1
|
Natarajan P, Horak K, Rowe J, Yoon S, Lingo J, Tomich JM, Fleming SD. Biodistribution Analysis of Peptide-Coated Magnetic Iron Nanoparticles: A Simple and Quantitative Method. Mol Pharm 2024; 21:970-981. [PMID: 38206824 PMCID: PMC10918533 DOI: 10.1021/acs.molpharmaceut.3c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Biodistribution tracks compounds or molecules of interest in vivo to understand a compound's anticipated efficacy and safety. Nanoparticles deliver nucleic acid and drug payloads and enhance tumor permeability due to multiple properties such as high surface area to volume ratio, surface functionalization, and modifications. Studying the in vivo biodistribution of nanoparticles documents the effectiveness and safety of nanoparticles and facilitates a more application-driven approach for nanoparticle development that allows for more successful translation into clinical use. In this study, we present a relatively simple method to determine the biodistribution of magnetic iron nanoparticles in mice. In vitro, cells take up branched amphiphilic peptide-coated magnetic nanobeads (BAPc-MNBs) like their counterparts, i.e., branched amphiphilic peptide capsules (BAPCs) with a hollow water-filled core. Both BAPc-MNBs and BAPCs have widespread applications as a nanodelivery system. We evaluated the BAPc-MNBs tissue distribution in wild-type mice injected intravenously (i.v.), intraperitoneally (i.p.), or orally gavaged to understand the biological interactions and to further the development of branched amphiphilic peptide-based nanoparticles. The magnetic nanoparticles allowed collection of the BAPc-MNBs from multiple organs by magnetic bead sorting, followed by a high-throughput screening for iron content. When injected i.v., nanoparticles were distributed widely to various organs before elimination from the system via the intestines in feces. The spleen accumulated the highest amount of BAPc-MNBs in mice administered NPs via i.v. and i.p. but not via oral gavage. Taken together, these data demonstrate that the magnetic sorting not only allowed quantification of the BAPc-MNBs but also identified the distribution of BAPc-MNBs after distinct administration methods.
Collapse
Affiliation(s)
- Pavithra Natarajan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA 66506
| | - Katherine Horak
- National Wildlife Research Center, USDA APHIS WS, Fort Collins, CO, USA 80521
| | - Jennifer Rowe
- Division of Biology, Kansas State University, Manhattan, KS, USA 66506
| | - Sungmin Yoon
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA 66506
| | - Joshua Lingo
- Division of Biology, Kansas State University, Manhattan, KS, USA 66506
| | - John M Tomich
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA 66506
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA 66506
| |
Collapse
|
2
|
Natarajan P, Horak K, Rowe J, Lingo J, Tomich JM, Fleming SD. Biodistribution Analysis of Peptide-Coated Magnetic Iron Nanoparticles: A Simple and Quantitative Method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561862. [PMID: 37873129 PMCID: PMC10592714 DOI: 10.1101/2023.10.11.561862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Biodistribution is the tracking of compounds or molecules of interest in the subject which is integral to understanding their anticipated efficacy and safety. Nanoparticles are highly desirable delivery systems which have the ability to deliver higher nucleic acid and drug payloads and they have enhanced tumor permeability due to their unique properties such as high surface area to volume ratio. Studying the biodistribution of nanoparticles is crucial to understand their effectiveness and safety in vivo, facilitate a more application driven approach for nanoparticle development which will lead to their successful translation into clinical use. In this study, we present a relatively simple method to determine the biodistribution of magnetic iron nanoparticles in mice. Branched Amphiphilic Peptide coated Magnetic Nanobeads BAPc-MNBs like their counterpart i.e., Branched Amphiphilic Peptide capsules (BAPCs) with a hollow water-filled core, are readily taken up by cells in vitro and have widespread application as a nanodelivery systems. We evaluated the BAPc-MNBs tissue distribution in wildtype mice injected intravenously (i.v.), intraperitoneally (i.p.) or orally gavaged to understand the biological interactions of the peptide nanoparticles and to further the development of branched amphiphilic peptides-based nanoparticles. BAPc-MNBs were distributed widely to various organs when injected i.v. and were eliminated from the system via the intestines in feces. The spleen was found to accumulate the highest amount of BAPc-MNBs in mice administered the NPs i.v. and i.p. while they were not absorbed into the system via oral gavage. This study not only presents a relatively simple quantification method to determine in vivo biodistribution of magnetic iron nanoparticles that can be widely applied but also demonstrates the potential of Branched Amphiphilic Peptides in the form of BAPCs or BAPc-MNBs as a delivery system.
Collapse
|
3
|
Kumar V, van Rensburg W, Snoep JL, Paradies HH, Borrageiro C, de Villiers C, Singh R, Joshi KB, Rautenbach M. Antimicrobial nano-assemblies of tryptocidine C, a tryptophan-rich cyclic decapeptide, from ethanolic solutions. Biochimie 2023; 204:22-32. [PMID: 36057373 DOI: 10.1016/j.biochi.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023]
Abstract
Tryptocidine C (TpcC), a Trp-rich cyclodecapeptide is a minor constituent in the antibiotic tyrothricin complex from Brevibacillus parabrevis. TpcC possesses a high tendency to oligomerise in aqueous solutions and dried TpcC forms distinct self-assembled nanoparticles. High-resolution scanning electron microscopy revealed the influence of different ethanol:water solvent systems on TpcC self-assembly, with the TpcC, dried from a high concentration in 15% ethanol, primarily assembling into small nanospheres with 24.3 nm diameter and 0.05 polydispersity. TpcC at 16 μM, near its CMC, formed a variety of structures such as small nanospheres, large dense nanospheroids and facetted 3-D-crystals, as well as sheets and coarse carpet-like structures which depended on ethanol concentration. Drying 16 μM TpcC from 75% ethanol resulted in highly facetted 3-D crystals, as well as small nanospheres, while those in 10% ethanol preparation had less defined facets. Drying from 20 to 50% ethanol led to polymorphic architectures with a few defined nanospheroids and various small nanoparticles, imbedded in carpet- and sheet-like structures. These polymorphic surface morphologies correlated with maintenance of fluorescence properties and the surface-derived antibacterial activity against Staphylococcus aureus over time, while there was a significant change in fluorescence and loss in activity in the 10% and 75% preparations where 3-D crystals were observed. This indicated that TpcC oligomerisation in solutions with 20-50% ethanol leads to metastable structures with a high propensity for release of antimicrobial moieties, while those leading to crystallisation limit active moieties release. TpcC nano-assemblies can find application in antimicrobial coatings, surface disinfectants, food packaging and wound healing materials.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Wilma van Rensburg
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa; Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, the Netherlands
| | - Henrich H Paradies
- Jacobs-University, Department of Chemistry and Life Science, Bremen, 30110, Germany
| | | | - Carmen de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Ramesh Singh
- Department of Chemistry, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Marina Rautenbach
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
4
|
Chen J, Wang W, Wang Y, Yuan X, He C, Pei P, Su S, Zhao W, Luo SZ, Chen L. Self-assembling Branched Amphiphilic Peptides for Targeted Delivery of Small Molecule Anticancer Drugs. Eur J Pharm Biopharm 2022; 179:137-146. [PMID: 36096399 DOI: 10.1016/j.ejpb.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
Water insolubility poses a significant challenge in the clinical applications of many small molecule drugs. To improve the drug delivery efficiency, two branched amphiphilic peptides (BAPs) were designed in a computer-aided manner, for drug-loading through peptide self-assembling. The structures of the two BAPs, bis(LVFFA)-K-RGD (PepV-1) and bis(FHF)-K-RGD (PepV-2), were inspired by phospholipids, containing the RGD sequence as the hydrophilic head and two hydrophobic sequences as the hydrophobic tails. PepV-1 could self-assemble into nano-fibrils with a hydrophobic core and the RGD moiety on the surface. Its drug-loading efficiency (DE%) of three small molecule anticancer drugs (doxorubicin, camptothecin and curcumin) ranged from 9.90% to 11.74%, and entrapment efficiency (EE%) ranged from 37.30% to 43.00%. Pep-V2 could self-assemble into bilayer delimited nano-vesicles. The DE% of PepV-2 for these drugs ranged from 15.87% to 18.55%, and the EE% ranged from 60.45% to 73.23%. Both BAP carriers could prolong the release of the small molecule drugs, and the PepV-2 vesicles also showed pH-triggered increase of drug release due to the histidine residues. Bothe BAP carriers could increase the cytotoxicity against cancer cells, which might be due to the targeting on the cancer overexpressed integrins. The designed BAP carriers represent promising functional drug carriers for targeted drug delivery, and will be useful for improving the clinical use of small molecule drugs, especially for those with poor water solubility.
Collapse
Affiliation(s)
- Jialin Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China; State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Wujun Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yue Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xiushuang Yuan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Pengfei Pei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Shengdi Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Weihong Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| |
Collapse
|
5
|
McGraw E, Roberts JD, Kunte N, Westerfield M, Streety X, Held D, Avila LA. Insight into Cellular Uptake and Transcytosis of Peptide Nanoparticles in Spodoptera frugiperda Cells and Isolated Midgut. ACS OMEGA 2022; 7:10933-10943. [PMID: 35415340 PMCID: PMC8991906 DOI: 10.1021/acsomega.1c06638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Silencing genes in insects by introducing double-stranded RNA (dsRNA) in the diet holds promise as a new pest management method. It has been demonstrated that nanoparticles (NPs) can potentiate dsRNA silencing effects by promoting cellular internalization and protecting dsRNA against early degradation. However, many mysteries of how NPs and dsRNA are internalized by gut epithelial cells and, subsequently, transported across the midgut epithelium remain to be unraveled. The sole purpose of the current study is to investigate the role of endocytosis and transcytosis in the transport of branched amphipathic peptide nanocapsules (BAPCs) associated with dsRNA through midgut epithelium cells. Spodoptera frugiperda midguts and the epithelial cell line Sf9, derived from S. frugiperda, were used to study transcytosis and endocytosis, respectively. Results suggest that clathrin-mediated endocytosis and macropinocytosis are largely responsible for cellular uptake, and once within the midgut, transcytosis is involved in shuttling BAPCs-dsRNA from the lumen to the hemolymph. In addition, BAPCs were not found to be toxic to Sf9 cells or generate damaging reactive species once internalized.
Collapse
Affiliation(s)
- Erin McGraw
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Jonathan D. Roberts
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Nitish Kunte
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Matthew Westerfield
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Xavier Streety
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - David Held
- Department
of Entomology and Plant Pathology, Auburn
University, Auburn, Alabama 36849-5412, United States
| | - L. Adriana Avila
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| |
Collapse
|
6
|
Khan ZU, Uchiyama MK, Khan LU, Araki K, Goto H, Felinto MCFC, de Souza AO, de Brito HF, Gidlund M. Wide visible-range activatable fluorescence ZnSe:Eu 3+/Mn 2+@ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging. J Mater Chem B 2021; 10:247-261. [PMID: 34878486 DOI: 10.1039/d1tb01870a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle-cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.
Collapse
Affiliation(s)
- Zahid Ullah Khan
- Department of Immunology, Institute of Biomedical Sciences-IV, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil.,Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Mayara Klimuk Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Latif Ullah Khan
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil.,Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan.
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Hiro Goto
- Faculty of Medicine, University of São Paulo (USP), Zip Code 05403-000, São Paulo, SP, Brazil
| | | | - Ana Olivia de Souza
- Development and Innovation Laboratory, Butantan Institute, Zip Code 05503-900, São Paulo, SP, Brazil
| | - Hermi Felinto de Brito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Magnus Gidlund
- Department of Immunology, Institute of Biomedical Sciences-IV, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Nishanth MAD, Bhoomika S, Gourkhede D, Dadimi B, Vergis J, Malik SVS, Barbuddhe SB, Rawool DB. Antibacterial efficacy of in-house designed cell-penetrating peptide against multi-drug resistant strains of Salmonella Enteritidis and Salmonella Typhimurium. Environ Microbiol 2021; 24:2747-2758. [PMID: 34528343 DOI: 10.1111/1462-2920.15778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
The in vitro antibacterial efficacy of an in-house designed cell-penetrating peptide (CPP) variant of Cecropin A (1-7)-Melittin (CAMA) (CAMA-CPP) against the characterized multi-drug resistant (MDR) field strains of Salmonella Enteritidis and Salmonella Typhimurium were evaluated and compared with two identified CPPs namely, P7 and APP, keeping CAMA as control. Initially, the minimum inhibitory concentration (MIC) (μg ml-1 ) of in-house designed CAMA-CPP, APP and CAMA was determined to be 3.91, whereas that of P7 was 7.81; however, the minimum bactericidal concentration (MBC) of all the peptides were twice the MIC. CAMA-CPP and CAMA were found to be stable under different conditions (high-end temperatures, proteinase-K, cationic salts, pH and serum) when compared to the other CPPs. Moreover, CAMA-CPP exhibited negligible cytotoxicity in HEp-2 and RAW 264.7 cell lines as well as haemolysis in the sheep and human erythrocytes with no adverse effects against the commensal gut lactobacilli. In vitro time-kill assay revealed that the MBC levels of CAMA-CPP and APP could eliminate the intracellular MDR-Salmonella infections from mammalian cell lines; however, CAMA and P7 peptides were ineffective. CAMA-CPP appears to be a promising antimicrobial candidate and opens up further avenues for its in vivo clinical translation.
Collapse
Affiliation(s)
- Maria Anto Dani Nishanth
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | - Sirsant Bhoomika
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India.,Department of Veterinary Public Health, Bihar Veterinary College, Bihar Animal Sciences University, Patna, Bihar, 800 014, India
| | - Diksha Gourkhede
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | - Bhargavi Dadimi
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, 673 576, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India.,ICAR-National Research Centre on Meat, Hyderabad, Telangana, 500 092, India
| |
Collapse
|
8
|
Natarajan P, Tomich JM. Understanding the influence of experimental factors on bio-interactions of nanoparticles: Towards improving correlation between in vitro and in vivo studies. Arch Biochem Biophys 2020; 694:108592. [PMID: 32971033 PMCID: PMC7503072 DOI: 10.1016/j.abb.2020.108592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Bionanotechnology has developed rapidly over the past two decades, owing to the extensive and versatile, functionalities and applicability of nanoparticles (NPs). Fifty-one nanomedicines have been approved by FDA since 1995, out of the many NPs based formulations developed to date. The general conformation of NPs consists of a core with ligands coating their surface, that stabilizes them and provides them with added functionalities. The physicochemical properties, especially the surface composition of NPs influence their bio-interactions to a large extent. This review discusses recent studies that help understand the nano-bio interactions of iron oxide and gold NPs with different surface compositions. We discuss the influence of the experimental factors on the outcome of the studies and, thus, the importance of standardization in the field of nanotechnology. Recent studies suggest that with careful selection of experimental parameters, it is possible to improve the positive correlation between in vitro and in vivo studies. This provides a fundamental understanding of the NPs which helps in assessing their potential toxic side effects and may aid in manipulating them further to improve their biocompatibility and biosafety.
Collapse
|