to obtain mesomorphic properties in the final materials. The introduction of different substituents (R = H (M2), Me (M3), or Ph (M4)) to one of the carbon atoms of the o-carborane cluster (Ccluster) enables the tailoring of liquid crystalline properties. Compounds M2 and M3 show the chiral nematic (N*) phase, whereas M4 do not show liquid crystal behavior. Weaker intermolecular interactions in the solid M3 with respect to those in M2 may allow the liquid crystallinity in M3 to be expressed as enantiotropic behavior, whereas breaking the stronger intermolecular interaction in the solid state of M2 leads directly to the isotropic state, resulting in monotropic behavior. Remarkably, M3 also displays the blue phase, which was observed neither in the chiral nematic precursor nor in the styrenyl-cholesterol model (M5) without an o-carborane cluster, which suggests that the presence of the cluster plays a role in stabilizing this highly twisted chiral phase. In the carborane-containing mesogens (M2 and M3), the o-carborane cluster can be incorporated without destroying the helical organization of the mesophase.
Collapse
|
21
|
Parejo L, Chaari M, Santiago S, Guirado G, Teixidor F, Núñez R, Hernando J. Reversibly Switchable Fluorescent Molecular Systems Based on Metallacarborane-Perylenediimide Conjugates. Chemistry 2021; 27:270-280. [PMID: 32648595 DOI: 10.1002/chem.202002419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/31/2022]
Abstract
Icosahedral metallacarboranes are θ-shaped anionic molecules in which two icosahedra share one vertex that is a metal center. The most remarkable of these compounds is the anionic cobalt-based metallacarborane [Co(C2 B9 H11 )2 ]- , whose oxidation-reduction processes occur via an outer sphere electron process. This, along with its low density negative charge, makes [Co(C2 B9 H11 )2 ]- very appealing to participate in electron-transfer processes. In this work, [Co(C2 B9 H11 )2 ]- is tethered to a perylenediimide dye to produce the first examples of switchable luminescent molecules and materials based on metallacarboranes. In particular, the electronic communication of [Co(C2 B9 H11 )2 ]- with the appended chromophore unit in these compounds can be regulated upon application of redox stimuli, which allows the reversible modulation of the emitted fluorescence. As such, they behave as electrochemically-controlled fluorescent molecular switches in solution, which surpass the performance of previous systems based on conjugates of perylendiimides with ferrocene. Remarkably, they can form gels by treatment with appropriate mixtures of organic solvents, which result from the self-assembly of the cobaltabisdicarbollide-perylendiimide conjugates into 1D nanostructures. The interplay between dye π-stacking and metallacarborane electronic and steric interactions ultimately governs the supramolecular arrangement in these materials, which for one of the compounds prepared allows preserving the luminescent behavior in the gel state.
Collapse
Affiliation(s)
- Laura Parejo
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Mahdi Chaari
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Barcelona, Spain
| | - Sara Santiago
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Gonzalo Guirado
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Francesc Teixidor
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Barcelona, Spain
| | - Rosario Núñez
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Barcelona, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| |
Collapse
|
22
|
Recent Progress in the Development of Solid‐State Luminescent
o
‐Carboranes with Stimuli Responsivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916666] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Ochi J, Tanaka K, Chujo Y. Recent Progress in the Development of Solid-State Luminescent o-Carboranes with Stimuli Responsivity. Angew Chem Int Ed Engl 2020; 59:9841-9855. [PMID: 32009291 DOI: 10.1002/anie.201916666] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Indexed: 12/20/2022]
Abstract
o-Carborane, a cluster compound containing boron and adjacent carbon atoms, displays intriguing luminescent properties. Recently, compounds containing o-carborane units were found to show suppressed aggregation-induced quenching and intense solid-state emission; they also show potential for the development of stimuli-responsive luminochromic materials. In this Minireview, we introduce three kinds of fundamental photochemical properties: aggregation-induced emission, twisted intramolecular charge transfer in crystals, and environment-sensitive excimer formation in solids. Based on these properties, several types of luminochromism, such as thermos-, vapo-, and mechanochromism, have been discovered. Based mainly on results from recent studies, we illustrate these mechanisms as well as unique luminescent behaviors of o-carborane derivatives.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
24
|
Kim M, Ryu CH, Hong JH, Lee JH, Hwang H, Lee KM. Planarity of N-aryl in appended 1,2,4-triazole-based o-carboranyl luminophores: a key factor to control intramolecular charge transfer. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00915f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The distinct difference in the photophysical characteristics between two triazole-based o-carboranes revealed that the planarity of aryl groups strongly influences intramolecular-charge-transfer-based emission.
Collapse
Affiliation(s)
- Mingi Kim
- Department of Chemistry
- Institute for Molecular Science and Fusion Technology
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Chan Hee Ryu
- Department of Chemistry
- Institute for Molecular Science and Fusion Technology
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Ju Hyun Hong
- Department of Chemistry
- Institute for Molecular Science and Fusion Technology
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry
- Institute for Molecular Science and Fusion Technology
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry
- Institute for Molecular Science and Fusion Technology
- Kangwon National University
- Chuncheon
- Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry
- Institute for Molecular Science and Fusion Technology
- Kangwon National University
- Chuncheon
- Republic of Korea
| |
Collapse
|
25
|
Zhang C, Wang Q, Tian S, Zhang J, Li J, Zhou L, Lu J. Palladium-catalyzed regioselective synthesis of B(4,5)- or B(4)-substituted o-carboranes containing α,β-unsaturated carbonyls. Org Biomol Chem 2020; 18:4723-4727. [DOI: 10.1039/d0ob00698j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
B(4,5)- or B(4)-Substituted o-carboranes containing α,β-unsaturated carbonyls are regioselectively synthesized through a Pd-catalyzed decarboxylation cross coupling reaction.
Collapse
Affiliation(s)
- Chuyi Zhang
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
| | - Qian Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
| | - Song Tian
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
| | - Jianwei Zhang
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
| | - Jiaoyi Li
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Department of Chemistry & Materials Science
- National Demonstration Center for Experimental Chemistry Education
- Northwest University
- Xi'an
| | - Jian Lu
- State Key Laboratory of Fluorine & Nitrogen Chemicals
- Xi'an Modern Chemistry Research Institute
- Xi'an 710065
- China
| |
Collapse
|
26
|
Yan J, Yang W, Zhang Q, Yan Y. Introducing borane clusters into polymeric frameworks: architecture, synthesis, and applications. Chem Commun (Camb) 2020; 56:11720-11734. [DOI: 10.1039/d0cc04709k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This feature article summarizes the preparation and applications of borane cluster-containing polymers and covers research progress and future trends of borane cluster-containing linear, dendritic, macrocyclic polymers and metal–organic frameworks.
Collapse
Affiliation(s)
- Jing Yan
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Weihong Yang
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Qiuyu Zhang
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Yi Yan
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| |
Collapse
|
27
|
Sujith S, Nam EB, Lee J, Lee SU, Lee MH. Enhancing the thermally activated delayed fluorescence of nido-carborane-appended triarylboranes by steric modification of the phenylene linker. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00535e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The introduction of a methyl group into the 4-position of the phenylene linker of nido-carborane–triarylborane D–A dyads, i.e., at the ortho position to the nido-carborane cage, largely enhances their thermally activated delayed fluorescence.
Collapse
Affiliation(s)
- Surendran Sujith
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| | - Eun Bi Nam
- Department of Bionano Technology and Department of Applied Chemistry
- Hanyang University
- Ansan 15588
- Republic of Korea
| | - Junseong Lee
- Department of Chemistry
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Sang Uck Lee
- Department of Bionano Technology and Department of Applied Chemistry
- Hanyang University
- Ansan 15588
- Republic of Korea
| | - Min Hyung Lee
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| |
Collapse
|