1
|
Kubinski AM, Sosa RD, Shivkumar G, Georgi R, George S, Murphy EJ, Ju TR. Predictive dissolution modeling across USP apparatuses I, II, and III. J Pharm Sci 2025; 114:103765. [PMID: 40107419 DOI: 10.1016/j.xphs.2025.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Dissolution testing provides in vitro drug release characterization and serves a critical role in the development of solid oral dosage forms. The most common dissolution apparatuses are the USP apparatuses I and II, for which in silico tools have been previously developed for predictive dissolution modeling (PDM). While apparatuses I and II serve the greater volume of projects, apparatus III offers higher agitation levels and multivessel capabilities, which is critical for certain projects, and the physics of which have not been previously characterized. To mitigate that knowledge gap, the present work characterizes the transport physics and thermodynamics of dissolution apparatus III, such that a 1-D model is established and validated which scales release kinetics with agitation level across apparatuses I, II, and III. The resulting PDM is calibrated with at least two dissolution experiments at different agitation levels, for a particular formulation-medium combination, after which release kinetics are predicted within the design spaces of the three apparatuses. Calibration data can come from experiments using a single apparatus or different apparatuses, while still predicting across all three apparatuses. Erosion-based formulations are used for validation. Additionally, apparatus III vessel residence time analysis is demonstrated.
Collapse
Affiliation(s)
- Alexander M Kubinski
- Product Development, Science & Technology, Operations, AbbVie Inc., North Chicago, IL 60208, United States.
| | - Ricardo D Sosa
- Product Development, Science & Technology, Operations, AbbVie Inc., North Chicago, IL 60208, United States
| | - Gayathri Shivkumar
- Science and Technology, Operations, AbbVie Inc., North Chicago, IL 60208, United States
| | - Reuben Georgi
- Department of Aeronautical and Astronautical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Susan George
- Product Development, Science & Technology, Operations, AbbVie Inc., North Chicago, IL 60208, United States
| | - Eric J Murphy
- Process Engineering, Development Sciences, AbbVie Inc., North Chicago, IL 60208, United States
| | - Tzuchi R Ju
- Small Molecule Analytical Research and Development, Development Sciences, AbbVie Inc., North Chicago, IL 60208, United States
| |
Collapse
|
2
|
Martínez E, Gamboa J, Finkielstein CV, Cañas AI, Osorio MA, Vélez Y, Llinas N, Castro CI. Oral dosage forms for drug delivery to the colon: an existing gap between research and commercial applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:24. [PMID: 40042550 PMCID: PMC11882727 DOI: 10.1007/s10856-025-06868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Oral drug administration is the preferred route for pharmaceuticals, accounting for ~90% of the global pharmaceutical market due to its convenience and cost-effectiveness. This study provides a comprehensive scientific and technological analysis of the latest advances in oral dosage forms for colon-targeted drug delivery. Utilizing scientific and patent databases, along with a bibliometric analysis and bibliographical review, we compared the oral dosage forms (technology) with the specific application of the technology (colon delivery) using four search equations. Our findings reveal a gap in the publications and inventions associated with oral dosage forms for colon release compared to oral dosage forms for general applications. While tablets and capsules were found the most used dosage forms, other platforms such as nanoparticles, microparticles, and emulsions have been also explored. Enteric coatings are the most frequently applied excipient to prevent the early drug release in the stomach with pH-triggered systems being the predominant release mechanism. In summary, this review provides a comprehensive analysis of the last advancements and high-impact resources in the development of oral dosage forms for colon-targeted drug delivery, providing insights into the technological maturity of these approaches.
Collapse
Affiliation(s)
- Estefanía Martínez
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Jennifer Gamboa
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ana Isabel Cañas
- Micología médica y experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Marlon Andrés Osorio
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Investigación Biología de Sistemas, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Yesid Vélez
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Néstor Llinas
- Departamento de Oncología Clínica, Clínica Vida, Fundación Colombiana de Cancerología, Medellín, Colombia
| | - Cristina Isabel Castro
- Grupo de Investigación sobre Nuevos Materiales, Escuela de ingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia.
| |
Collapse
|
3
|
Lou H, Hu G, Luan X, Steinbach-Rankins JM, Hageman MJ. Application of a UV-vis spectrometer to investigate the effect of dissolution media on the diffusivity of small molecules and proteins. J Pharm Sci 2025; 114:256-264. [PMID: 39278591 DOI: 10.1016/j.xphs.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
To date, the commonly used methods for diffusion coefficient measurements have some hurdles that prevent them from being widely applied in pharmaceutical laboratories. This study aimed to modify a method developed by di Cagno et al. based on the use of a UV-Vis spectrometer and apply the method to investigate the effect of dissolution media on the diffusivity of small molecules and proteins. A total of five small molecules and two proteins in different aqueous media and polymer solutions were investigated in this study. By attaching a 3D-printed cover with an open slit to a standard UV-Vis cuvette, the incident UV light could only pass through the open slit to measure the local drug concentration. During the diffusion experiment, drug molecules diffused from the cuvette bottom to the slit. According to the concentration measured as a function of time, diffusion coefficient was calculated based on Fick's law of diffusion using the analytical and numerical approaches. As a result, diffusion coefficients could be accurately measured with high reproducibility. The results also suggested that different media could affect the diffusion coefficients of small molecules by < 10% and proteins by < 15%. Since the UV-Vis spectrometer is a routine instrument, this method can potentially be employed by many pharmaceutical laboratories for diffusion coefficient measurements.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA.
| | - Gang Hu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Xi Luan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Jill M Steinbach-Rankins
- Innovation Technology Lead, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT 06877, USA
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
4
|
Pandey PK, Jain M, Jha PK. Drug delivery from a ring implant attached to intraocular lens: An in-silico investigation. J Pharm Sci 2024; 113:3332-3343. [PMID: 39245324 DOI: 10.1016/j.xphs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Multiple iterations required to design ocular implants, which will last for the desired operational period of months or even years, necessitate the use of in-silico models for ocular drug delivery. In this study, we developed an in-silico model to simulate the flow of Aqueous Humor (AH) and drug delivery from an implant to the Trabecular Meshwork (TM). The implant, attached to the side of the intraocular lens (IOL), and the TM are treated as porous media, with their effects on AH flow accounted for using the Darcy equation. This model accurately predicts the physiological values of Intraocular Pressure (IOP) for both healthy individuals and glaucoma patients, as reported in the literature. Results reveal that the effective diffusivity of the drug within the implant is the critical parameter that can alter the bioavailability time period (BTP) from a few days to months. Intuitively, BTP should increase as effective diffusivity decreases. However, we discovered that with lower levels of initial drug loading, BTP declines when effective diffusivity falls below a specific threshold. Our findings further reveal that, while AH flow has a minimal effect on the drug release profile at the implant site, it significantly impacts drug availability at the TM.
Collapse
Affiliation(s)
- Pawan Kumar Pandey
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | | | - Prateek K Jha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
5
|
Djuris J, Cvijic S, Djekic L. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals (Basel) 2024; 17:177. [PMID: 38399392 PMCID: PMC10892858 DOI: 10.3390/ph17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.
Collapse
Affiliation(s)
- Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (L.D.)
| | | | | |
Collapse
|
6
|
Logigan CL, Delaite C, Popa M, Băcăiță ES, Tiron CE, Peptu C, Peptu CA. Poly(ethylene glycol) Methyl Ether Acrylate-Grafted Chitosan-Based Micro- and Nanoparticles as a Drug Delivery System for Antibiotics. Polymers (Basel) 2024; 16:144. [PMID: 38201809 PMCID: PMC10781092 DOI: 10.3390/polym16010144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Nanotechnology is the science of creating materials at the nanoscale by using various devices, structures, and systems that are often inspired by nature. Micro- and nanoparticles (MPs, NPs) are examples of such materials that have unique properties and can be used as carriers for delivering drugs for different biomedical applications. Chitosan (CS) is a natural polysaccharide that has been widely studied, but it has a problem with low water solubility at neutral or basic pH, which limits its processability. The goal of this work was to use a chemically modified CS with poly(ethylene glycol) methyl ether acrylate (PEGA) to prepare CS micronic and submicronic particles (MPs/NPs) that can deliver different types of antibiotics, respectively, levofloxacin (LEV) and Ciprofloxacin (CIP). The particle preparation procedure employed a double crosslinking method, ionic followed by a covalent, in a water/oil emulsion. The studied process parameters were the precursor concentration, stirring speeds, and amount of ionic crosslinking agent. MPs/NPs were characterized by FT-IR, SEM, light scattering granulometry, and Zeta potential. MPs/NPs were also tested for their water uptake capacity in acidic and neutral pH conditions, and the results showed that they had a pH-dependent behavior. The MPs/NPs were then used to encapsulate two separate drugs, LEV and CIP, and they showed excellent drug loading and release capacity. The MPs/NPs were also found to be safe for cells and blood, which demonstrated their potential as suitable drug delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Corina-Lenuța Logigan
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (C.-L.L.); (M.P.)
| | - Christelle Delaite
- Laboratory of Photochemistry and Macromolecular Engineering, Institute J.B. Donnet, University of Haute Alsace, 68100 Mulhouse, France;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (C.-L.L.); (M.P.)
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, 11, Iasi 6600, Romania Muzicii Street, No. 2, 700511 Iasi, Romania
- Academy of Romanian Scientists, Ilfov Street, No. 3, Sector 5, 050094 Bucharest, Romania
| | - Elena Simona Băcăiță
- Department of Physics, Faculty of Machine Manufacturing and Industrial Management, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania;
| | - Crina Elena Tiron
- Regional Institute of Oncology, General Henri Mathias Berthelot Street, 2–4, 700483 Iasi, Romania;
| | - Cristian Peptu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania;
| | - Cătălina Anișoara Peptu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (C.-L.L.); (M.P.)
| |
Collapse
|
7
|
Chen S, Ge M, Weng S, Li J, Huang Y, Li P, Yang L. Development of a MoS 2/Ag NP Nanopocket to Trap Target Molecules for Surface-Enhanced Raman Scattering Detection with Long-Term Stability and High Sensitivity. Anal Chem 2023. [PMID: 37329306 DOI: 10.1021/acs.analchem.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Surface-enhanced Raman scattering (SERS) substrates mostly achieve highly sensitive detection by designing various hot spots; however, how to guide molecules to hot spots and prevent them from leaving has not been thoroughly considered and studied. Here, a composite MoS2/Ag NP nanopocket detector composed of MoS2 covered with a Ag NP film was fabricated to develop a general SERS method for actively capturing target molecules into hotspots. A finite element method (FEM) simulation of the multiphysics model was used to analyze the distributions of electric field enhancements and hydrodynamic processes in solution and air of the MoS2/Ag NP nanopocket. The results revealed that covering MoS2 slowed the evaporation of the solution, extended the window period for SERS detection, and enhanced the electric field in comparison with the monolayer Ag NP film. Therefore, in the process of dynamic detection, the MoS2/Ag NP nanopocket can provide an efficient and stable signal within 8 min, increasing the high sensitivity and long-term stability of the SERS method. Furthermore, a MoS2/Ag NP nanopocket detector was applied to detect antitumor drugs and monitor hypoxanthine structural changes in serum, which demonstrated long-term stability and high sensitivity for SERS analysis. This MoS2/Ag NP nanopocket detector paves the way for developing the SERS method in various fields.
Collapse
Affiliation(s)
- Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Anhui, Hefei 230026, China
| | - Meihong Ge
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Anhui, Hefei 230026, China
| | - Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Junxiang Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Anhui, Hefei 230026, China
| | - Yanheng Huang
- School of First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
8
|
Kubinski AM, Shivkumar G, Georgi RA, George S, Reynolds J, Sosa RD, Ju TR. Predictive Drug Release Modeling Across Dissolution Apparatuses I and II using Computational Fluid Dynamics. J Pharm Sci 2023; 112:808-819. [PMID: 36336104 DOI: 10.1016/j.xphs.2022.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
A modeling process is developed and validated with which active pharmaceutical ingredient (API) release is predicted across the United States Pharmacopeia (USP) dissolution apparatuses I and II based on limited experimental dissolution data (at minimum two dissolution profiles at different apparatus settings). The process accounts for formulation-specific drug release behavior and hydrodynamics in the apparatuses over the range of typical agitation rates and medium volumes. This modeling process involves measurement of experimental mass transfer coefficients via a conventional mass balance and the relationship of said mass transfer coefficients to hydrodynamics and apparatus setting via computational fluid dynamics (CFD). A novel 1-D model is hence established, which provided calibration data for a particular formulation, can model mass transfer coefficients and their corresponding drug release at apparatus configurations of interest. Based on validation against experimental data produced from five erosion-based formulations over a range of apparatus configurations, accuracy within 8 %LA (labelled amount of API) and an average root mean square deviation of 3 %LA is achieved. With this predictive capability, minimizing the number of dissolution experiments and the amount of chemical materials needed during method development appears feasible.
Collapse
Affiliation(s)
- Alexander M Kubinski
- Analytical Research and Development, Development Sciences, AbbVie Inc., North Chicago, IL 60208, United States.
| | - Gayathri Shivkumar
- Science and Technology, Operations, AbbVie Inc., North Chicago, IL 60208, United States
| | - Reuben A Georgi
- Department of Aeronautical and Astronautical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Susan George
- Analytical Research and Development, Development Sciences, AbbVie Inc., North Chicago, IL 60208, United States
| | - James Reynolds
- Non-Clinical Statistics, Development Sciences, AbbVie Inc., North Chicago, IL 60208, United States
| | - Ricardo D Sosa
- Analytical Research and Development, Development Sciences, AbbVie Inc., North Chicago, IL 60208, United States
| | - Tzuchi R Ju
- Analytical Research and Development, Development Sciences, AbbVie Inc., North Chicago, IL 60208, United States
| |
Collapse
|
9
|
Niosomal entrapment improved the bactericidal properties of azithromycin against methicillin-resistant Staphylococcus aureus. Ther Deliv 2022; 13:391-402. [DOI: 10.4155/tde-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim: This study seeks to optimize niosomal formulations of azithromycin (AZ) and evaluate their activities against methicillin-resistant Staphylococcus aureus (MRSA). Methods: The thin-film hydration was used to prepare niosomes containing various molar ratios of span 60, cholesterol, dicetylphosphate and AZ. Formulation 5, with 5:1:1:1 molar ratio, was optimized based on entrapment efficiency. Solid state analyses and accelerated stability were carried out. The antibacterial properties against MRSA was determined by agar well diffusion method. Results: Physico-chemical characterization of formulation 5 confirmed successful encapsulation of AZ with slightly improved stability at 30°C for 6 months. Niosomal AZ at 0.1% is as effective as vancomycin in inhibiting the growth of MRSA. Conclusion: The antibacterial activities of AZ against MRSA is enhanced when encapsulated within niosomes.
Collapse
|
10
|
Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09565-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|