1
|
Zhong Z, Deventer MH, Chen Y, Vanhee S, Lammens I, Deswarte K, Huang Y, Ye T, Wang H, Nuhn L, Vandeputte MM, Gontsarik M, Cui X, Sanders NN, Lienenklaus S, N Lambrecht B, Baptista AP, Stove CP, G De Geest B. A Fentanyl Hapten-Displaying Lipid Nanoparticle Vaccine that Non-Covalently Encapsulates a TLR7/8 Agonist and T-Helper Epitope Induces Protective Anti-Fentanyl Immunity. Angew Chem Int Ed Engl 2025; 64:e202419031. [PMID: 39441822 DOI: 10.1002/anie.202419031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Opioid use disorder - particularly involving fentanyl - has precipitated a public health crisis characterized by a significant increase in addiction and overdose-related deaths. Fentanyl-specific immunotherapy, which aims at inducing fentanyl-specific antibodies capable of binding fentanyl molecules in the bloodstream, preventing their entry in the central nervous system, is therefore gaining momentum. Conventional opioid designs rely on the covalent conjugation of fentanyl analogues to immunogenic carrier proteins that hold the inherent capacity of mounting immunodominant responses. Here, we present an alternative fentanyl vaccine design that utilizes a non-covalent assembly of lipid nanoparticles (LNPs) to deliver fentanyl haptens in conjunction with a CD4+ T-helper peptide epitope and an imidazoquinoline TLR7/8 agonist. Our results demonstrate that a single intramuscular administration of the LNP-based nanovaccine elicits fentanyl-specific antibodies, significantly mitigating the effects of opioid overdose in preclinical mouse models. Furthermore, we analyzed the immunobiological behavior of the vaccine in vivo in mouse models, providing evidence that covalent attachment of a fentanyl hapten to a carrier proteins or peptide epitope is not necessary for inducing an effective immune response. However, co-delivery - specifically, the physical assembly of all immune cues into an LNP - remains essential for inducing hapten-specific immunity.
Collapse
Affiliation(s)
- Zifu Zhong
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Stijn Vanhee
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
- Department of Head and Skin, Ghent University, Gent, Belgium
| | - Inés Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
- Department of Head and Skin, Ghent University, Gent, Belgium
| | - Kim Deswarte
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
| | - Yi Huang
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Tingting Ye
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Haixiu Wang
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Lutz Nuhn
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg, 97070, Germany
| | - Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Mark Gontsarik
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| | - Xiaole Cui
- Laboratory of Gene Therapy, Ghent University, Belgium, Heidestraat 19, Merelbeke, 9820, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Ghent University, Belgium, Heidestraat 19, Merelbeke, 9820, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
| | - Antonio P Baptista
- Department of Internal Medicine and Pediatrics, Ghent University, Technologiepark-Zwijnaarde 71, Gent, Ghent, 9052, Belgium
- Laboratory of immunoregulation and mucosal immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Belgium, Ottergemsesteenweg 460, Gent, 9000, Belgium
| |
Collapse
|
2
|
Tuncturk M, Kushwaha S, Heider RM, Oesterle T, Weinshilboum R, Ho MF. The development of opioid vaccines as a novel strategy for the treatment of opioid use disorder and overdose prevention. Int J Neuropsychopharmacol 2025; 28:pyaf005. [PMID: 39831679 PMCID: PMC11792077 DOI: 10.1093/ijnp/pyaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
Opioid use disorder (OUD) affects over 40 million people worldwide, creating significant social and economic burdens. Medication for opioid use disorder (MOUD) is often considered the primary treatment approach for OUD. MOUD, including methadone, buprenorphine, and naltrexone, is effective for some, but its benefits may be limited by poor adherence to treatment recommendations. Immunopharmacotherapy offers an innovative approach by using vaccines to generate antibodies that neutralize opioids, blocking them from crossing the blood-brain barrier and reducing their psychoactive effects. To date, only 3 clinical trials for opioid vaccines have been published. While these studies demonstrated the potential of opioid vaccines for relapse prevention, there is currently no standardized protocol for evaluating their effectiveness. We have reviewed recent preclinical studies that demonstrated the efficacy of vaccines targeting opioids, including heroin, morphine, oxycodone, hydrocodone, and fentanyl. These studies showed that vaccines against opioids reduced drug reinforcement, decreased opioid-induced antinociception, and increased survival rates against lethal opioid doses. These studies also demonstrated the importance of vaccine formulation and the use of adjuvants in enhancing antibody production and specificity. Finally, we highlighted the strengths and concerns associated with the opioid vaccine treatment, including ethical considerations.
Collapse
Affiliation(s)
- Mustafa Tuncturk
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Shikha Kushwaha
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Robin M Heider
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Tyler Oesterle
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Ming-Fen Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Hamid FA, Le NMN, Song D, Amin H, Hicks L, Bird S, Siram K, Hoppe B, Demeler B, Evans JT, Burkhart D, Pravetoni M. A cationic liposome-formulated Toll Like Receptor (TLR)7/8 agonist enhances the efficacy of a vaccine against fentanyl toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631964. [PMID: 39868149 PMCID: PMC11761771 DOI: 10.1101/2025.01.08.631964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The U.S. opioid epidemic is an extraordinary public health crisis that started in 1990 and significantly accelerated in the last decade. Since 2020, over 100,000 fatal drug overdoses have been reported annually, and 75% of those involved fentanyl and its analogs (F/FA). Accelerating the translation of innovative, effective, and safe treatments is needed to augment existing measures to counteract such a crisis. Active immunization against F/FA and other opioids represents a promising therapeutic and prophylactic strategy for opioid use disorder (OUD) and opioid-induced overdose toxicity. Previously we demonstrated that the anti-fentanyl vaccine comprising a fentanyl-based hapten (F) conjugated to the diphtheria cross-reactive material (CRM), admixed with the novel lipidated toll-like receptor 7/8 (TLR7/8) agonist INI-4001 adsorbed on Alhydrogel ® (alum) induced high-affinity fentanyl-specific polyclonal antibodies that protected against fentanyl-induced pharmacological effects in mice, rats, and mini-pigs. Here, INI-4001 was formulated into liposomes with different surface charges, and their impact on F-CRM adsorption, INI-4001 adjuvanticity, and vaccine efficacy were explored. Additionally, as the role of innate immunity in mediating the efficacy of addiction vaccines is largely unknown, we tested these formulations on the activation of innate immunity in vitro . Cationic INI-4001 liposomes surpassed other liposomal and aluminum-based formulations of INI-4001 by enhancing the efficacy of fentanyl vaccines and protecting rats against bradycardia and respiratory depression by blocking the distribution of fentanyl to the brain. Fentanyl vaccines adjuvanted with either cationic INI-4001 liposomes or the aqueous INI-4001 adsorbed to alum induced significant surface expression of co-stimulatory molecules and maturation markers in a murine dendritic cell line (JAWS II), while the former was superior in enhancing the macrophages surface expression of CD40, CD86 and inducible nitric oxide synthase (iNOS), indicative of maturation and activation. These results warrant further investigation of liposome-based formulations of TLR7/8 agonists for improving the efficacy of vaccines targeting F/FA and other opioids of public health interest. Graphical abstract
Collapse
|
4
|
Hu H, Zhang C. Conjugation of Multiple Proteins Onto the Surface of PLGA/Lipid Hybrid Nanoparticles. J Biomed Mater Res A 2025; 113:e37807. [PMID: 39420678 DOI: 10.1002/jbm.a.37807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Nanoparticles are increasingly being used in the development of vaccines for disease prevention or treatment. Recent research has demonstrated that conjugating a protein onto the surface of nanoparticles can significantly increase its immunogenicity. Considering various pathogens that threaten human health, multivalent vaccines are often desirable. Up to now, nanoparticle-based vaccines are mostly limited to one protein per nanoparticle. No research has been conducted to explore the possibility of conjugating more than one protein onto the surface of a nanoparticle. Here we developed a specific conjugation strategy to conjugate multiple proteins to the PLGA/lipid hybrid nanoparticle surface. The maleimide-thiol Michael addition, Aizde-DBCO (Dibenzocyclooctyne), and TCO (trans-cycloctene)-Tetrazine click chemistry were employed to conjugate three different proteins, subunit keyhole limpet hemocyanin (sKLH), Ovalbumin (OVA), and cross-reactive material 197 (CRM197), to the surface of PLGA/lipid hybrid nanoparticles (hNPs). The successful results of this study pave the way for developing multivalent vaccines against different pathogens.
Collapse
Affiliation(s)
- He Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Hosztafi S, Galambos AR, Köteles I, Karádi DÁ, Fürst S, Al-Khrasani M. Opioid-Based Haptens: Development of Immunotherapy. Int J Mol Sci 2024; 25:7781. [PMID: 39063024 PMCID: PMC11277321 DOI: 10.3390/ijms25147781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past decades, extensive preclinical research has been conducted to develop vaccinations to protect against substance use disorder caused by opioids, nicotine, cocaine, and designer drugs. Morphine or fentanyl derivatives are small molecules, and these compounds are not immunogenic, but when conjugated as haptens to a carrier protein will elicit the production of antibodies capable of reacting specifically with the unconjugated hapten or its parent compound. The position of the attachment in opioid haptens to the carrier protein will influence the specificity of the antiserum produced in immunized animals with the hapten-carrier conjugate. Immunoassays for the determination of opioid drugs are based on the ability of drugs to inhibit the reaction between drug-specific antibodies and the corresponding drug-carrier conjugate or the corresponding labelled hapten. Pharmacological studies of the hapten-carrier conjugates resulted in the development of vaccines for treating opioid use disorders (OUDs). Immunotherapy for opioid addiction includes the induction of anti-drug vaccines which are composed of a hapten, a carrier protein, and adjuvants. In this review we survey the design of opioid haptens, the development of the opioid radioimmunoassay, and the results of immunotherapy for OUDs.
Collapse
Affiliation(s)
- Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - István Köteles
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Dávid Á Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78., H-1082 Budapest, Hungary
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| |
Collapse
|
6
|
Shafieichaharberoud F, Lang S, Whalen C, Rivera Quiles C, Purcell L, Talbot C, Wang P, Norton EB, Mazei-Robison M, Sulima A, Jacobson AE, Rice KC, Matyas GR, Huang X. Enhancing Protective Antibodies against Opioids through Antigen Display on Virus-like Particles. Bioconjug Chem 2024; 35:164-173. [PMID: 38113481 PMCID: PMC11259974 DOI: 10.1021/acs.bioconjchem.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Opioid use disorder (OUD) has become a public health crisis, with recent significant increases in the number of deaths due to overdose. Vaccination can provide an attractive complementary strategy to combat OUD. A key for high vaccine efficacy is the induction of high levels of antibodies specific to the drug of abuse. Herein, a powerful immunogenic carrier, virus-like particle mutant bacteriophage Qβ (mQβ), has been investigated as a carrier of a small molecule hapten 6-AmHap mimicking heroin. The mQβ-6-AmHap conjugate was able to induce significantly higher levels of IgG antibodies against 6-AmHap than mice immunized with the corresponding tetanus toxoid-6-AmHap conjugate in head-to-head comparison studies in multiple strains of mice. The IgG antibody responses were persistent with high anti-6-AmHap titers 600 days after being immunized with mQβ-6-AmHap. The antibodies induced exhibited strong binding toward multiple heroin/morphine derivatives that have the potential to be abused, while binding weakly to medications used for OUD treatment and pain relief. Furthermore, vaccination effectively reduced the impacts of morphine on mice in both ambulation and antinociception assays, highlighting the translational potential of the mQβ-6-AmHap conjugate to mitigate the harmful effects of drugs of abuse.
Collapse
Affiliation(s)
- Fatemeh Shafieichaharberoud
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Connor Whalen
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Cristina Rivera Quiles
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lillie Purcell
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Cameron Talbot
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Michelle Mazei-Robison
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Honda-Okubo Y, Bowen R, Barker M, Bielefeldt-Ohmann H, Petrovsky N. Advax-CpG55.2-adjuvanted monovalent or trivalent SARS-CoV-2 recombinant spike protein vaccine protects hamsters against heterologous infection with Beta or Delta variants. Vaccine 2023; 41:7116-7128. [PMID: 37863669 PMCID: PMC10873063 DOI: 10.1016/j.vaccine.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The ongoing evolution of SARS-CoV-2 variants emphasizes the need for vaccines providing broad cross-protective immunity. This study was undertaken to assess the ability of Advax-CpG55.2 adjuvanted monovalent recombinant spike protein (Wuhan, Beta, Gamma) vaccines or a trivalent formulation to protect hamsters againstBeta or Delta virus infection. The ability of vaccines to block virus transmission to naïve co-housed animals was also assessed. In naïve hosts, the Beta variant induced higher virus loads than the Delta variant, and conversely the Delta variant caused more severe disease and was more likely to be associated with virus transmission. The trivalent vaccine formulation provided the best protection against both Beta and Delta infection and also completely prevented virus transmission. The next best performing vaccine was the original monovalent Wuhan-based vaccine. Notably, hamsters that received the monovalent Gamma spike vaccine had the highest viral loads and clinical disease of all the vaccine groups, a potential signal of antibody dependent-enhancement (ADE). These hamsters were also the most likely to transmit Delta virus to naïve recipients. In murine studies, the Gamma spike vaccine induced the highest total spike protein to RBD IgG ratio and the lowest levels of neutralizing antibody, a context that could predispose to ADE. Overall, the study results confirmed that the current SpikoGen® vaccine based on Wuhan spike protein was still able to protect against clinical disease caused by either the Beta or Delta virus variants but suggested additional protection may be obtained by combining it with extra variant spike proteins to make a multivalent formulation. This study highlights the complexity of optimizing vaccine protection against multiple SARS-CoV-2 variants and stresses the need to continue to pursue new and improved COVID-19 vaccines able to provide robust, long-lasting, and broadly cross-protective immunity against constantly evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mckinzee Barker
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | | |
Collapse
|
8
|
Crouse B, Miller SM, Muelken P, Hicks L, Vigliaturo JR, Marker CL, Guedes AGP, Pentel PR, Evans JT, LeSage MG, Pravetoni M. A TLR7/8 agonist increases efficacy of anti-fentanyl vaccines in rodent and porcine models. NPJ Vaccines 2023; 8:107. [PMID: 37488109 PMCID: PMC10366150 DOI: 10.1038/s41541-023-00697-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Opioid use disorders (OUD) and overdose are public health threats worldwide. Widespread access to highly potent illicit synthetic opioids such as fentanyl is driving the recent rise in fatal overdoses. Vaccines containing fentanyl-based haptens conjugated to immunogenic carrier proteins offer a long-lasting, safe, and cost-effective strategy to protect individuals from overdose upon accidental or deliberate exposure to fentanyl and its analogs. Prophylactic or therapeutic active immunization with an anti-fentanyl vaccine induces the production of fentanyl-specific antibodies that bind the drug in the blood and prevent its distribution to the brain, which reduces its reinforcing effects and attenuates respiratory depression and bradycardia. To increase the efficacy of a lead anti-fentanyl vaccine, this study tested whether the incorporation of synthetic toll-like receptor (TLR) 4 and TLR7/8 agonists as vaccine adjuvants would increase vaccine efficacy against fentanyl challenge, overdose, and self-administration in either rats or Hanford miniature pigs. Formulation of the vaccine with a nucleolipid TLR7/8 agonist enhanced its immunogenicity and efficacy in preventing fentanyl-induced respiratory depression, analgesia, bradycardia, and self-administration in either rats or mini-pigs. These studies support the use of TLR7/8 adjuvants in vaccine formulations to improve their clinical efficacy against OUD and potentially other substance use disorders (SUD).
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- HealthPartners Institute, Research and Evaluation Division, 8170 33rd Ave S, Bloomington, MN, 55425, USA
| | - Shannon M Miller
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Peter Muelken
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Linda Hicks
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Cheryl L Marker
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Luvo Bioscience, 7500W. Henrietta Road, Rush, NY, 14543, USA
| | - Alonso G P Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Paul R Pentel
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Jay T Evans
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Mark G LeSage
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Center for Medication Development for Substance Use Disorders, Seattle, WA, USA.
| |
Collapse
|
9
|
Crouse B, Baehr C, Hicks D, Pravetoni M. IL-4 Predicts the Efficacy of a Candidate Antioxycodone Vaccine and Alters Vaccine-Specific Antibody-Secreting Cell Proliferation in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1272-1280. [PMID: 36939374 PMCID: PMC11321710 DOI: 10.4049/jimmunol.2200605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023]
Abstract
Opioid use disorders (OUDs) are a public health concern in the United States and worldwide. Current medications for OUDs may trigger side effects and are often heavily regulated. A novel treatment strategy to be used alone or in combination with existing medications is active immunization with antiopioid vaccines, which stimulate production of opioid-specific Abs that bind to the target drug and prevent its distribution to the brain. Although antiopioid vaccines have shown promising preclinical efficacy, prior clinical evaluations of vaccines targeting stimulants indicate that efficacy is limited to a subset of subjects who achieve optimal Ab responses. We have previously reported that depletion of IL-4 with a mAb increased opioid-specific IgG2a and total IgG, and it increased the number of germinal centers and germinal center T follicular helper cells in response to antiopioid vaccines via type I IL-4 signaling. The current study further investigates the mechanisms associated with IL-4-mediated increases in efficacy and whether IL-4 depletion affects specific processes involved in germinal center formation, including affinity maturation, class switching, and plasma cell differentiation in mice. Additionally, results demonstrate that preimmunization production of IL-4 after ex vivo whole blood stimulation predicted in vivo vaccine-induced Ab titers in outbred mice. Such mechanistic studies are critical for rational design of next-generation vaccine formulations, and they support the use of IL-4 as a predictive biomarker in ongoing OUD vaccine clinical studies.
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN
- School of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
10
|
Hossain MK, Davidson M, Kypreos E, Feehan J, Muir JA, Nurgali K, Apostolopoulos V. Immunotherapies for the Treatment of Drug Addiction. Vaccines (Basel) 2022; 10:vaccines10111778. [PMID: 36366287 PMCID: PMC9697687 DOI: 10.3390/vaccines10111778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Substance use disorders (SUD) are a serious public health concern globally. Existing treatment platforms suffer from a lack of effectiveness. The development of immunotherapies against these substances of abuse for both prophylactic and therapeutic use has gained tremendous importance as an alternative and/or supplementary to existing therapies. Significant development has been made in this area over the last few decades. Herein, we highlight the vaccine and other biologics development strategies, preclinical, clinical updates along with challenges and future directions. Articles were searched in PubMed, ClinicalTrial.gov, and google electronic databases relevant to development, preclinical, clinical trials of nicotine, cocaine, methamphetamine, and opioid vaccines. Various new emerging vaccine development strategies for SUD were also identified through this search and discussed. A good number of vaccine candidates demonstrated promising results in preclinical and clinical phases and support the concept of developing a vaccine for SUD. However, there have been no ultimate success as yet, and there remain some challenges with a massive push to take more candidates to clinical trials for further evaluation to break the bottleneck.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Erica Kypreos
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Joshua Alexander Muir
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
11
|
Lin M, Marin A, Ellis B, Eubanks LM, Andrianov AK, Janda KD. Polyphosphazene: A New Adjuvant Platform for Cocaine Vaccine Development. Mol Pharm 2022; 19:3358-3366. [PMID: 35984034 DOI: 10.1021/acs.molpharmaceut.2c00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cocaine is a highly addictive drug that has seen a steady uptrend causing severe health problems worldwide. Currently, there are no approved therapeutics for treating cocaine use disorder; hence, there is an urgent need to identify new medications. Immunopharmacotherapeutics is a promising approach utilizing endogenous antibodies generated through active vaccination, and if properly programmed, can blunt a drug's psychoactive and addictive effects. However, drug vaccine efficacy has largely been limited by the modest levels of antibodies induced. Herein, we explored an adjuvant system consisting of a polyphosphazene macromolecule, specifically poly[di(carboxylatoethylphenoxy)-phosphazene] (PCEP), a biocompatible synthetic polymer that was solicited for improved cocaine conjugate vaccine delivery performance. Our results demonstrated PCEP's superior assembling efficiency with a cocaine hapten as well as with the combined adjuvant CpG oligodeoxynucleotide (ODN). Importantly, this combination led to a higher titer response, balanced immunity, successful sequestering of cocaine in the blood, and a reduction in the drug in the brain. Moreover, a PCEP-cocaine conjugate vaccine was also found to function well via intranasal administration, where its efficacy was demonstrated through the antibody titer, affinity, mucosal IgA production, and a reduction in cocaine's locomotor activity. Overall, a comprehensive evaluation of PCEP integrated within a cocaine vaccine established an advance in the use of synthetic adjuvants in the drugs of abuse vaccine field.
Collapse
Affiliation(s)
- Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Beverly Ellis
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
12
|
Han Y, Cao L, Yuan K, Shi J, Yan W, Lu L. Unique Pharmacology, Brain Dysfunction, and Therapeutic Advancements for Fentanyl Misuse and Abuse. Neurosci Bull 2022; 38:1365-1382. [PMID: 35570233 PMCID: PMC9107910 DOI: 10.1007/s12264-022-00872-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Fentanyl is a fully synthetic opioid with analgesic and anesthetic properties. It has become a primary driver of the deadliest opioid crisis in the United States and elsewhere, consequently imposing devastating social, economic, and health burdens worldwide. However, the neural mechanisms that underlie the behavioral effects of fentanyl and its analogs are largely unknown, and approaches to prevent fentanyl abuse and fentanyl-related overdose deaths are scarce. This review presents the abuse potential and unique pharmacology of fentanyl and elucidates its potential mechanisms of action, including neural circuit dysfunction and neuroinflammation. We discuss recent progress in the development of pharmacological interventions, anti-fentanyl vaccines, anti-fentanyl/heroin conjugate vaccines, and monoclonal antibodies to attenuate fentanyl-seeking and prevent fentanyl-induced respiratory depression. However, translational studies and clinical trials are still lacking. Considering the present opioid crisis, the development of effective pharmacological and immunological strategies to prevent fentanyl abuse and overdose are urgently needed.
Collapse
|
13
|
Crouse B, Wu MM, Gradinati V, Kassick AJ, Song D, Jahan R, Averick S, Runyon S, Comer SD, Pravetoni M. Efficacy and Selectivity of Monovalent and Bivalent Vaccination Strategies to Protect against Exposure to Carfentanil, Fentanyl, and Their Mixtures in Rats. ACS Pharmacol Transl Sci 2022; 5:331-343. [PMID: 35592436 PMCID: PMC9112413 DOI: 10.1021/acsptsci.1c00260] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 12/23/2022]
Abstract
Drug-related fatal overdoses have significantly increased in the past decade due to the widespread availability of illicit fentanyl and other potent synthetic opioids such as carfentanil. Deliberate or accidental consumption or exposure to carfentanil, fentanyl, and their mixture induces respiratory depression and bradycardia that can be difficult to reverse with the opioid receptor antagonist naloxone. Vaccines offer a promising strategy to reduce the incidence of fatalities associated with fentanyl-related substances, as well as treatment for opioid use disorder (OUD). This study reports monovalent and bivalent vaccination strategies that elicit polyclonal antibody responses effective in protecting against the pharmacological actions of carfentanil, fentanyl, or carfentanil/fentanyl mixtures. Rats were prophylactically immunized with individual conjugate vaccines containing either carfentanil- or fentanyl-based haptens, or their combination in bivalent vaccine formulations, and then challenged with carfentanil, fentanyl, or their mixture. First, these studies identified a lead vaccine protective against carfentanil-induced antinociception, respiratory depression, and bradycardia. Then, efficacy against both carfentanil and fentanyl was achieved through bivalent vaccination strategies that combined lead anti-carfentanil and anti-fentanyl vaccines via either heterologous prime/boost or co-administration immunization regimens. These preclinical data support the development of vaccines as a viable strategy to prevent toxicity from exposure to excessive doses of carfentanil, fentanyl, or their mixtures.
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,School of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Mariah M Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,School of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Valeria Gradinati
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Andrew J Kassick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospita, Pittsburgh, Pennsylvania 15212, United States
| | - Daihyun Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Rajwana Jahan
- RTI International, Durham, North Carolina 27709, United States
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospita, Pittsburgh, Pennsylvania 15212, United States
| | - Scott Runyon
- RTI International, Durham, North Carolina 27709, United States
| | - Sandra D Comer
- Division on Substance Use Disorders, New York State Psychiatric Institute, and Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Sulima A, Li F, Morgan JB, Truong P, Antoline JFG, Oertel T, Barrientos RC, Torres OB, Beck Z, Imler GH, Deschamps JR, Matyas GR, Jacobson AE, Rice KC. Design, Synthesis, and In Vivo Evaluation of C1-Linked 4,5-Epoxymorphinan Haptens for Heroin Vaccines. Molecules 2022; 27:1553. [PMID: 35268659 PMCID: PMC8911913 DOI: 10.3390/molecules27051553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In our continuing effort to develop effective anti-heroin vaccines as potential medications for the treatment of opioid use disorder, herein we present the design and synthesis of the haptens: 1-AmidoMorHap (1), 1-AmidoMorHap epimer (2), 1 Amido-DihydroMorHap (3), and 1 Amido-DihydroMorHap epimer (4). This is the first report of hydrolytically stable haptenic surrogates of heroin with the attachment site at the C1 position in the 4,5-epoxymorophinan nucleus. We prepared respective tetanus toxoid (TT)-hapten conjugates as heroin vaccine immunogens and evaluated their efficacy in vivo. We showed that all TT-hapten conjugates induced high antibody endpoint titers against the targets but only haptens 2 and 3 can induce protective effects against heroin in vivo. The epimeric analogues of these haptens, 1 and 4, failed to protect mice from the effects of heroin. We also showed that the in vivo efficacy is consistent with the results of the in vitro drug sequestration assay. Attachment of the linker at the C1 position induced antibodies with weak binding to the target drugs. Only TT-2 and TT-3 yielded antibodies that bound heroin and 6-acetyl morphine. None of the TT-hapten conjugates induced antibodies that cross-reacted with morphine, methadone, naloxone, or naltrexone, and only TT-3 interacted weakly with buprenorphine, and that subtle structural difference, especially at the C6 position, can vastly alter the specificity of the induced antibodies. This study is an important contribution in the field of vaccine development against small-molecule targets, providing proof that the chirality at C6 in these epoxymorphinans is a vital key to their effectiveness.
Collapse
Affiliation(s)
- Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Fuying Li
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Jeffrey Brian Morgan
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Phong Truong
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Joshua F. G. Antoline
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Therese Oertel
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
| | - Rodell C. Barrientos
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Oscar B. Torres
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Zoltan Beck
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Gregory H. Imler
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (G.H.I.); (J.R.D.)
| | - Jeffrey R. Deschamps
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (G.H.I.); (J.R.D.)
| | - Gary R. Matyas
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (T.O.); (R.C.B.); (O.B.T.); (Z.B.); (G.R.M.)
| | - Arthur E. Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892, USA; (A.S.); (F.L.); (J.B.M.); (P.T.); (J.F.G.A.)
| |
Collapse
|
15
|
Ziaks TJ, Hwang CS. Is it possible to design a clinically viable heroin vaccine? The progress and pitfalls. Expert Opin Drug Discov 2021; 17:207-210. [PMID: 34842015 DOI: 10.1080/17460441.2022.2008904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Therese J Ziaks
- Department of Chemistry, Southern Connecticut State University, New Haven, CT, USA
| | - Candy S Hwang
- Department of Chemistry, Southern Connecticut State University, New Haven, CT, USA
| |
Collapse
|
16
|
Bai G, Yu H, Guan X, Zeng F, Liu X, Chen B, Liu J, Tian Y. CpG immunostimulatory oligodeoxynucleotide 1826 as a novel nasal ODN adjuvant enhanced the protective efficacy of the periodontitis gene vaccine in a periodontitis model in SD rats. BMC Oral Health 2021; 21:403. [PMID: 34399747 PMCID: PMC8369760 DOI: 10.1186/s12903-021-01763-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously demonstrated that nasal administration of periodontitis gene vaccine (pVAX1-HA2-fimA) or pVAX1-HA2-fimA plus IL-15 as adjuvant provoked protective immunity in the periodontal tissue of SD rats. This study evaluated the immune effect of pVAX1-HA2-fimA plus CpG-ODN 1826 as an adjuvant in the SD rat periodontitis models to improve the efficacy of the previously used vaccine. METHODS Periodontitis was induced in maxillary second molars in SD rats receiving a ligature and infected with Porphyromonas gingivalis. Forty-two SD rats were randomly assigned to six groups: A, control without P. gingivalis; B, P. gingivalis with saline; C, P. gingivalis with pVAX1; D, P. gingivalis with pVAX1-HA2-fimA; E, P. gingivalis with pVAX1-HA2-fimA/IL-15; F, P. gingivalis with pVAX1-HA2-fimA+CpG ODN 1826 (30 µg). The levels of FimA-specific and HA2-specific secretory IgA antibodies in the saliva of rats were measured by ELISA. The levels of COX-2 and RANKL were detected by immunohistochemical assay. Morphometric analysis was used to evaluate alveolar bone loss. Major organs were observed by HE staining. RESULTS 30 μg could be the optimal immunization dose for CpG-ODN 1826 and the levels of SIgA antibody were consistently higher in the pVAX1-HA2-fimA+CpG-ODN 1826 (30 µg) group than in the other groups during weeks 1-8 (P < 0.05, except week 1 or 2). Morphometric analysis demonstrated that pVAX1-HA2-fimA+CpG-ODN 1826 (30 µg) significantly reduced alveolar bone loss in ligated maxillary molars in group F compared with groups B-E (P < 0.05). Immunohistochemical assays revealed that the levels of COX-2 and RANKL were significantly lower in group F compared with groups B-E (P < 0.05). HE staining results of the major organs indicated that pVAX1-HA2-fimA with or without CpG-ODN 1826 was not toxic for in vivo use. CONCLUSIONS These results indicated that CpG-ODN 1826 (30 µg) could be used as an effective and safe mucosal adjuvant for pVAX1-HA2-fimA in SD rats since it could elicit mucosal SIgA responses and modulate COX-2 and RANKL production during weeks 1-8, thereby inhibiting inflammation and decreasing bone loss.
Collapse
Affiliation(s)
- Guohui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Hang Yu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoyan Guan
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Fengjiao Zeng
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xia Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Bin Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Jianguo Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| | - Yuan Tian
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China. .,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|