1
|
Ritt P, Fernández R, Soza-Ried C, Nicolai H, Amaral H, Krieger K, Mapanao AK, Rotger A, Zhernosekov K, Schibli R, Müller C, Kramer V. Biodistribution and dosimetry of [ 177Lu]Lu-SibuDAB in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2025; 52:2431-2443. [PMID: 39894880 PMCID: PMC12119710 DOI: 10.1007/s00259-025-07102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE Several prostate-specific membrane antigen (PSMA) radiopharmaceuticals have been used for the treatment of metastatic, castration-resistant prostate cancer (mCRPC). In an attempt to improve the tumour accumulation, new PSMA ligands were developed with an albumin-binding entity to enhance the blood circulation and, hence, tumour accumulation. In preclinical studies, [177Lu]Lu-SibuDAB, a radiopharmaceutical with moderate albumin-binding properties, outperformed [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T. The aim of this study was to evaluate the dosimetry of [177Lu]Lu-SibuDAB in patients diagnosed mCRPC. METHODS Seventeen patients (median age 72 years, range 63‒83) diagnosed with progressive disease of mCRPC were included in this prospective study after exhausting all available treatment options. They were injected with 5.3 ± 0.5 GBq (mean ± standard deviation) [177Lu]Lu-SibuDAB as a first treatment cycle. Sixteen of these patients underwent sequential whole-body SPECT/CT and activity determination in venous blood samples for dosimetry purposes. Absorbed doses to the salivary glands, liver, spleen, kidneys, and red marrow as well as selected tumour lesions were calculated in OLINDA/EXM™ and compared to published values for previously established PSMA radiopharmaceuticals. RESULTS Absorbed dose coefficients (ADC) to tumours (9.9 ± 5.4 Gy/GBq) were about 2-fold higher than those reported for clinically approved PSMA radiopharmaceuticals. ADC to salivary glands, liver, spleen, kidneys and red marrow were higher (0.5 ± 0.2, 0.2 ± 0.05, 0.2 ± 0.1, 1.8 ± 0.6, 0.1 ± 0.04 Gy/GBq, respectively) than for [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T, but lower than for [177Lu]Lu-PSMA-ALB-56, a previously investigated long-circulating PSMA radiopharmaceutical. The tumour-to-kidneys, tumour-to-red marrow, tumour-to-salivary glands ADC ratio were 6.6, 102, 33.1. These ratios were comparable to those of [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T for kidneys and red-marrow, but higher for salivary glands. CONCLUSION [177Lu]Lu-SibuDAB showed a prolonged blood circulation time and, hence, a significantly increased absorbed tumour dose, while tumour-to-organ ADC ratios were similar to conventional PSMA radiopharmaceuticals. Further clinical investigations to evaluate the efficacy and safety of [177Lu]Lu-SibuDAB are, thus, warranted.
Collapse
Affiliation(s)
- Philipp Ritt
- ITM Oncologics GmbH, Lichtenbergstrasse 1, 85748, Garching, Munich, Germany.
- Chair for Clinical Nuclear Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - René Fernández
- Center for Nuclear Medicine & PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
| | - Cristian Soza-Ried
- Center for Nuclear Medicine & PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Heinz Nicolai
- Center for Nuclear Medicine & PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
- Departamento de Urología, Hospital Clínico San Borja Arriarán, Universidad de Chile, Santiago, Chile
| | - Horacio Amaral
- Center for Nuclear Medicine & PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
- Positronpharma SA, 7501068, Providencia, Santiago, Chile
| | - Korbinian Krieger
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, 5232, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Ana Katrina Mapanao
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, 5232, Villigen-PSI, Switzerland
| | - Amanda Rotger
- ITM Oncologics GmbH, Lichtenbergstrasse 1, 85748, Garching, Munich, Germany
| | | | - Roger Schibli
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, 5232, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, 5232, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Vasko Kramer
- Center for Nuclear Medicine & PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
- Positronpharma SA, 7501068, Providencia, Santiago, Chile
| |
Collapse
|
2
|
Yang H, Wang J, Wen X, Guo H, Jakobsson V, Zhao T, Zeng F, Shen H, Zhang H, Liu X, Qin Y, Li X, Xiong H, Zhou Z, Zhang J, Chen X. Dansylated Amino Acid-Modified Long-Acting PSMA Derivatives 68Ga/ 177Lu-LNC1011 as Prostate Cancer Theranostics. J Nucl Med 2025; 66:739-747. [PMID: 40113222 DOI: 10.2967/jnumed.124.268959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radiopharmaceutical therapy has demonstrated promising potential for treating metastatic castration-resistant prostate cancer. Recently, albumin-binding motif-modified PSMA radioligands with prolonged blood circulation were developed to improve tumor uptake and therapeutic effectiveness, properties which, however, were associated with an increased risk of bone marrow toxicity. This study presents new PSMA-targeted radioligands incorporating dansylated amino acids as relatively weak and preferable albumin binders to achieve a fine balance between increased tumor accumulation, safety, and diagnostic efficacy, facilitating a unified approach to theranostics within a single molecular framework. Methods: Three novel PSMA ligands ([68Ga]Ga-Dan-Gly-PSMA, [68Ga]Ga-Dan-Nva-PSMA, and [68Ga]Ga-Dan-Phe-PSMA, denoted as [68Ga]Ga-LNC1011) were synthesized with dansylated amino acids and measured the albumin-binding properties with human serum albumin through ultrafiltration experiments. Binding affinity and PSMA-targeting specificity were investigated using a saturation binding assay and cell uptake in the PSMA-induced prostate cancer 3 cell line (PC3-PIP). PET imaging in PC3-PIP tumor-bearing mice was performed to evaluate the preclinical pharmacokinetics and diagnostic efficiency of 68Ga-labeled PSMA ligands. Tumor uptake of [177Lu]Lu-LNC1011 was evaluated through SPECT/CT imaging and biodistribution studies. Radiopharmaceutical therapy studies were conducted to systematically assess the therapeutic effect of the radioligand. Results: Three novel PSMA radioligands ([68Ga]Ga-Dan-Gly-PSMA, [68Ga]Ga-Dan-Nva-PSMA, and [68Ga]Ga-LNC1011) with various dansylated amino acids were successfully synthesized with a radiochemical yield greater than 97%. In the PC3-PIP xenograft tumor model, the tumor/heart, tumor/liver, tumor/kidney, and tumor/muscle ratios were 9.82 ± 2.35, 12.42 ± 3.71, 4.36 ± 0.29, and 52.88 ± 12.08 at 4 h after injection, respectively. Biodistribution studies confirmed the significantly higher tumor uptake of [177Lu]Lu-LNC1011 (127.36 ± 16.95 %ID/g) over [177Lu]Lu-PSMA-617 (17.44 ± 6.29 %ID/g) at 4 h after injection, and no decrease was measured for the [177Lu]Lu-LNC1011 at up to 72 h after injection, which was corroborated with SPECT imaging. A single injection of 9.3 MBq of [177Lu]Lu-LNC1011 achieved 89.43% inhibition of tumor growth, equivalent to 18.5 MBq of [177Lu]Lu-PSMA-617 (90.87%). [68Ga]Ga-LNC1011 PET/CT scans of patients with metastatic castration-resistant prostate cancer identified as many lesions as [68Ga]Ga-PSMA-11 did, confirming its diagnostic efficacy. Conclusion: 68Ga/177Lu-LNC1011, characterized by high tumor uptake and retention along with timely clearance from normal organs and tissues, thus emerges as a promising single-molecule theranostic radioligand.
Collapse
Affiliation(s)
- Hongzhang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'an Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Theranostics Center of Excellenece, Yong Loo Lin School of Medicine, National University of Singapore, Helios, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jiarou Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xuejun Wen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Theranostics Center of Excellenece, Yong Loo Lin School of Medicine, National University of Singapore, Helios, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huifeng Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'an Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Theranostics Center of Excellenece, Yong Loo Lin School of Medicine, National University of Singapore, Helios, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Theranostics Center of Excellenece, Yong Loo Lin School of Medicine, National University of Singapore, Helios, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fantian Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'an Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Huaxiang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'an Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Heng Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'an Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaomin Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'an Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'an Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Xinyi Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'an Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Hehe Xiong
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'an Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'an Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore;
- Theranostics Center of Excellenece, Yong Loo Lin School of Medicine, National University of Singapore, Helios, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore;
- Theranostics Center of Excellenece, Yong Loo Lin School of Medicine, National University of Singapore, Helios, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore; and
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore
| |
Collapse
|
3
|
Nakashima K, Ichinose T, Watanabe H, Ono M. Comparison of carbonic anhydrase-IX-targeted trifunctional radioligands between linear- and branched-chain arrangements. FRONTIERS IN NUCLEAR MEDICINE 2025; 5:1585027. [PMID: 40308720 PMCID: PMC12040898 DOI: 10.3389/fnume.2025.1585027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
Background Carbonic anhydrase-IX (CA-IX) is overexpressed in tumors due to hypoxic conditions and considered an attractive biomarker for tumor-targeting radioligands. The introduction of an albumin binder (ALB) to radioligands can delay their renal clearance, resulting in increased radioactivity delivered to tumors and decreased renal uptake of radioligands. In this study, we designed novel CA-IX-targeted trifunctional radioligands consisting of imidazothiadiazole sulfonamide (IS) as a CA-IX-targeted ligand, DOTA as a chelator with four free carboxylic groups, and lysine-conjugated 4-(p-iodophenyl)butyric acid (Lys-IPBA) as ALB, with IS-[111In]In-DOTADG-ALB in a linear-chain arrangement and [111In]In-DOTAGA-ALB-IS in a branched-chain arrangement. Fundamental properties of IS-[111In]In-DOTADG-ALB and [111In]In-DOTAGA-ALB-IS were evaluated by in vitro and in vivo assays. Methods IS-DOTADG-ALB and DOTAGA-ALB-IS were synthesized and radiolabeled with [111In]InCl3. The stability of IS-[111In]In-DOTADG-ALB and [111In]In-DOTAGA-ALB-IS was evaluated by HPLC analysis after incubation in murine plasma. A cell saturation binding assay using CA-IX-positive HT-29 cells and albumin-binding assay were performed for IS-[111In]In-DOTADG-ALB and [111In]In-DOTAGA-ALB-IS to evaluate their capacity to bind CA-IX and albumin. Biodistribution assays of IS-[111In]In-DOTADG-ALB and [111In]In-DOTAGA-ALB-IS were performed using HT-29 tumor-bearing mice to evaluate their pharmacokinetics. Results IS-[111In]In-DOTADG-ALB and [111In]In-DOTAGA-ALB-IS were successfully synthesized by ligand substitution reaction from their corresponding precursors. IS-[111In]In-DOTADG-ALB and [111In]In-DOTAGA-ALB-IS exhibited similar stabilities in murine plasma and affinities to CA-IX, although the affinities to albumin were higher for [111In]In-DOTAGA-ALB-IS compared with IS-[111In]In-DOTADG-ALB. In the biodistribution assays, [111In]In-DOTAGA-ALB-IS showed higher blood retention and tumor accumulation and lower renal uptake than IS-[111In]In-DOTADG-ALB, reflecting their albumin-binding affinities. Conclusion These data suggest that the branched-chain arrangement of DOTAGA-ALB-IS may be useful for the design of CA-IX-targeted radioligands consisting of an IS ligand, DOTA, and Lys-IPBA.
Collapse
Affiliation(s)
| | | | | | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Kazuta N, Nakashima K, Watanabe H, Ono M. Effect of Linker Entities on Pharmacokinetics of 111In-Labeled Prostate-Specific Membrane Antigen-Targeting Ligands with an Albumin Binder. ACS Pharmacol Transl Sci 2024; 7:2401-2413. [PMID: 39144550 PMCID: PMC11320743 DOI: 10.1021/acsptsci.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
In the field of radiopharmaceutical development targeting cancer, an albumin binder (ALB) is commonly used to improve accumulation of radioligands in tumors because it has high binding affinity for albumin and extends the circulation time of radioligands. The further development of ALB-containing radioligands is also expected to regulate their pharmacokinetics. In this study, we newly designed and synthesized [111In]In-PNT-DA1 derivatives, prostate-specific membrane antigen (PSMA)-targeting radioligands including a functional linker (d-glutamic acid or 4-(aminomethyl)benzoic acid), and evaluated the relationships among the structure, albumin-binding affinity, and pharmacokinetics. These derivatives showed a different binding affinity for albumin by the introduction of a linker. Biodistribution studies revealed that the introduction of a linker affects the pharmacokinetics of each derivative. The biodistribution studies also suggested that moderate albumin-binding affinity enhances the tumor/kidney ratio of the derivative. SPECT imaging using [111In]In-PNT-DA3 with the highest tumor/kidney ratio among [111In]In-PNT-DA1 derivatives led to clear visualization of a PSMA-positive LNCaP tumor. The results suggest that the appropriate introduction of linker entities may be necessary to improve the pharmacokinetics of PSMA-targeting radioligands.
Collapse
Affiliation(s)
- Nobuki Kazuta
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Sakyo-ku 606-8501, Japan
| | - Kazuma Nakashima
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Sakyo-ku 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Sakyo-ku 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Sakyo-ku 606-8501, Japan
| |
Collapse
|
5
|
Echigo H, Munekane M, Fuchigami T, Washiyama K, Mishiro K, Wakabayashi H, Takahashi K, Kinuya S, Ogawa K. Optimizing the pharmacokinetics of an 211At-labeled RGD peptide with an albumin-binding moiety via the administration of an albumin-binding inhibitor. Eur J Nucl Med Mol Imaging 2024; 51:2663-2671. [PMID: 38570359 PMCID: PMC11224111 DOI: 10.1007/s00259-024-06695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE A probe for targeted alpha therapy (TAT) using the RGD peptide (Ga-DOTA-K([211At]APBA)-c(RGDfK) ([211At]1)) with albumin-binding moiety (ABM) was recently developed. [211At]1 highly accumulated in tumors and significantly inhibited tumor growth in U-87 MG tumor-bearing mice. However, high [211At]1 retention in blood may cause critical adverse events, such as hematotoxicity. Therefore, we attempted to accelerate the blood clearance of [211At]1 by competitively inhibiting the binding of [211At]1 to albumin to modulate the pharmacokinetics of the former. METHODS To evaluate the effects of albumin-binding inhibitors in normal mice, sodium 4-(4-iodophenyl)butanoate at 2, 5, or 10 molar equivalents of blood albumin was administered at 1-h postinjection of [211At]1. The biodistribution of [211At]1, SPECT/CT imaging of [67Ga]Ga-DOTA-K(IPBA)-c(RGDfK) ([67Ga]2), and the therapeutic effects of [211At]1 were compared with or without IPBA administration in U-87 MG tumor-bearing mice. RESULTS Blood radioactivity of [211At]1 was decreased in a dose-dependent manner with IPBA in normal mice. In U-87 MG tumor-bearing mice, the blood radioactivity and accumulation in nontarget tissues of [211At]1 were decreased by IPBA. Meanwhile, tumor [211At]1 accumulation was not changed at 3-h postinjection of IPBA. In SPECT/CT imaging of [67Ga]2, IPBA administration dramatically decreased radioactivity in nontarget tissues, and only tumor tissue was visualized. In therapeutic experiments, [211At]1 with IPBA injected-group significantly inhibited tumor growth compared to the control group. CONCLUSION IPBA administration (as an albumin-binding inhibitor) could modulate the pharmacokinetics and enhance the therapeutic effects of [211At]1.
Collapse
Affiliation(s)
- Hiroaki Echigo
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-Machi 13-1, Kanazawa, 920-8641, Ishikawa, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-Machi 13-1, Kanazawa, 920-8641, Ishikawa, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Ishikawa, Japan.
| |
Collapse
|
6
|
de Roode KE, Joosten L, Behe M. Towards the Magic Radioactive Bullet: Improving Targeted Radionuclide Therapy by Reducing the Renal Retention of Radioligands. Pharmaceuticals (Basel) 2024; 17:256. [PMID: 38399470 PMCID: PMC10892921 DOI: 10.3390/ph17020256] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.
Collapse
Affiliation(s)
- Kim E. de Roode
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
7
|
Tschan VJ, Busslinger SD, Bernhardt P, Grundler PV, Zeevaart JR, Köster U, van der Meulen NP, Schibli R, Müller C. Albumin-Binding and Conventional PSMA Ligands in Combination with 161Tb: Biodistribution, Dosimetry, and Preclinical Therapy. J Nucl Med 2023; 64:1625-1631. [PMID: 37442604 DOI: 10.2967/jnumed.123.265524] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The favorable decay characteristics of 161Tb attracted the interest of clinicians in using this novel radionuclide for radioligand therapy (RLT). 161Tb decays with a similar half-life to 177Lu, but beyond the emission of β--particles and γ-rays, 161Tb also emits conversion and Auger electrons, which may be particularly effective to eliminate micrometastases. The aim of this study was to compare the dosimetry and therapeutic efficacy of 161Tb and 177Lu in tumor-bearing mice using SibuDAB and PSMA-I&T, which differ in their blood residence time and tumor uptake. Methods: [161Tb]Tb-SibuDAB and [161Tb]Tb-PSMA-I&T were evaluated in vitro and investigated in biodistribution, imaging, and therapy studies using PC-3 PIP tumor-bearing mice. The 177Lu-labeled counterparts served for dose calculations and comparison of therapeutic efficacy. The tolerability of RLT in mice was monitored on the basis of body mass, blood plasma parameters, blood cell counts, and the histology of relevant organs and tissues. Results: The prostate-specific membrane antigen (PSMA)-targeting radioligands, irrespective of whether labeled with 161Tb or 177Lu, showed similar in vitro data and comparable tissue distribution profiles. As a result of the albumin-binding properties, [161Tb]Tb/[177Lu]Lu-SibuDAB had an enhanced blood residence time and higher tumor uptake (62%-69% injected activity per gram at 24 h after injection) than [161Tb]Tb/[177Lu]Lu-PSMA-I&T (30%-35% injected activity per gram at 24 h after injection). [161Tb]Tb-SibuDAB inhibited tumor growth more effectively than [161Tb]Tb-PSMA-I&T, as can be ascribed to its 4-fold increased absorbed tumor dose. At any of the applied activities, the 161Tb-based radioligands were therapeutically more effective than their 177Lu-labeled counterparts, as agreed with the approximately 40% increased tumor dose of 161Tb compared with that of 177Lu. Under the given experimental conditions, no obvious adverse events were observed. Conclusion: The data of this study indicate the promising potential of 161Tb in combination with SibuDAB for RLT of prostate cancer. Future clinical studies using 161Tb-based RLT will shed light on a potential clinical benefit of 161Tb over 177Lu.
Collapse
Affiliation(s)
- Viviane J Tschan
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Sarah D Busslinger
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Peter Bernhardt
- Department of Radiation Physics, Institution of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pascal V Grundler
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Jan Rijn Zeevaart
- Radiochemistry, South African Nuclear Energy Corporation (Necsa), Brits, South Africa
| | | | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen-PSI, Switzerland; and
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Villigen-PSI, Switzerland;
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Alati S, Singh R, Pomper MG, Rowe SP, Banerjee SR. Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer. Semin Nucl Med 2023; 53:663-686. [PMID: 37468417 DOI: 10.1053/j.semnuclmed.2023.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Prostate cancer is a leading cause of cancer death in men worldwide. Among the various treatment options, radiopharmaceutical therapy has shown notable success in metastatic, castration-resistant disease. Radiopharmaceutical therapy is a systemic approach that delivers cytotoxic radiation doses precisely to the malignant tumors and/or tumor microenvironment. Therapeutic radiopharmaceuticals are composed of a therapeutic radionuclide and a high-affinity, tumor-targeting carrier molecule. Therapeutic radionuclides used in preclinical prostate cancer studies are primarily α-, β--, or Auger-electron-emitting radiometals or radiohalogens. Monoclonal antibodies, antibody-derived fragments, peptides, and small molecules are frequently used as tumor-targeting molecules. Over the years, several important membrane-associated proteases and receptors have been identified, validated, and subsequently used for preclinical radiotherapeutic development for prostate cancer. Prostate-specific membrane antigen (PSMA) is the most well-studied prostate cancer-associated protease in preclinical literature. PSMA-targeting radiotherapeutic agents are being investigated using high-affinity antibody- and small-molecule-based agents for safety and efficacy. Early generations of such agents were developed simply by replacing radionuclides of the imaging agents with therapeutic ones. Later, extensive structure-activity relationship studies were conducted to address the safety and efficacy issues obtained from initial patient data. Recent regulatory approval of the 177Lu-labeled low-molecular-weight agent, 177Lu-PSMA-617, is a significant accomplishment. Current preclinical experiments are focused on the structural modification of 177Lu-PSMA-617 and relevant investigational agents to increase tumor targeting and reduce off-target binding and toxicity in healthy organs. While lutetium-177 (177Lu) remains the most widely used radionuclide, radiolabeled analogs with iodine-131 (128I), yttrium-90 (89Y), copper-67 (67Cu), and terbium-161 (161Tb) have been evaluated as potential alternatives in recent years. In addition, agents carrying the α-particle-emitting radiohalogen, astatine-211 (211At), or radiometals, actinium-225 (225Ac), lead-212 (212Pb), radium-223 (223Ra), and thorium-227 (227Th), have been increasingly investigated in preclinical research. Besides PSMA-based radiotherapeutics, other prominent prostate cancer-related proteases, for example, human kallikrein peptidases (HK2 and HK3), have been explored using monoclonal-antibody-(mAb)-based targeting platforms. Several promising mAbs targeting receptors overexpressed on the different stages of prostate cancer have also been developed for radiopharmaceutical therapy, for example, Delta-like ligand 3 (DLL-3), CD46, and CUB domain-containing protein 1 (CDCP1). Progress is also being made using peptide-based targeting platforms for the gastrin-releasing peptide receptor (GRPR), a well-established membrane-associated receptor expressed in localized and metastatic prostate cancers. Furthermore, mechanism-driven combination therapies appear to be a burgeoning area in the context of preclinical prostate cancer radiotherapeutics. Here, we review the current developments related to the preclinical radiopharmaceutical therapy of prostate cancer. These are summarized in two major topics: (1) therapeutic radionuclides and (2) tumor-targeting approaches using monoclonal antibodies, small molecules, and peptides.
Collapse
Affiliation(s)
- Suresh Alati
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Rajan Singh
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
9
|
Jang A, Kendi AT, Johnson GB, Halfdanarson TR, Sartor O. Targeted Alpha-Particle Therapy: A Review of Current Trials. Int J Mol Sci 2023; 24:11626. [PMID: 37511386 PMCID: PMC10380274 DOI: 10.3390/ijms241411626] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Radiopharmaceuticals are rapidly developing as a field, with the successful use of targeted beta emitters in neuroendocrine tumors and prostate cancer serving as catalysts. Targeted alpha emitters are in current development for several potential oncologic indications. Herein, we review the three most prevalently studied conjugated/chelated alpha emitters (225actinium, 212lead, and 211astatine) and focus on contemporary clinical trials in an effort to more fully appreciate the breadth of the current evaluation. Phase I trials targeting multiple diseases are now underway, and at least one phase III trial (in selected neuroendocrine cancers) is currently in the initial stages of recruitment. Combination trials are now also emerging as alpha emitters are integrated with other therapies in an effort to create solutions for those with advanced cancers. Despite the promise of targeted alpha therapies, many challenges remain. These challenges include the development of reliable supply chains, the need for a better understanding of the relationships between administered dose and absorbed dose in both tissue and tumor and how that predicts outcomes, and the incomplete understanding of potential long-term deleterious effects of the alpha emitters. Progress on multiple fronts is necessary to bring the potential of targeted alpha therapies into the clinic.
Collapse
Affiliation(s)
- Albert Jang
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ayse T Kendi
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Oliver Sartor
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Deshayes E, Fersing C, Thibault C, Roumiguie M, Pourquier P, Houédé N. Innovation in Radionuclide Therapy for the Treatment of Prostate Cancers: Radiochemical Perspective and Recent Therapeutic Practices. Cancers (Basel) 2023; 15:3133. [PMID: 37370743 DOI: 10.3390/cancers15123133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer represents the second cause of death by cancer in males in western countries. While early-stage diseases are accessible to surgery and/or external radiotherapy, advanced metastatic prostate cancers are primarily treated with androgen deprivation therapy, to which new generation androgen receptor antagonists or taxane-based chemotherapies are added in the case of tumor relapse. Nevertheless, patients become invariably resistant to castration with a median survival that rarely exceeds 3 years. This fostered the search for alternative strategies, independent of the androgen receptor signaling pathway. In this line, radionuclide therapies may represent an interesting option as they could target either the microenvironment of sclerotic bone metastases with the use of radiopharmaceuticals containing samarium-153, strontium-89 or radium-223 or tumor cells expressing the prostate-specific membrane antigen (PSMA), a protein found at the surface of prostate cancer cells. This review gives highlights the chemical properties of radioligands targeting prostate cancer cells and recapitulates the clinical trials evaluating the efficacy of radionuclide therapies, alone or in combination with other approved treatments, in patients with castration-resistant prostate tumors. It discusses some of the encouraging results obtained, especially the benefit on overall survival that was reported with [177Lu]-PSMA-617. It also addresses the specific requirements for the use of this particular class of drugs, both in terms of medical staff coordination and adapted infrastructures for efficient radioprotection.
Collapse
Affiliation(s)
- Emmanuel Deshayes
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
- Department of Nuclear Medicine, Institute du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Department of Nuclear Medicine, Institute du Cancer de Montpellier (ICM), 34298 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Constance Thibault
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP Centre, 75015 Paris, France
| | - Mathieu Roumiguie
- Urology Department, Andrology and Renal Transplantation, CHU Rangueil, 31059 Toulouse, France
| | - Philippe Pourquier
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
| | - Nadine Houédé
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
- Medical Oncology Department, Institute de Cancérologie du Gard-CHU Caremeau, 30009 Nîmes, France
| |
Collapse
|
11
|
Busslinger SD, Tschan VJ, Richard OK, Talip Z, Schibli R, Müller C. [ 225Ac]Ac-SibuDAB for Targeted Alpha Therapy of Prostate Cancer: Preclinical Evaluation and Comparison with [ 225Ac]Ac-PSMA-617. Cancers (Basel) 2022; 14:5651. [PMID: 36428743 PMCID: PMC9688344 DOI: 10.3390/cancers14225651] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
In the present study, SibuDAB, an albumin-binding PSMA ligand, was investigated in combination with actinium-225 and the data were compared with those of [225Ac]Ac-PSMA-617. In vitro, [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617 showed similar tumor cell uptake and PSMA-binding affinities as their 177Lu-labeled counterparts. The in vitro binding to serum albumin in mouse and human blood plasma, respectively, was 2.8-fold and 1.4-fold increased for [225Ac]Ac-SibuDAB as compared to [177Lu]Lu-SibuDAB. In vivo, this characteristic was reflected by the longer retention of [225Ac]Ac-SibuDAB in the blood than previously seen for [177Lu]Lu-SibuDAB. Similar to [225Ac]Ac-PSMA-617, [225Ac]Ac-SibuDAB was well tolerated at 30 kBq per mouse. Differences in blood cell counts were observed between treated mice and untreated controls, but no major variations were observed between values obtained for [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617. [225Ac]Ac-SibuDAB was considerably more effective to treat PSMA-positive tumor xenografts than [225Ac]Ac-PSMA-617. Only 5 kBq per mouse were sufficient to eradicate the tumors, whereas tumor regrowth was observed for mice treated with 5 kBq [225Ac]Ac-PSMA-617 and only one out of six mice survived until the end of the study. The enhanced therapeutic efficacy of [225Ac]Ac-SibuDAB as compared to that of [225Ac]Ac-PSMA-617 and reasonable safety data qualify this novel radioligand as a candidate for targeted α-therapy of prostate cancer.
Collapse
Affiliation(s)
- Sarah D. Busslinger
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Viviane J. Tschan
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | | | - Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, ETH Zurich, 8093 Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Albumin-Mediated Size Exclusion Chromatography: The Apparent Molecular Weight of PSMA Radioligands as Novel Parameter to Estimate Their Blood Clearance Kinetics. Pharmaceuticals (Basel) 2022; 15:ph15091161. [PMID: 36145382 PMCID: PMC9500755 DOI: 10.3390/ph15091161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A meticulously adjusted pharmacokinetic profile and especially fine-tuned blood clearance kinetics are key characteristics of therapeutic radiopharmaceuticals. We, therefore, aimed to develop a method that allowed the estimation of blood clearance kinetics in vitro. For this purpose, 177Lu-labeled PSMA radioligands were subjected to a SEC column with human serum albumin (HSA) dissolved in a mobile phase. The HSA-mediated retention time of each PSMA ligand generated by this novel 'albumin-mediated size exclusion chromatography' (AMSEC) was converted to a ligand-specific apparent molecular weight (MWapp), and a normalization accounting for unspecific interactions between individual radioligands and the SEC column matrix was applied. The resulting normalized MWapp,norm. could serve to estimate the blood clearance of renally excreted radioligands by means of their influence on the highly size-selective process of glomerular filtration (GF). Based on the correlation between MW and the glomerular sieving coefficients (GSCs) of a set of plasma proteins, GSCcalc values were calculated to assess the relative differences in the expected GF/blood clearance kinetics in vivo and to select lead candidates among the evaluated radioligands. Significant differences in the MWapp,norm. and GSCcalc values, even for stereoisomers, were found, indicating that AMSEC might be a valuable and high-resolution tool for the preclinical selection of therapeutic lead compounds for clinical translation.
Collapse
|