1
|
Zou J, Liao J, He Y, Zhang T, Xiao Y, Wang H, Shen M, Yu T, Huang W. Recent Development of Photochromic Polymer Systems: Mechanism, Materials, and Applications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0392. [PMID: 38894714 PMCID: PMC11184227 DOI: 10.34133/research.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Photochromic polymer is defined as a series of materials based on photochromic units in polymer chains, which produces reversible color changes under irradiation with a particular wavelength. Currently, as the research progresses, it shows increasing potential applications in various fields, such as anti-counterfeiting, information storage, super-resolution imaging, and logic gates. However, there is a paucity of published reviews on the topic of photochromic polymers. Herein, this review discusses and summarizes the research progress and prospects of such materials, mainly summarizing the basic mechanisms, classification, and applications of azobenzene, spiropyran, and diarylethene photochromic polymers. Moreover, 3-dimensional (3D) printable photochromic polymers are worthy to be summarized specifically because of its innovative approach for practical application; meanwhile, the developing 3D printing technology has shown increasing potential opportunities for better applications. Finally, the current challenges and future directions of photochromic polymer materials are summarized.
Collapse
Affiliation(s)
- Jindou Zou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Jimeng Liao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunfei He
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Tiantian Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyao Shen
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province,
Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Lin R, Zhang H, Huang Y. A new two-dimensional, spiropyran-based polymer fluorescent nanoprobe with quantitative-fluorescent and photochromic properties for multi-substance detection. NANOTECHNOLOGY 2024; 35:335702. [PMID: 38776878 DOI: 10.1088/1361-6528/ad4ee6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
One challenge of the structural design of a fluorescent probe is how to improve the detection performance on trace target analytes in complex samples. Herein a new polymer fluorescent nanoprobe (2DSP-C28) has been synthesized, by adopting a two-dimensional (2D), spiropyran (SP)-based nanosheet structure with hydrophobic long-chain alkanes (C28). Unlike a traditional SP-based small molecule probe, the 2DSP-C28probe can exhibit quantitative-fluorescent and photochromic properties. Under the detection of metal-ions, the nanoprobe in dimethyl sulfoxide aqueous solution is selectively fluorescent-quenched-responsive for Fe-ions (∼100μM), with a characteristic stoichiometric ratio of <10, a high sensitivity (limit of detection: ∼0.2μM). When the nanoprobe is incorporated into electrospun polyethylene oxide, it can be used for gas detection, and display a color-change with acid-base gas and identify the HF gas. It is expected that this new polymer fluorescent nanoprobe can be promisingly applied for rapidly environmental monitoring on the ion or gas pollution.
Collapse
Affiliation(s)
- Riyan Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, People's Republic of China
| | - Hefeng Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, People's Republic of China
| | - Yifu Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, People's Republic of China
| |
Collapse
|
3
|
Chen H, Tang Z, Yang Y, Hao Y, Chen W. Recent Advances in Photoswitchable Fluorescent and Colorimetric Probes. Molecules 2024; 29:2521. [PMID: 38893396 PMCID: PMC11173890 DOI: 10.3390/molecules29112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, significant advancements have been made in the research of photoswitchable probes. These probes undergo reversible structural and electronic changes upon light exposure, thus exhibiting vast potential in molecular detection, biological imaging, material science, and information storage. Through precisely engineered molecular structures, the photoswitchable probes can toggle between "on" and "off" states at specific wavelengths, enabling highly sensitive and selective detection of targeted analytes. This review systematically presents photoswitchable fluorescent and colorimetric probes built on various molecular photoswitches, primarily focusing on the types involving photoswitching in their detection and/or signal response processes. It begins with an analysis of various molecular photoswitches, including their photophysical properties, photoisomerization and photochromic mechanisms, and fundamental design concepts for constructing photoswitchable probes. The article then elaborates on the applications of these probes in detecting diverse targets, including cations, anions, small molecules, and biomacromolecules. Finally, it offers perspectives on the current state and future development of photoswitchable probes. This review aims to provide a clear introduction for researchers in the field and guidance for the design and application of new, efficient fluorescent and colorimetric probes.
Collapse
Affiliation(s)
- Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Yewen Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
4
|
Marco A, Guirado G, Sebastián RM, Hernando J. Spiropyran-based chromic hydrogels for CO 2 absorption and detection. Front Chem 2023; 11:1176661. [PMID: 37288075 PMCID: PMC10242082 DOI: 10.3389/fchem.2023.1176661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
By enabling rapid, cost-effective, user-friendly and in situ detection of carbon dioxide, colorimetric CO2 sensors are of relevance for a variety of fields. However, it still remains a challenge the development of optical chemosensors for CO2 that combine high sensitivity, selectivity and reusability with facile integration into solid materials. Herein we pursued this goal by preparing hydrogels functionalized with spiropyrans, a well-known class of molecular switches that undergo different color changes upon application of light and acid stimuli. By varying the nature of the substituents of the spiropyran core, different acidochromic responses are obtained in aqueous media that allow discriminating CO2 from other acid gases (e.g., HCl). Interestingly, this behavior can be transferred to functional solid materials by synthesizing polymerizable spiropyran derivatives, which are used to prepare hydrogels. These materials preserve the acidochromic properties of the incorporated spiropyrans, thus leading to selective, reversible and quantifiable color changes upon exposure to different CO2 amounts. In addition, CO2 desorption and, therefore, recovery of the initial state of the chemosensor is favored by irradiation with visible light. This makes spiropyran-based chromic hydrogels promising systems for the colorimetric monitorization of carbon dioxide in a diversity of applications.
Collapse
Affiliation(s)
| | | | | | - Jordi Hernando
- *Correspondence: Rosa María Sebastián, ; Jordi Hernando,
| |
Collapse
|
5
|
Ozhogin IV, Pugachev AD, Makarova NI, Belanova AA, Kozlenko AS, Rostovtseva IA, Zolotukhin PV, Demidov OP, El-Sewify IM, Borodkin GS, Metelitsa AV, Lukyanov BS. Novel Indoline Spiropyrans Based on Human Hormones β-Estradiol and Estrone: Synthesis, Structure, Chromogenic and Cytotoxic Properties. Molecules 2023; 28:molecules28093866. [PMID: 37175276 PMCID: PMC10179760 DOI: 10.3390/molecules28093866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The introduction of a switchable function into the structure of a bioactive compound can endow it with unique capabilities for regulating biological activity under the influence of various types of external stimuli, which makes such hybrid compounds promising objects for photopharmacology, targeted drug delivery and bio-imaging. This work is devoted to the synthesis and study of new spirocyclic derivatives of important human hormones-β-estradiol and estrone-possessing a wide range of biological activities. The obtained hybrid compounds represent an indoline spiropyrans family, a widely known class of organic photochromic compounds. The structure of the compounds was confirmed by 1H and 13C NMR, IR, HRMS and single-crystal X-ray analysis. The intermolecular interactions in the crystals of spiropyran (3) were defined by Hirshfeld surfaces and 2D fingerprint plots, which were successfully acquired from CrystalExplorer (v21.5). All target hybrids demonstrated pronounced activity in the visible region of the spectrum. The mechanisms of thermal isomerization processes of spiropyrans and their protonated merocyanine forms were studied by DFT methods, which revealed the energetic advantage of the protonation process with the formation of a β-cisoid CCCH conformer at the first stage and its further isomerization to more stable β-transoid forms. The proposed mechanism of acidochromic transformation was confirmed by the additional NMR study data that allowed for the detecting of the intermediate CCCH isomer. The study of the short-term cytotoxicity of new spirocyclic derivatives of estrogens and their 2-formyl-precursors was performed on the HeLa cell model. The precursors and spiropyrans differed in toxicity, suggesting their variable applicability in novel anti-cancer technologies.
Collapse
Affiliation(s)
- Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anna A Belanova
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Peter V Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Oleg P Demidov
- Faculty of Chemistry and Pharmacy, North-Caucasus Federal University, 1 Pushkina Str., 355000 Stavropol, Russia
| | - Islam M El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Gennady S Borodkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russia
| |
Collapse
|
6
|
Li C, Zhang C, Zhao R, Zhao N, Liu R, Zhang Y, Jia M, Wang S. Porous Electrospun Films with Reversible Photoresponsive Microenvironmental Humidity Regulation: A Controllable Hydrogen-Bonding Synergistic Effect Exhibited by Acrylic Acid Segments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6187-6201. [PMID: 36655841 DOI: 10.1021/acsami.2c20035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Suitable relative humidity is essential for the preservation of cultural relics, food storage, and so on. A special material that can regulate the relative humidity in the microenvironment is particularly important. In this work, several innovative electrospun films with reversible photoresponsive wettability and the ability to regulate microenvironmental relative humidity were prepared. The spiropyran unit of the synthesized copolymer played the most important role in humidity regulation due to its reversible transition between a nonpolar ring-closed state and a polar ring-opened state induced by alternating ultraviolet/visible illumination. More interestingly, the introduction of acrylic acid segments exhibited a controllable hydrogen bond synergistic effect for increasing the range of humidity regulation. The color change and the reversible change ranges of wettability and microenvironmental relative humidity under ultraviolet/visible irradiation are all closely related to the number of acrylic acid segments. Cassie theory, density functional theory (DFT), and interaction region indicator (IRI) analysis were used to characterize this phenomenon. Electrospinning is a promising method to achieve large-scale production that can put such material into practical applications.
Collapse
Affiliation(s)
- Chunhao Li
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Ce Zhang
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Ruisheng Zhao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Ning Zhao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Ruian Liu
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Yang Zhang
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Meilin Jia
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Shuai Wang
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| |
Collapse
|
7
|
Hosseini-Alvand E, Khorasani MT. Fabrication of electrospun nanofibrous thermoresponsive semi-interpenetrating poly( N-isopropylacrylamide)/polyvinyl alcohol networks containing ZnO nanoparticle mats: characterization and antibacterial and cytocompatibility evaluation. J Mater Chem B 2023; 11:890-904. [PMID: 36597765 DOI: 10.1039/d2tb02179j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thermoresponsive nanofiber composites comprising biopolymers and ZnO nanoparticles with controlled release and antibacterial activity are fascinating scientific research areas. Herein, poly(N-isopropylacrylamide) (PNIPAm) was prepared and mixed with poly(vinyl alcohol) (PVA) in 75/25 and 50/50 weight ratios together with ZnO (0, 1, and 2 phr) to construct nanofiber composites. The morphology of the crosslinked nanofiber composites, ZnO content, and their mechanical behavior were assessed by SEM, EDX, and tensile analyses. The wettability results show an increment in nanofiber surface hydrophobicity by increasing the temperature above the LCST of PNIPAm. The in vitro ZnO release exhibits a faster release profile for the sample with 50 wt% PNIPAm (lower crosslinking density) compared to the one with 25 wt%. Besides, a strong interaction between PVA hydroxyl groups and ZnO can restrict the release content. However, by increasing the temperature from 28 to 32 °C, the relative ZnO release becomes half for both compositions. All crosslinked nanofiber composites demonstrated reliable biocompatibility against L929 fibroblast cells. Agar disc-diffusion and optical density methods showed thermo-controllable antibacterial activity against Staphylococcus aureus upon temperature variation between 28 and 32 °C. Furthermore, in vivo and histological results indicate the potentiality of the prepared multidisciplinary wound dressing for robust wound healing and skin tissue engineering.
Collapse
Affiliation(s)
- Ebrahim Hosseini-Alvand
- Biomaterial Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran.
| | - Mohammad-Taghi Khorasani
- Biomaterial Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran.
| |
Collapse
|
8
|
Kozlenko AS, Ozhogin IV, Pugachev AD, Lukyanova MB, El-Sewify IM, Lukyanov BS. A Modern Look at Spiropyrans: From Single Molecules to Smart Materials. Top Curr Chem (Cham) 2023; 381:8. [PMID: 36624333 DOI: 10.1007/s41061-022-00417-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
Photochromic compounds of the spiropyran family have two main isomers capable of inter-switching with UV or visible light. In the current review, we discuss recent advances in the synthesis, investigation of properties, and applications of spiropyran derivatives. Spiropyrans of the indoline series are in focus as the most promising representatives of multi-sensitive spirocyclic compounds, which can be switched by a number of external stimuli, including light, temperature, pH, presence of metal ions, and mechanical stress. Particular attention is paid to the structural features of molecules, their influence on photochromic properties, and the reactions taking place during isomerization, as the understanding of the structure-property relationships will rationalize the synthesis of compounds with predetermined characteristics. The main prospects for applications of spiropyrans in such fields as smart material production, molecular electronics and nanomachinery, sensing of environmental and biological molecules, and photopharmacology are also discussed.
Collapse
Affiliation(s)
- Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia.
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Maria B Lukyanova
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Islam M El-Sewify
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia.,Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| |
Collapse
|
9
|
Preparation of switchable thermo- and photo-responsive polyacrylic nanocapsules containing leuco-dye and spiropyran: Multi-level data encryption and temperature indicator. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Modified cellulose paper with photoluminescent acrylic copolymer nanoparticles containing fluorescein as pH-sensitive indicator. Carbohydr Polym 2022; 296:119965. [DOI: 10.1016/j.carbpol.2022.119965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
|
11
|
Gholami F, Zinadini S, Zinatizadeh AA, Sanjabi S, Mahdavian AR, Samari M, Vatanpour V. pH
stimuli‐responsive and fouling resistance
PES
membrane fabricated by using photochromic spiropyran and spironaphthoxazine nanofillers for pesticide removal. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Foad Gholami
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
| | - Sirus Zinadini
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
- Environmental Research Center (ERC) Razi University Kermanshah Iran
| | - Ali Akbar Zinatizadeh
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
- Environmental Research Center (ERC) Razi University Kermanshah Iran
| | - Samira Sanjabi
- Polymer Science Department Iran Polymer & Petrochemical Institute Tehran Iran
| | - Ali Reza Mahdavian
- Polymer Science Department Iran Polymer & Petrochemical Institute Tehran Iran
| | - Mahya Samari
- Department of Applied Chemistry, Faculty of Chemistry Razi University Kermanshah Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry Kharazmi University Tehran Iran
| |
Collapse
|
12
|
Duan H, Zhang J, Weng Y, Fan Z, Fan LJ. Dynamic Fluorescent Anti-Counterfeiting Labels Based on Conjugated Polymers Confined in Submicron Fibrous Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32510-32521. [PMID: 35818136 DOI: 10.1021/acsami.2c06965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing a new anti-counterfeiting strategy is of great significance to combating the global counterfeiting problem. Here we report the construction of a dynamic fluorescence response system for anti-counterfeiting by combining the photochromism induced by the ring-opening of spiropyran (SP) to merocyanine (MC) with the fluorescence resonance energy transfer (FRET) between the conjugated polymer and MC. After elucidating the design principle, a new conjugated polymer, PPETE-SP, consisting of a poly[p-(phenylene ethynylene)-alt-(thienylene-ethynylene)] (PPETE) backbone with pendant SP, was synthesized and characterized. With poly(methyl methacrylate) (PMMA) as the matrix, the PPETE-SP/PMMA fibrous membrane was prepared via electrospinning. Under the irradiation of UV light, the fluorescent color of the membrane dynamically changed from green to light green, then light pink, and finally pink, and this process was reversible under visible light. The fluorescence emission switch was examined for 10 cycles and proved to have good repeatability, indicating that the membrane can be directly used as an anti-counterfeiting label for multiple verifications. The FRET efficiency was found to be about 61% based on the FRET study with confocal laser scanning microscopy. The covalent bonding between PPETE backbone and SP, the confinement of PPETE-SP chains in the fibrous membrane, as well as employing PMMA as the matrix were demonstrated to be crucial in realizing the photochromism and the FRET. Different anti-counterfeiting modes were proposed, providing rich selections for operation of verification. Such facile-to-operate and hard-to-imitate dynamic fluorescent responsive materials are very promising for use in practical anti-counterfeiting applications.
Collapse
Affiliation(s)
- Huatian Duan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jincheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuchen Weng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhinan Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Li-Juan Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Keyvan Rad J, Ghomi AR, Mahdavian AR. Preparation of Photoswitchable Polyacrylic Nanocomposite Fibers Containing Au Nanorods and Spiropyran: Optical and Plasmonic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8428-8441. [PMID: 35758020 DOI: 10.1021/acs.langmuir.2c01041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoswitchable nanofibers and nanocomposite fibers containing plasmonic nanoparticles have attracted a great deal of interest in optical and plasmonic devices. Herein, photoswitchable poly(methyl methacrylate-co-vinylimidazole-co-spiropyran ethyl acrylate) (MVSP) and its copolymer with butyl acrylate (MBVSP) were prepared via emulsion polymerization, and the corresponding nanofibers (MVSP@NF and MBVSP@NF) and nanocomposite fibers (MVSP/Au@NF and MBVSP/Au@NF) containing AuNRs were fabricated through electrospinning. FTIR and 1H NMR analyses confirmed the progress of the copolymerization reaction. The morphology of the prepared nanofibers containing AuNRs with an aspect ratio of 2.5 was identified by SEM and TEM techniques. The inclusion of vinylimidazole into the copolymer chains resulted in well-dispersed AuNRs. Photoisomerization studies revealed a higher photochromic efficiency for MBVSP@F (reflective intensity of 37.4%) with respect to MVSP@NF (reflective intensity of 62.5%) because of the greater flexibility of the chains. In addition, the presence of AuNRs in the nanocomposite fibers with high absorptivity intensified the photochromic properties for both samples. The polarization-dependent plasmonic band of AuNRs was switched between 650 and 634 nm through the photoisomerization of nonpolar SP to polar MC reversibly for MVSP/Au@NF. This displacement was just 4 nm for MBVSP/Au@NF, owing to the limited coupling between AuNRs and MC isomers. Besides, the capability of both nanocomposite fibers for reversible optical patterning was investigated by fast write-erase cycles. Enhanced photofatigue resistance in those fibers and the photomodulation of the plasmonic band of AuNRs using SP to MC isomerization revealed their promising potential for optical patterning and on-demand real-time plasmonic devices.
Collapse
Affiliation(s)
- Jaber Keyvan Rad
- Polymer Science Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, 14967 Iran
| | - Amir Reza Ghomi
- Polymer Science Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, 14967 Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, 14967 Iran
| |
Collapse
|
14
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Xia H, Ding Y, Gong J, Lilienkampf A, Xie K, Bradley M. Programmable and Flexible Fluorochromic Polymer Microarrays for Information Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27107-27117. [PMID: 35639498 PMCID: PMC9204690 DOI: 10.1021/acsami.2c02242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/16/2022] [Indexed: 05/04/2023]
Abstract
Photoresponsive fluorochromic materials are regarded as an effective means for information storage. Their reversible changes of color and fluorescence facilitate the storage process and increase the possible storage capacity. Here, we propose an optically reconfigurable Förster resonance energy transfer (FRET) process to realize tunable emissions based on photochromic spiropyrans and common fluorophores. The kinetics of the photoisomerization of the spiropyran and the FRET process of the composite were systematically investigated. Through tuning the ratios of the acceptor spiropyran and donor fluorophore and external light stimuli, a programmable FRET process was developed to obtain tunable outputs. More importantly, flexible microarrays were fabricated from such fluorochromic mixtures by inkjet printing (230 ppi) and the dynamic FRET process could also be applied to generate tunable fluorescence in ready-made microstructures. The flexible patterns created using the microarrays could be used as novel optically readable media for information storage by altering the composition and optical performance of every feature within the microarray. A key aspect of information storage such is anti-counterfeiting, and these colorful displays can be fabricated and integrated in a simple and straightforward system. The reliable fabrication and programmable optical performances of these large-scale flexible polymer microarrays represent a substantial step toward high-density and high-security information storage platforms.
Collapse
Affiliation(s)
- Hongyan Xia
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Yuguo Ding
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Jingjing Gong
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Annamaria Lilienkampf
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Kang Xie
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Mark Bradley
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
16
|
Spiropyran and spironaphthoxazine based opto-chemical probes for instant ion detection with high selectivity and sensitivity to trace amounts of cyanide. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Zhai C, Fang G, Liu W, Wu T, Miao L, Zhang L, Ma J, Zhang Y, Zong C, Zhang S, Lu C. Robust Scalable-Manufactured Smart Fabric Surfaces Based on Azobenzene-Containing Maleimide Copolymers for Rewritable Information Storage and Hydrogen Fluoride Visual Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42024-42034. [PMID: 34448561 DOI: 10.1021/acsami.1c11241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Functionalized materials with reversible color switching are highly attractive in many application fields, especially as rewritable media for information storage. It is critical yet challenging to develop a cost-effective strategy for the fabrication of stimulus-responsive chromogenic systems. Herein, we present a versatile dip-coating approach to fabricate robust smart textile with acid/base-driven chromotropic capability. Owing to the introduction of novel maleimide-based copolymers bearing azobenzene derivative moieties, smart textiles possess rapid color switching between yellow and orange-red, which is triggered by acid-base stimulations with the resulting reversible protonation/deprotonation of maleimide moieties. As a proof of concept of the application of the smart textile for high-performance rewritable media, various rewritable elaborate patterns can be fast trifluoroacetic acid-printed/triethylamine-erased (within 20 s) with excellent cycling stability and long legible duration (>30 days). Meanwhile, the smart textile can be employed as a visual sensor for the detection of hydrogen fluoride gas leakage. It is highlighted that the as-prepared robust smart textiles with superhydrophobic surfaces have excellent antifouling properties and chemical/mechanical stabilities, which can tolerate harsh environmental conditions and repetitive mechanical deformation. The robust smart textiles with simple low-cost large-scale production may find more advanced potential applications besides information storage and sensors demonstrated.
Collapse
Affiliation(s)
- Congcong Zhai
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Guoxin Fang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wenqing Liu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Tingyao Wu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Luyang Miao
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Luqing Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jiachen Ma
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yabin Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuanyong Zong
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shuxiang Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Conghua Lu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, P. R. China
| |
Collapse
|
18
|
He J, Zhao H, Wu H, Yang Y, Wang Z, He Z, Jiang G. Achieving enhanced solid-state photochromism and mechanochromism by introducing a rigid steric hindrance group. Phys Chem Chem Phys 2021; 23:17939-17944. [PMID: 34382052 DOI: 10.1039/d1cp02983e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
For photochromic molecules, effective isomerization usually requires conformational freedom, which is usually unavailable under solvent-free conditions. In this work, we report a new method, which can realize the reversible switching of spiropyran molecules by introducing a rigid aromatic ring group and this method can provide the required free volume to transform from a closed-ring to an open-ring form. This new molecule can quickly change color in the solid state under ultraviolet light, and can be erased after being heated at 60 °C for about 5 minutes. Furthermore, this new compound presents mechanochromicity when a mechanical force is applied. What is more, it can be used for at least 30 cycles of print-erase operations without apparent fatigue. This new molecule exhibits improved photochromic and anti-fatigue properties in the solid state, which can promote its application in both ultraviolet printing and anti-counterfeiting materials.
Collapse
Affiliation(s)
- Junzhao He
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Fossil-like pollen grains for construction of UV-responsive photochromic and fluorogenic dual-functional film. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Tian S, Zhang J, Zhou Q, Shi L, Wang W, Wang D. Photochromic Polyamide 6 Based on Spiropyran Synthesized via Hydrolyzed Ring-Opening Polymerization. Polymers (Basel) 2021; 13:2496. [PMID: 34372100 PMCID: PMC8348056 DOI: 10.3390/polym13152496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023] Open
Abstract
We report photochromic polyamide 6 (PA6) which was synthesized by hydrolyzed ring-opening polymerization of ε-caprolactam with spiropyran (SP) embedded in the polymer chains. It indicated that crystallinity degree of the resulting copolymers was decreased since only PA6 segments can crystallize with increasing content of SP modifier. Meanwhile, toughness of photochromic PA6 was decreased. The photochromic property analysis indicated that the sample with more flexibility and more content of SP was more sensitive to UV light at the beginning of irradiation than other samples and its color after being irradiated for 1 min tended to reddish. Investigation revealed that the UV-vis absorbance of SP-PA6-3 had negligible decay after 10 cycles, which indicated SP-modified PA6 possessed excellent photoresponse reversibility and fatigue resistance.
Collapse
Affiliation(s)
- Shiyou Tian
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; (S.T.); (J.Z.); (D.W.)
| | - Jicong Zhang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; (S.T.); (J.Z.); (D.W.)
| | - Qiong Zhou
- SINOPEC Yizheng Chemical Fiber Co., Ltd., Jiangsu Key Laboratory of Highperformance Fiber, Yizheng 211900, China; (Q.Z.); (L.S.)
| | - Limei Shi
- SINOPEC Yizheng Chemical Fiber Co., Ltd., Jiangsu Key Laboratory of Highperformance Fiber, Yizheng 211900, China; (Q.Z.); (L.S.)
| | - Wenwen Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; (S.T.); (J.Z.); (D.W.)
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; (S.T.); (J.Z.); (D.W.)
| |
Collapse
|
21
|
Wu J, Jiao X, Chen D, Li C. Dual-stimuli responsive color-changing nanofibrous membranes as effective media for anti-counterfeiting and erasable writing. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Wang Y, Xi P, Shu D, Meng S, Liu K, Wang X, Cheng B. Preparation and Properties of Electrospun Sheath-core Modified-PMMA Nanofibers with Photoluminescence and Photochromic Functions. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1100-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Xue Y, Tian J, Tian W, Zhang K, Xuan J, Zhang X. Spiropyran based recognitions of amines: UV-Vis spectra and mechanisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119385. [PMID: 33422868 DOI: 10.1016/j.saa.2020.119385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
As one of the important photochromic molecules, spiropyran (SP) compounds are widely used as detectors and fluorescence probes in the environment and bio-imaging field. Although great achievements have been attained for various sophisticated spiropyrans in metal ion sensing, less success is achieved in sensing organic molecules due to the weak interaction between the spiropyran and the target of the organic molecule. In this study, a spiropyran derivative containing a hydroxyl group (SPOH) was employed for the recognition of four kinds of amines via ultraviolet-visible (UV-Vis) spectra. The aliphatic primary amines, aromatic primary amines, aliphatic secondary and tertiary amines, aromatic secondary and tertiary amines were successfully distinguished according to the shapes and trends of their UV-Vis absorption spectra. The chemical reaction between aliphatic, aromatic primary amines and SPOH as well as alkalinity are two vital interaction mechanisms for the recognition process which are testified by Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR). Although SP is generally water-insoluble, it is easy to achieve soluble by fixing SPOH inside micelle or vesicle and thus the results in this study is meaningful for amine recognition utility in environments and biological systems.
Collapse
Affiliation(s)
- Yinan Xue
- School of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, PR China
| | - Jintao Tian
- School of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, PR China.
| | - Weiguo Tian
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, PR China
| | - Kai Zhang
- School of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, PR China
| | - Junji Xuan
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, PR China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, PR China
| |
Collapse
|
24
|
Karimipour K, Keyvan Rad J, Shirvalilou S, Khoei S, Mahdavian AR. Spiropyran-based photoswitchable acrylic nanofibers: A stimuli-responsive substrate for light controlled C6 glioma cells attachment/detachment. Colloids Surf B Biointerfaces 2021; 203:111731. [PMID: 33831752 DOI: 10.1016/j.colsurfb.2021.111731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022]
Abstract
Reversible and remote cell manipulation with high spatiotemporal precision is now a highly attractive subject in various biological applications such as tissue engineering and cell-matrix interaction. Herein, photoresponsive poly(methyl methacrylate-co-hydroxy ethyl methacrylate-co-spiropyran ethyl acrylate) terpolymer (MHSP) was prepared using emulsion polymerization and the corresponding nanofibers (MHSP@NF) and film (MHSP@F) were prepared using electrospinning and drop-casting techniques, respectively. Structure of MHSP@NF with cylindrical cross-section and uniform diameter size of 169 nm were characterized by 1H-NMR and SEM analyses. Time-dependent UV-vis spectra of the prepared acrylic nanofibers and films demonstrated maximum forward photoisomerization after 3- and 8-min UV irradiation at 365 nm together with a 96° and 5° decrement in their surface water contact angles, respectively. High photoresponsivity of the nanofibers was attributed to their extensive surface area which exposes more spiropyran groups to UV light. MHSP@F and MHSP@NF with chemically-attached spiropyran groups demonstrated significant biocompatibility with negligible toxicity toward C6 glioma cancer cells up to 5 days. However, MH/SP@NF with doped SPOH exhibited a sudden decrease in cell viability relating to the migration and leakage of SPOH molecules. Photoreversible cell adhesion results showed a dramatic and switchable C6 cells attachment/detachment upon alternating UV and visible lights irradiations for MHSP@NF sample, while this was not observed for the similar film. These indicate potentiality of MHSP@NF as a promising substrate for dynamic switching of biomolecules and cell sheet engineering.
Collapse
Affiliation(s)
- Kianoush Karimipour
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, 14977-13115 Tehran, Iran
| | - Jaber Keyvan Rad
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, 14977-13115 Tehran, Iran
| | - Sakine Shirvalilou
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, 1449614535 Tehran, Iran
| | - Samideh Khoei
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, 1449614535 Tehran, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, 14977-13115 Tehran, Iran.
| |
Collapse
|
25
|
Dennis JM, Savage AM, Mrozek RA, Lenhart JL. Stimuli‐responsive mechanical properties in polymer glasses: challenges and opportunities for defense applications. POLYM INT 2020. [DOI: 10.1002/pi.6154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joseph M Dennis
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| | - Alice M Savage
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| | - Randy A Mrozek
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| | - Joseph L Lenhart
- United States Army Research Laboratory Aberdeen Proving Ground Adelphi MD USA
| |
Collapse
|
26
|
Hajiali M, Keyvan Rad J, Ghezelsefloo S, Mahdavian AR. Solvent-free and anticounterfeiting fluorescent inks based on epoxy-functionalized polyacrylic nanoparticles modified with Rhodamine B for cellulosic substrates. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS NANO 2020; 14:14417-14492. [PMID: 33079535 DOI: 10.1021/acsnano.0c07289] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Counterfeiting and inverse engineering of security and confidential documents, such as banknotes, passports, national cards, certificates, and valuable products, has significantly been increased, which is a major challenge for governments, companies, and customers. From recent global reports published in 2017, the counterfeiting market was evaluated to be $107.26 billion in 2016 and forecasted to reach $206.57 billion by 2021 at a compound annual growth rate of 14.0%. Development of anticounterfeiting and authentication technologies with multilevel securities is a powerful solution to overcome this challenge. Stimuli-chromic (photochromic, hydrochromic, and thermochromic) and photoluminescent (fluorescent and phosphorescent) compounds are the most significant and applicable materials for development of complex anticounterfeiting inks with a high-security level and fast authentication. Highly efficient anticounterfeiting and authentication technologies have been developed to reach high security and efficiency. Applicable materials for anticounterfeiting applications are generally based on photochromic and photoluminescent compounds, for which hydrochromic and thermochromic materials have extensively been used in recent decades. A wide range of materials, such as organic and inorganic metal complexes, polymer nanoparticles, quantum dots, polymer dots, carbon dots, upconverting nanoparticles, and supramolecular structures, could display all of these phenomena depending on their physical and chemical characteristics. The polymeric anticounterfeiting inks have recently received significant attention because of their high stability for printing on confidential documents. In addition, the printing technologies including hand-writing, stamping, inkjet printing, screen printing, and anticounterfeiting labels are discussed for introduction of the most efficient methods for application of different anticounterfeiting inks. This review would help scientists to design and develop the most applicable encryption, authentication, and anticounterfeiting technologies with high security, fast detection, and potential applications in security marking and information encryption on various substrates.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran
| |
Collapse
|
28
|
Abstract
Smart materials displaying changes in color and optical properties in response
to acid stimuli are known as acidochromic materials. The recent progress and emerging
trends in the field of smart organic materials with acidochromic properties, reported in the
last seven years, are presented herein. The molecular design of acidochromic organic materials,
the origin of the chromic and fluorochromic response to acid stimuli, and related
mechanisms are also discussed. Materials and systems covered in the review are divided
according to the presence of basic moiety undergoing reversible protonation/
deprotonation, such as pyridine, quinoline, quinoxaline, azole, amine derivatives, etc.,
in the molecules. Many donor-acceptor molecules displaying acidochromic behavior are
cited. Alterations in visual color change and optical properties supporting acidochromism
are discussed for each example. Mechanistic studies based on the theoretical calculations,
single crystal X-ray diffraction analysis, and powder pattern diffraction analysis are also discussed here. The
application of these acidochromic molecules as acid-base switches, sensor films, self-erasable and rewritable
media, data security inks, data encryption, molecular logic gates, etc., are also reported. Thus, this review article
aims at giving an insight into the design, characterization, mechanism, and applications of organic acidochromic
materials, which will guide the researchers in designing and fine-tuning new acidochromic materials
for desired applications.
Collapse
Affiliation(s)
- Tanisha Sachdeva
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Shalu Gupta
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
29
|
Delavari S, Ziadzade S, Keyvan Rad J, Hamrang V, Mahdavian AR. Anticounterfeiting and photoluminescent cellulosic papers based on fluorescent acrylic copolymer nanoparticles containing coumarin. Carbohydr Polym 2020; 247:116756. [DOI: 10.1016/j.carbpol.2020.116756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
30
|
Photochromism of photopolymerized novel copolymers having spirooxazine moiety groups. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00830-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|