1
|
Ludwiczak J, Iłowska E, Wilkowska M, Szymańska A, Kempka M, Dobies M, Szutkowski K, Kozak M. The influence of a dicationic surfactant on the aggregation process of the IVAGVN peptide derived from the human cystatin C sequence (56-61). RSC Adv 2025; 15:3237-3249. [PMID: 39896427 PMCID: PMC11784886 DOI: 10.1039/d4ra08377f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Human cystatin C (hCC) undergoes domain swapping and forms amyloid structures. Steric zipper motifs, which are important for hCC fibrillization, have been identified and studied in our previous work. In the present study, we analysed the influence of the selected dicationic surfactant (a derivative of dodecylimidazolium chloride: 3,3'-[α,ω-(dioxahexane)]bis(1-dodecylimidazolium)dichloride) on the structure of the aggregates formed by one such fragment, a peptide with the sequence IVAGVN, corresponding to residues 56-61 in the full-length protein. Changes in the secondary structure of the peptide induced by the surfactant were studied using circular dichroism (CD) and FTIR, and the aggregates were characterised using microscopic techniques (AFM and TEM) and NMR.
Collapse
Affiliation(s)
- Julia Ludwiczak
- Department of Biomedical Physics, Adam Mickiewicz University Poznan Poland
| | - Emilia Iłowska
- Department of Organic Chemistry, University of Gdansk Gdansk Poland
| | | | - Aneta Szymańska
- Department of Biomedical Chemistry, University of Gdansk Gdansk Poland
| | - Marek Kempka
- Department of Biomedical Physics, Adam Mickiewicz University Poznan Poland
| | - Maria Dobies
- Department of Biomedical Physics, Adam Mickiewicz University Poznan Poland
| | | | - Maciej Kozak
- Department of Biomedical Physics, Adam Mickiewicz University Poznan Poland
| |
Collapse
|
2
|
Jun T, Shin SH, Won YY. Engineered polymeric excipients for enhancing the stability of protein biologics: Poly(N-isopropylacrylamide)-poly(ethylene glycol) (PNIPAM-PEG) block copolymers. Int J Pharm 2024; 664:124636. [PMID: 39197798 DOI: 10.1016/j.ijpharm.2024.124636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Protein therapeutics, particularly antibodies, depend on maintaining their native structures for optimal function. Hydrophobic interfaces, such as the air-water interface, can trigger protein aggregation and denaturation. While completely avoiding such interfacial exposures during manufacturing and storage is impractical, minimizing them is crucial for enhancing protein drug stability and extending shelf life. In the biologics industry, surfactants like polysorbates are commonly used as additives (excipients) to mitigate these undesirable interfacial exposures. However, polysorbates, the most prevalent choice, have recognized limitations in terms of polydispersity, purity, and stability, prompting the exploration of alternative excipients. The present study identifies poly(N-isopropylacrylamide)-poly(ethylene glycol) (PNIPAM-PEG) block copolymers as a promising alternative to polysorbates. Due to its stronger affinity for the air-water interface, PNIPAM-PEG significantly outperforms polysorbates in enhancing protein stability. This claim is supported by results from multiple tests. Accelerated dynamic light scattering (DLS) experiments demonstrate PNIPAM-PEG's exceptional efficacy in preserving IgG stability against surface-induced aggregation, surpassing conventional polysorbate excipients (Tween 80 and Tween 20) under high-temperature conditions. Additionally, circular dichroism (CD) spectroscopy results reveal conformational alterations associated with aggregation, with PNIPAM-PEG consistently demonstrates a greater protective effect by mitigating negative shifts at λ ≅ 220 nm, indicative of changes in secondary structure. Overall, this study positions PNIPAM-PEG as a promising excipient for antibody therapeutics, facilitating the development of more stable and effective biopharmaceuticals.
Collapse
Affiliation(s)
- Taesuk Jun
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sung-Ho Shin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Griffin VP, Escobar ELN, Ogunyankin MO, Kanthe A, Gokhale M, Dhar P. Correlating Differences in the Surface Activity to Interface-Induced Particle Formation in Different Protein Modalities: IgG mAb Versus Fc-Fusion Protein. Mol Pharm 2024; 21:5088-5103. [PMID: 39370821 DOI: 10.1021/acs.molpharmaceut.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The propensity of protein-based biologics to form protein particles during bioprocessing can be related to their interfacial properties. In this study, we compare the surface activity and interfacial film properties of two structurally different biologics, an IgG and Fc-fusion, in the absence and presence of interfacial dilatational stresses, and correlate these differences to their tendency to form interface-induced protein particles. Our results show that interface-induced particle formation is protein-dependent, with the Fc-fusion demonstrating greater interfacial stability. This observation can be correlated with faster adsorption kinetics of the Fc-fusion protein, and formation of a less incompressible film at the air-liquid interface. The addition of polysorbate 80 (PS80), commonly added to mitigate protein particle formation, led to a surfactant-dominant interface for quiescent conditions and coadsorption of protein and surfactant for the Fc-fusion when exposed to interfacial stress. On the other hand, for the IgG molecule, the surface always remained surfactant dominant. Image analysis demonstrated that PS80 was more effective in mitigating particle formation for the IgG than Fc-fusion. This suggests that a surfactant-dominant interface is necessary to prevent interface-induced protein particle formation. Further, while PS80 is effective in mitigating particle formation in the IgG formulation, it may not be the best choice for other protein modalities.
Collapse
Affiliation(s)
- Valerie P Griffin
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, Kansas 66045, United States
| | - Estephanie L N Escobar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, Kansas 66045, United States
| | - Maria O Ogunyankin
- Drug Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Ankit Kanthe
- Drug Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Madhushree Gokhale
- Drug Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Desai KG, Sofa C, Wang N, Mandal B, Blockus B, Heacock N, Colandene JD. Feasibility of Laboratory Equipment-Based Simulation Methods to Assess the Impact of Vehicle Transportation on Product Quality of mAb Dosing Solutions. Mol Pharm 2024; 21:4726-4746. [PMID: 39141808 DOI: 10.1021/acs.molpharmaceut.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Therapeutic monoclonal antibody (mAb) products for intravenous (IV) administration generally require aseptic compounding with a commercially available diluent. When the administration site is located away from the preparation site, the prepared dosing solution may need to be transported in a vehicle. The impact of vehicle transportation on the product quality of mAbs needs to be evaluated to define safe handling and transportation conditions for dosing solutions. The design and execution of actual vehicle transportation studies require considerable resources and time. In this study, we systematically developed three different laboratory equipment-based methods that simulate vehicle transportation stresses: orbital shaker (OS), reciprocating shaker (RS), and vibration test system (VTS)-based simulation methods. We assessed their feasibility by comparing the impact on product quality caused by each simulated method with that caused by actual vehicle transportation. Without residual polysorbate 80 (PS80) in the mAb dosing solution, transportation via a cargo van led to a considerable increase in the subvisible particle counts and did not meet the compendial specifications for the light obscuration method. However, the presence of as low as 0.0004%w/v (4 ppm) PS80 in the dosing solution stabilized the mAb against vehicle transportation stresses and met the compendial specifications. Vehicle transportation of an IV bag with headspace resulted in negligible micro air bubbles and foaming in both PS80-free and PS80-containing mAb dosing solutions. These phenomena were found to be comparable to the VTS-based simulated method. However, the OS- and RS-based simulated methods formed significantly more micro air bubbles and foaming in an IV bag with headspace than either actual vehicle transportation or the VTS-based simulated method. Despite the higher interfacial stress (micro air bubbles and foaming) in the dosing solution created by the OS- and RS-based simulated methods, 0.0004%w/v (4 ppm) PS80 in the dosing solution was found to be sufficient to stabilize the mAb. The study shows that under appropriate simulated conditions, the OS-, RS-, and VTS-based simulated methods can be used as practical and meaningful models to assess the impact and risk of vehicle transportation on the quality of mAb dosing solutions.
Collapse
Affiliation(s)
- Kashappa Goud Desai
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Cait Sofa
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Ning Wang
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Bivash Mandal
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Brendan Blockus
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Nathan Heacock
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - James D Colandene
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
5
|
Matthessen R, Van Pottelberge R, Goffin B, De Winter G. Impact of mixing and shaking on mRNA-LNP drug product quality characteristics. Sci Rep 2024; 14:19590. [PMID: 39179645 PMCID: PMC11343734 DOI: 10.1038/s41598-024-70680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024] Open
Abstract
Since the COVID-19 pandemic, the interest in RNA-lipid nanoparticle (LNP) based drug products has increased drastically. While one RNA-LNP drug product, Onpattro, was already on the market in 2018, high volume manufacturing was only initiated end of 2020 with the approval of the mRNA-LNP vaccines, Comirnaty and Spikevax. As such, deep product knowledge for RNA-LNPs is continuously increasing. In this article the effect of large-scale mixing and lab-scale shaking on mRNA-LNP drug product quality characteristics is investigated. It is shown that mixing and shaking can have a profound impact on both LNP size distribution and mRNA encapsulation, suggesting a direct correlation between both quality characteristics, and further supported by a proposed underlying mechanism. An in-depth investigation of different drug product (DP) presentations reveals a consistent effect of headspace volume and LNP content on the shaking stress sensitivity. Results reported in this study are of utter importance for both small- and large-scale manufacturers but also for care givers and patients using these products.
Collapse
Affiliation(s)
- Roman Matthessen
- Drug Product Center of Excellence, Manufacturing Science and Technology EU - Experimental Pilot Plant, Global Technology and Engineering, Pfizer Manufacturing Belgium n.v., Puurs-Sint-Amands, Belgium
| | - Robbe Van Pottelberge
- Drug Product Center of Excellence, Manufacturing Science and Technology EU - Experimental Pilot Plant, Global Technology and Engineering, Pfizer Manufacturing Belgium n.v., Puurs-Sint-Amands, Belgium.
| | - Ben Goffin
- Drug Product Center of Excellence, Manufacturing Science and Technology EU - Experimental Pilot Plant, Global Technology and Engineering, Pfizer Manufacturing Belgium n.v., Puurs-Sint-Amands, Belgium
| | - Giel De Winter
- Drug Product Center of Excellence, Manufacturing Science and Technology EU - Experimental Pilot Plant, Global Technology and Engineering, Pfizer Manufacturing Belgium n.v., Puurs-Sint-Amands, Belgium
| |
Collapse
|
6
|
Bi S, Ye J, Tian P, Ning G. Insight from Boric Acid into Bioskeleton Formation: Inscribed Circle Effect on the Edge-Base Plate Growth. Inorg Chem 2024; 63:12740-12751. [PMID: 38941498 DOI: 10.1021/acs.inorgchem.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Complex morphologies in nature often arise from the assembly of elemental building blocks, leading to diverse and intricate structures. Understanding the mechanisms that govern the formation of these complex morphologies remains a significant challenge. In particular, the edge-base plate growth of biogenic crystals plays a crucial role in directing the development of intricate bioskeleton morphologies. However, the factors and regulatory processes that govern edge-base plate growth remain insufficiently understood. Inspired by biological skeletons and based on the soluble property of boric acid (BA) in both water and alcohols, we obtained a series of novel BA morphologies, including coccolith, and anemone biological skeletons. Here, we unveil the "inscribed circle effect", a concise mathematical model that reveals the underlying causative factors and regulatory mechanisms driving edge-base plate growth. Our findings illuminate how variations in solvent environments can exert control over the edge-base plate growth pathways, thereby resulting in the formation of diverse and complex morphologies. This understanding holds significant potential for guiding the chemical synthesis of bioskeleton materials.
Collapse
Affiliation(s)
- Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Peng Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
7
|
Dornelles HS, Sabatini CA, Adorno MAT, Silva EL, Lee PH, Varesche MBA. Microbial synergies drive simultaneous biodegradation of ethoxy and alkyl chains of Nonylphenol Ethoxylate in fluidized bed reactors. CHEMOSPHERE 2024; 358:142084. [PMID: 38642772 DOI: 10.1016/j.chemosphere.2024.142084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
The widely-used surfactant Nonylphenol Ethoxylate (NPEO) produces endocrine-disrupting compounds during biodegradation, with these byproducts being more harmful than untreated NPEO. This study investigates the effectiveness of a Fluidized Bed Reactor (FBR) in reducing the production of 4-Nonylphenol (4-NP) during the biodegradation of NPEO. Two identical FBR filled with sand were used to assess the NPEO degradation and to enhance the microbial consortia capable of breaking down the complex byproducts, ethanol and fumarate were introduced as co-substrates. Our findings demonstrate the significant potential of the FBR, especially when coupled with fumarate, for enhancing the surfactant degradation. It outperforms the efficiency achieved with ethanol as the primary electron donor, albeit with a higher rate of byproduct production. Microbial community taxonomy and metabolic prediction revealed the high abundance of Geobacter (1.51-31.71%) and Methanobacterium (1.08-13.81%) in non-conductive sand. This may hint a new metabolic interaction and expand our understanding of Direct Interspecies Electron Transfer (DIET) in bioreactors applied to micropollutants degradation. Such an intricate relationship between facultative and anaerobes working together to simultaneously biodegrade the ethoxy and alkyl chains presents a new perspective on NPEO degradation and can potentially be extended to other micropollutants.
Collapse
Affiliation(s)
- Henrique S Dornelles
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, Imperial College Road, SW7 2BU, London, England, United Kingdom
| | - Carolina A Sabatini
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil
| | - Maria A T Adorno
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil
| | - Edson L Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, Km 235, SP 310, 13565-905, São Carlos, São Paulo, Brazil
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, Imperial College Road, SW7 2BU, London, England, United Kingdom
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil.
| |
Collapse
|
8
|
Desai KG, Colandene JD, Crotts G, Sofa C, Wang N, Blockus B, Mandal B, Wittig K, Shukla A. Transportation of mAb Dosing Solution in Intravenous Bag: Impact of Manual, Vehicle, and Pneumatic Tube System Transportation Methods on Product Quality. Mol Pharm 2023; 20:6474-6491. [PMID: 37962592 DOI: 10.1021/acs.molpharmaceut.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Monoclonal antibody (mAb) products for intravenous (IV) administration generally require aseptic compounding with a commercial diluent within a pharmacy. The prepared dosing solution in the IV bag may be transported to the dosing location via manual, vehicular, pneumatic tube system (PTS), or a combination of these methods. In this study, the type and level of physical stresses associated with these three methods and their product quality impact for relatively sensitive and stable mAbs were assessed. Vibration was found to be the main stress associated with manual and vehicle transportation methods, although this was at a relatively low level (<1 GRMS/Root-Mean-Square Acceleration). Shock and drop events, at relatively low levels, were also observed with these methods. PTS transportation showed substantially more intense shock, vibration, and drop stresses and the measured levels were up to 91 G/force of acceleration or deceleration, 3.7 GRMS and 39 G, respectively. Using a foam padding insert for PTS transportation reduced the shock level considerably (91 G to 59 G). Transportation of mAb dosing solutions in IV bags via different methods including PTS transportation variables caused a small increase in the subvisible particle counts and there was no change in submicrometer particle distribution. No visible particles and no significant change to soluble aggregate levels were observed after transportation. Strategies such as removal of IV bag headspace prior to transport and in-line filtration poststress reduced the subvisible particles counts. All tested transportation conditions showed negligible impact on other product quality attributes tested. Removal of IV bag headspace prior to PTS transport prevented formation of micro air bubbles and foaming compared to the unaltered IV bag. This study shows examples where manual, vehicle, and PTS transport methods did not significantly impact product quality, and provides evidence that mAb products that are appropriately stabilized in the dosing solution (e.g., with a surfactant) can be transported via a PTS.
Collapse
Affiliation(s)
- Kashappa Goud Desai
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - James D Colandene
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - George Crotts
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Cait Sofa
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Ning Wang
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Brendan Blockus
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Bivash Mandal
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Katie Wittig
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Asha Shukla
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
9
|
Perju A, Holzhausen F, Lauerer AM, Wongkaew N, Baeumner AJ. Flow-Through Carbon Nanofiber-Based Transducer for Inline Electrochemical Detection in Paper-Based Analytical Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44641-44653. [PMID: 37704205 DOI: 10.1021/acsami.3c07314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Point-of-care (POC) devices are rapid, simple, portable, inexpensive, and convenient, but typically they only deliver qualitative results when used in the form of a lateral flow assay (LFA). Electrochemical detection could improve their sensitivity and ensure quantitative detection; however, a breakthrough in material-based technology is needed. We demonstrate a new concept in which electrodes are directly embedded within the lateral flow, enabling flow-through and hence interaction with the entire sample. This is accomplished through laser-induced carbon nanofibers (LCNFs) made by electrospinning Matrimid into nanofiber mats with subsequent pyrolyzing of electrode structures through a CO2 laser. Their highly porous 3D structure and superior graphene-like electrochemical properties are ideally suited for flow-through electrochemical LFA (EC-LFA), where the LCNFs are simply added in line with the other membranes. After optimization of the setup, biological binding assays typical for LFA diagnostics were successfully implemented, enabling the highly sensitive and quantitative detection of 137 pM DNA target sequences of a pathogenic organism that rivals the performance of pump-controlled microfluidic bioassays. This demonstrates that LCNF-based transducers can transform paper-based diagnostic tests to enable precise, quantitative analysis without reliance on cost-intensive read-out systems.
Collapse
Affiliation(s)
- Antonia Perju
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Ferdinand Holzhausen
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Anna-Maria Lauerer
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Wang S, Liaw A, Chen YM, Su Y, Skomski D. Convolutional Neural Networks Enable Highly Accurate and Automated Subvisible Particulate Classification of Biopharmaceuticals. Pharm Res 2023; 40:1447-1457. [PMID: 36471026 DOI: 10.1007/s11095-022-03438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Quantification of subvisible particles, which are generally defined as those ranging in size from 2 to 100 µm, is important as critical characteristics for biopharmaceutical formulation development. Micro Flow Imaging (MFI) provides quantifiable morphological parameters to study both the size and type of subvisible particles, including proteinaceous particles as well as non-proteinaceous features incl. silicone oil droplets, air bubble droplets, etc., thus enabling quantitative and categorical particle attribute reporting for quality control. However, limitations in routine MFI image analysis can hinder accurate subvisible particle classification. In this work, we custom-built a subvisible particle-aware Convolutional Neural Network, SVNet, which has a very small computational footprint, and achieves comparable performance to prior state-of-art image classification models. SVNet significantly improves upon current standard operating procedures for subvisible particulate assessments as confirmed by thorough real-world validation studies.
Collapse
Affiliation(s)
- Shubing Wang
- Department of Biometrics Research, Merck & Co. Inc., 126 East Lincoln Avenue, Rahway, New Jersey, 07065, USA.
| | - Andy Liaw
- Department of Biometrics Research, Merck & Co. Inc., 126 East Lincoln Avenue, Rahway, New Jersey, 07065, USA
| | - Yue-Ming Chen
- Department of Biometrics Research, Merck & Co. Inc., 126 East Lincoln Avenue, Rahway, New Jersey, 07065, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co. Inc., 126 East Lincoln Avenue, Rahway, New Jersey, 07065, USA
| | - Daniel Skomski
- Analytical Research and Development, Merck & Co. Inc., 126 East Lincoln Avenue, Rahway, New Jersey, 07065, USA.
| |
Collapse
|
11
|
Duan C, Wang R. Electrostatics-Induced Nucleated Conformational Transition of Protein Aggregation. PHYSICAL REVIEW LETTERS 2023; 130:158401. [PMID: 37115902 DOI: 10.1103/physrevlett.130.158401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Despite the wide existence of protein aggregation in nature and its intimate connection to many human diseases, the underlying mechanism remains unclear. Here, we develop a molecular theory by systematically incorporating the self-consistent field theory for charged macromolecules into the dilute solution thermodynamics. The kinetic pathway is tracked without any restriction on the morphology of the aggregates. We find that protein aggregation at low salt concentrations is via a two-step nucleated process involving a conformational transition from metastable spherical oligomer to elongated fibril. The scaling analysis elucidates the electrostatic origin of the conformational transition: the fibril enters the screening region much earlier than the spherical aggregate. As salt concentration increases, the classical mode of one-step nucleation corresponding to macroscopic liquid-liquid phase separation is recovered. Our results reveal that the screened electrostatic interaction is essential for the existence of the metastable oligomer and its subsequent conformational transition to fibril. The theoretical predictions of the kinetic pathway and the morphology of the aggregates are in good agreement with the experimental observations of real proteins.
Collapse
Affiliation(s)
- Chao Duan
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, California 94720, USA
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Desai PG, Garidel P, Gbormittah FO, Kamen DE, Mills BJ, Narasimhan CN, Singh S, Stokes ESE, Walsh ER. An Intercompany Perspective on Practical Experiences of Predicting, Optimizing and Analyzing High Concentration Biologic Therapeutic Formulations. J Pharm Sci 2023; 112:359-369. [PMID: 36442683 DOI: 10.1016/j.xphs.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Developing high-dose biologic drugs for subcutaneous injection often requires high-concentration formulations and optimizing viscosity, solubility, and stability while overcoming analytical, manufacturing, and administration challenges. To understand industry approaches for developing high-concentration formulations, the Formulation Workstream of the BioPhorum Development Group, an industry-wide consortium, conducted an inter-company collaborative exercise which included several surveys. This collaboration provided an industry perspective, experience, and insight into the practicalities for developing high-concentration biologics. To understand solubility and viscosity, companies desire predictive tools, but experience indicates that these are not reliable and experimental strategies are best. Similarly, most companies prefer accelerated and stress stability studies to in-silico or biophysical-based prediction methods to assess aggregation. In addition, optimization of primary container-closure and devices are pursued to mitigate challenges associated with high viscosity of the formulation. Formulation strategies including excipient selection and application of studies at low concentration to high-concentration formulations are reported. Finally, analytical approaches to high concentration formulations are presented. The survey suggests that although prediction of viscosity, solubility, and long-term stability is desirable, the outcome can be inconsistent and molecule dependent. Significant experimental studies are required to confirm robust product definition as modeling at low protein concentrations will not necessarily extrapolate to high concentration formulations.
Collapse
Affiliation(s)
- Preeti G Desai
- Bristol Myers Squibb, Sterile Product Development, 556 Morris Avenue, Summit, NJ 07901, USA
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH Co KG, Innovation Unit, PDB-TIP, 88397 Biberach an der Riss, Germany
| | - Francisca O Gbormittah
- GlaxoSmithKline, Strategic External Development, 1000 Winter Street North, Waltham, MA 02451, USA
| | - Douglas E Kamen
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Brittney J Mills
- AbbVie, NBE Drug Product Development, 1 N Waukegan Road, North Chicago, IL 60064, USA
| | | | - Shubhadra Singh
- GlaxoSmithKline R&D, Biopharmaceutical Product Sciences, Collegeville, PA 19426, USA
| | - Elaine S E Stokes
- BioPhorum, The Gridiron Building, 1 Pancras Square, London N1C 4AG UK.
| | - Erika R Walsh
- Merck & Co., Inc., Sterile and Specialty Products, Rahway, NJ, USA
| |
Collapse
|
13
|
Morales AM, Sreedhara A, Buecheler J, Brosig S, Chou D, Christian T, Das T, de Jong I, Fast J, Jagannathan B, Moussa EM, Nejadnik MR, Prajapati I, Radwick A, Rahman Y, Singh S. End-to-End Approach to Surfactant Selection, Risk Mitigation, and Control Strategies for Protein-Based Therapeutics. AAPS J 2022; 25:6. [PMID: 36471030 DOI: 10.1208/s12248-022-00773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
A survey performed by the AAPS Drug Product Handling community revealed a general, mostly consensus, approach to the strategy for the selection of surfactant type and level for biopharmaceutical products. Discussing and building on the survey results, this article describes the common approach for surfactant selection and control strategy for protein-based therapeutics and focuses on key studies, common issues, mitigations, and rationale. Where relevant, each section is prefaced by survey responses from the 22 anonymized respondents. The article format consists of an overview of surfactant stabilization, followed by a strategy for the selection of surfactant level, and then discussions regarding risk identification, mitigation, and control strategy. Since surfactants that are commonly used in biologic formulations are known to undergo various forms of degradation, an effective control strategy for the chosen surfactant focuses on understanding and controlling the design space of the surfactant material attributes to ensure that the desired material quality is used consistently in DS/DP manufacturing. The material attributes of a surfactant added in the final DP formulation can influence DP performance (e.g., protein stability). Mitigation strategies are described that encompass risks from host cell proteins (HCP), DS/DP manufacturing processes, long-term storage, as well as during in-use conditions.
Collapse
Affiliation(s)
- Annette Medina Morales
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland, 20878, USA.
| | - Alavattam Sreedhara
- Genentech, Pharmaceutical Development, South San Francisco, California, 94080, USA
| | - Jakob Buecheler
- Technical Research and Development, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Sebastian Brosig
- Technical Research and Development, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Danny Chou
- Compassion BioSolution, LLC, Lomita, California, 90717, USA
| | | | - Tapan Das
- Analytical Development and Attribute Sciences, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Isabella de Jong
- Genentech, Pharmaceutical Development, South San Francisco, California, 94080, USA
| | - Jonas Fast
- Pharmaceutical Development, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Ehab M Moussa
- Drug Product Development, AbbVie, North Chicago, Illinios, 60064, USA
| | - M Reza Nejadnik
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Indira Prajapati
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland, 20878, USA
| | | | - Yusra Rahman
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Shubhadra Singh
- GlaxoSmithKline R&D, Biopharmaceutical Product Sciences, Collegeville, Philadelphia, Pennsylvania, 19426, USA
| |
Collapse
|
14
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
15
|
Singla D, Bhattacharya M. Salt-Induced Dissolution of Protein Aggregates. J Phys Chem B 2022; 126:8760-8770. [PMID: 36283072 DOI: 10.1021/acs.jpcb.2c06555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein aggregation is mediated by a complex interplay of noncovalent interactions and is associated with a broad range of aspects from debilitating human diseases to the food industry and therapeutic biotechnology. Deciphering the intricate roles of noncovalent interactions is of paramount importance for the design of effective inhibitory and disaggregation strategies, which remains a formidable challenge. By using a combination of spectroscopic and microscopic tools, here we show that the surfactant-mediated protein aggregation can be modulated by an intriguing interplay of hydrophobic and electrostatic effects. Additionally, our results illuminate the unique role of salt as a potent disaggregation inducer that alters the protein-surfactant electrostatic interactions and triggers the dissolution of preformed protein aggregates resulting in restoring the native protein structure. This unusual salt-induced dissolution and refolding offers a unique approach to regulating the balance between protein self-assembly and disassembly and will offer a potent strategy to design electrostatically targeted inhibitors.
Collapse
Affiliation(s)
- Deepika Singla
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Thapar Technology Campus, Bhadson Road, Patiala, Punjab147004, India
| | - Mily Bhattacharya
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Thapar Technology Campus, Bhadson Road, Patiala, Punjab147004, India
| |
Collapse
|
16
|
Eshraghi J, Dou Z, Veilleux JC, Shi G, Collins D, Ardekani AM, Vlachos PP. The Air Entrainment and Hydrodynamic Shear of the Liquid Slosh in Syringes. Int J Pharm 2022; 627:122210. [PMID: 36122618 DOI: 10.1016/j.ijpharm.2022.122210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Understanding the interface motion and hydrodynamic shear induced by the liquid sloshing during the insertion stage of an autoinjector can help improve drug product administration. We perform experiments to investigate the interfacial motion and hydrodynamic shear due to the acceleration and deceleration of syringes. The goal is to explore the role of fluid properties, air gap size, and syringe acceleration on the interface dynamics caused by autoinjector activation. We used a simplified autoinjector platform to record the syringe and liquid motion without any view obstruction. Water and silicone oil with the same viscosity are used as the model fluids. Particle Image Velocimetry (PIV) is employed to measure the velocity field. Simultaneous shadowgraph visualization captures the air entrainment. Our in-house PIV and image processing algorithms are used to quantify the hydrodynamic stress and interfacial area to investigate the effects of various autoinjector design parameters and fluid types on liquid sloshing. The results indicate that reducing the air gap volume and syringe acceleration/deceleration mitigate the interface area and effective shear. Moreover, the interfacial area and induced hydrodynamic stress decrease with the Fr=U/aD, where U is the interface velocity, a is the maximum syringe acceleration, and D is the syringe diameter.
Collapse
Affiliation(s)
- Javad Eshraghi
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Eli Lilly and Company, Indianapolis, Indiana, USA.
| | - Zhongwang Dou
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Galen Shi
- Eli Lilly and Company, Indianapolis, Indiana, USA.
| | | | - Arezoo M Ardekani
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Pavlos P Vlachos
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
17
|
Kanthe AD, Carnovale MR, Katz JS, Jordan S, Krause ME, Zheng S, Ilott A, Ying W, Bu W, Bera MK, Lin B, Maldarelli C, Tu RS. Differential Surface Adsorption Phenomena for Conventional and Novel Surfactants Correlates with Changes in Interfacial mAb Stabilization. Mol Pharm 2022; 19:3100-3113. [PMID: 35882380 PMCID: PMC9450885 DOI: 10.1021/acs.molpharmaceut.2c00152] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein adsorption on surfaces can result in loss of drug product stability and efficacy during the production, storage, and administration of protein-based therapeutics. Surface-active agents (excipients) are typically added in protein formulations to prevent undesired interactions of proteins on surfaces and protein particle formation/aggregation in solution. The objective of this work is to understand the molecular-level competitive adsorption mechanism between the monoclonal antibody (mAb) and a commercially used excipient, polysorbate 80 (PS80), and a novel excipient, N-myristoyl phenylalanine-N-polyetheramine diamide (FM1000). The relative rate of adsorption of PS80 and FM1000 was studied by pendant bubble tensiometry. We find that FM1000 saturates the interface faster than PS80. Additionally, the surface-adsorbed amounts from X-ray reflectivity (XRR) measurements show that FM1000 blocks a larger percentage of interfacial area than PS80, indicating that a lower bulk FM1000 surface concentration is sufficient to prevent protein adsorption onto the air/water interface. XRR models reveal that with an increase in mAb concentration (0.5-2.5 mg/mL: IV based formulations), an increased amount of PS80 concentration (below critical micelle concentration, CMC) is required, whereas a fixed value of FM1000 concentration (above its relatively lower CMC) is sufficient to inhibit mAb adsorption, preventing mAb from co-existing with surfactants on the surface layer. With this observation, we show that the CMC of the surfactant is not the critical factor to indicate its ability to inhibit protein adsorption, especially for chemically different surfactants, PS80 and FM1000. Additionally, interface-induced aggregation studies indicate that at minimum surfactant concentration levels in protein formulations, fewer protein particles form in the presence of FM1000. Our results provide a mechanistic link between the adsorption of mAbs at the air/water interface and the aggregation induced by agitation in the presence of surfactants.
Collapse
Affiliation(s)
- Ankit D Kanthe
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States.,Department of Chemical Engineering, The City College of New York, New York, New York 10031, United States
| | - Miriam R Carnovale
- Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, Delaware 19803, United States
| | - Joshua S Katz
- Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, Delaware 19803, United States
| | - Susan Jordan
- Pharma Solutions R&D, International Flavors and Fragrances, Wilmington, Delaware 19803, United States
| | - Mary E Krause
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Songyan Zheng
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Andrew Ilott
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - William Ying
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Wei Bu
- NSF's ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 606371, United States
| | - Mrinal K Bera
- NSF's ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 606371, United States
| | - Binhua Lin
- NSF's ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 606371, United States
| | - Charles Maldarelli
- Department of Chemical Engineering, The City College of New York, New York, New York 10031, United States.,Levich Institute, The City College of New York, New York, New York 10031, United States
| | - Raymond S Tu
- Department of Chemical Engineering, The City College of New York, New York, New York 10031, United States
| |
Collapse
|
18
|
Wang J, Woodley JM. In Situ Cofactor Regeneration Using NAD(P)H Oxidase: Enzyme Stability in a Bubble Column. ChemCatChem 2022. [DOI: 10.1002/cctc.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingyu Wang
- Technical University of Denmark Department of Chemical and Biochemical Engineerning Søltofts Plads Bygning 228A, 2800 Kgs. Lyngby 2800 2800 Kgs. Lyngby DENMARK
| | - John M. Woodley
- Technical University of Denmark Department of Chemical Engineering S�ltofts Plads DK-2800 Lyngby DENMARK
| |
Collapse
|
19
|
A Mechanistic Understanding of Monoclonal Antibody Interfacial Protection by Hydrolytically Degraded Polysorbate 20 and 80 under IV Bag Conditions. Pharm Res 2022; 39:563-575. [PMID: 35277841 DOI: 10.1007/s11095-022-03217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Polysorbates (PS) contain polyoxyethylene (POE) sorbitan/isosorbide fatty acid esters that can partially hydrolyze over time in liquid drug products to generate degradants and a remaining intact PS fraction with a modified ester distribution. The degradants are composed of free fatty acids (FFAs) --primarily lauric acid for PS20 and oleic acid for PS80-- and POE head groups. We previously demonstrated that under IV bag agitation conditions, mAb1 (a surface-active IgG4) aggregation increased with increasing amounts of degradants for PS20 but not for PS80. The purpose of this work is to understand the mechanism behind this observation. METHODS The surface tension of the remaining intact PS fraction without degradants was modeled and compared with that of enzymatically degraded PS solutions. Next, mAb1 aggregation in saline was measured in the presence of laurate and oleate salts during static storage. Lastly, colloidal and conformational stability of mAb1 in the presence of these salts was investigated through differential scanning fluorimetry and dynamic light scattering under IV bag solution conditions. RESULTS The surface tension was primarily influenced by FFAs rather than the modified ester distribution of the remaining intact PS. MAb1 bulk aggregation increased in the presence of laurate but not oleate salts. Both salt types increased the melting temperature of mAb1 indicating FFA-mAb1 interactions. However, only laurate salt increased mAb1 self-association potentially explaining the higher aggregation propensity in its presence. CONCLUSION Our results help explain the observed differences between hydrolytically degraded PS20 and PS80 in affecting mAb1 aggregation under IV bag agitation conditions.
Collapse
|
20
|
Bajrovic I, Le MD, Davis MM, Croyle MA. Evaluation of intermolecular interactions required for thermostability of a recombinant adenovirus within a film matrix. J Control Release 2021; 341:118-131. [PMID: 34780881 DOI: 10.1016/j.jconrel.2021.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
Thermostability of vaccines and biologic drugs are key to increasing global access to a variety of life-saving agents. In this report, we characterize interactions between a novel zwitterionic surfactant and adenovirus serotype 5 which allow the virus to remain stable at room temperature in a thin film matrix. Complexity of the adenovirus capsid and the polydispersity of the surfactant required use of a variety of techniques to achieve this goal. The CMC of the surfactant in Tris buffer (pH 6.5) was estimated to be 0.7-1.17 × 10-4 M by the pyrene 1:3 ratio method. TEM images depict micelle formation around virus capsids. An estimated Kd of the virus-surfactant interaction of 2.25 × 10-9 M was determined by isothermal titration calorimetry. Associated data suggest that this interaction may be thermodynamically favorable and entropically driven. A competitive saturation study and TEM images indicate that the surfactant also binds to hexon proteins on the virus capsid. Taken together, these data support the working hypothesis that the surfactant is capable of forming micelles in the solid and liquid state and that it forms a protective coating around the virus by binding to hexon proteins on the virus capsid during the film forming process.
Collapse
Affiliation(s)
- Irnela Bajrovic
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX, USA
| | - Matthew D Le
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX, USA
| | - Madison M Davis
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX, USA
| | - Maria A Croyle
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX, USA; LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
21
|
Johann F, Wöll S, Winzer M, Snell J, Valldorf B, Gieseler H. Miniaturized Forced Degradation of Therapeutic Proteins and ADCs by Agitation-Induced Aggregation Using Orbital Shaking of Microplates. J Pharm Sci 2021; 111:1401-1413. [PMID: 34563536 DOI: 10.1016/j.xphs.2021.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Microplate-based formulation screening is a powerful approach to identify stabilizing excipients for therapeutic proteins while reducing material requirements. However, this approach is sometimes not representative of studies conducted in relevant container closures. The present study aimed to identify critical parameters for a microplate-based orbital shaking method to screen biotherapeutic formulations by agitation-induced aggregation. For this purpose, an in-depth methodological study was conducted using different shakers, microplates, and plate seals. Aggregation was monitored by size exclusion chromatography, turbidity, and backgrounded membrane imaging. Both shaker quality and liquid-seal contact had substantial impacts on aggregation during shaking and resulted in non-uniform sample treatment when parameters were not suitably selected. The well volume to fill volume ratio (Vwell/Vfill) was identified as an useful parameter for achieving comparable aggregation levels between different microplate formats. An optimized method (2400 rpm [ac 95 m/s2], Vfill 60-100 µL [Vwell/Vfill 6-3.6], 24 h, RT, heat-sealed) allowed for uniform sample treatment independent of surface tension and good agreement with vial shaking results. This study provides valuable guidance for miniaturization of shaking stress studies in biopharmaceutical drug development, facilitating method transfer and comparability between laboratories.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Matthias Winzer
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Jared Snell
- EMD Serono Research and Development Institute, Department of Pharmaceutical Technologies, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Bernhard Valldorf
- Merck KGaA, Department of Pharmaceutical Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
22
|
Off-label use of plastic syringes with silicone oil for intravenous infusion bags of antibodies. Eur J Pharm Biopharm 2021; 166:205-215. [PMID: 34237379 DOI: 10.1016/j.ejpb.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022]
Abstract
The formation of particulates in post-manufacture biopharmaceuticals continues to be a major concern in medical treatment. This study was designed to evaluate the content of micro-sized particles using flow imaging of antibodies in intravenous infusion bags. Intravenous immunoglobulin (IVIG) and Avastin® were selected as model drugs and plastic syringes with and without silicone oil (SO) were used to transfer the drugs into the bags (0.9% saline or 5% dextrose). Antibodies exposed to SO had significantly increased levels of microparticles in both diluents, suggesting SO accelerates particle formation, especially at a higher antibody concentration. Even before the drop stress, their count exceeded the USP guideline. Dropping the bags in the presence of SO produced larger microparticles. Meanwhile, air bubbles were retained longer in saline suggesting more protein film formation on its air-water interface. Overall, both drugs were conformationally stable and produced less particles in dextrose than in saline.
Collapse
|
23
|
Kim NA, Kar S, Li Z, Das TK, Carpenter JF. Mimicking Low pH Virus Inactivation Used in Antibody Manufacturing Processes: Effect of Processing Conditions and Biophysical Properties on Antibody Aggregation and Particle Formation. J Pharm Sci 2021; 110:3188-3199. [PMID: 34090901 DOI: 10.1016/j.xphs.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/27/2022]
Abstract
Low pH virus inactivation (VI) step is routinely used in antibody production manufacturing. In this work, a mimic of the VI step was developed to focus on evaluating adverse effects on product quality. A commercially available lab-scale glass reactor system was utilized to assess impacts of process and solution conditions on process-induced monoclonal antibody particle formation. Flow imaging was found to be more sensitive than light obscuration in detecting microparticles. NaOH as a base titrant increased protein microparticles more than Tris. Both stirring and NaCl accelerated particle formation, indicating that interfacial stress and protein colloidal stability were important factors. Polysorbate 80 was effective at suppressing particle formation induced by stirring. In contrast, trehalose led to higher microparticle levels suggesting a conformational stabilizer may have other adverse effects during titration with stirring. Additionally, conformational and colloidal stability of antibodies were characterized to investigate the potential roles of antibody physicochemical properties in microparticle formation during VI. The stability data were supportive in rationalizing particle formation behaviors, but they were not predictive of particle formation during the mimicked viral inactivation steps. Overall, the results demonstrate the value of testing various solution and processing conditions in a scaled-down system prior to larger-scale VI bioprocesses.
Collapse
Affiliation(s)
- Nam Ah Kim
- Department of Pharmaceutical Sciences, University of Colorado, Aurora 80045, CO, USA; College of Pharmacy, Dongguk University-Seoul, Gyeonggi 10326, Republic of Korea
| | - Sambit Kar
- Analytical Development and Attribute Sciences, Biologics Development, Bristol Myers Squibb, USA
| | - Zhengjian Li
- Analytical Development and Attribute Sciences, Biologics Development, Bristol Myers Squibb, USA
| | - Tapan K Das
- Analytical Development and Attribute Sciences, Biologics Development, Bristol Myers Squibb, USA
| | - John F Carpenter
- Department of Pharmaceutical Sciences, University of Colorado, Aurora 80045, CO, USA.
| |
Collapse
|