1
|
Xu X, Wang X, Liao YP, Luo L, Nel AE. Reprogramming the Tolerogenic Immune Response Against Pancreatic Cancer Metastases by Lipid Nanoparticles Delivering a STING Agonist Plus Mutant KRAS mRNA. ACS NANO 2025; 19:8579-8594. [PMID: 40025875 PMCID: PMC11912578 DOI: 10.1021/acsnano.4c14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
We demonstrate reprogramming of the tolerogenic immune environment in the liver for mounting an effective immune response against often-fatal pancreatic cancer metastases. This was achieved by engineering a lipid nanoparticle (LNP) to deliver mRNA encoding the KRAS G12D neoantigenic epitope along with cGAMP, a dinucleotide agonist of the stimulator of the interferon genes (STING) pathway, capable of activating a type I interferon response. cGAMP/mKRAS/LNP were synthesized by a microfluidics approach involving nanoprecipitation of mRNA and cGAMP by an ionizable lipid, MC3. Controls included nanoparticles delivering individual components or a wild-type RAS sequence. The dual delivery carrier successfully activated the type I interferon pathway in vitro as well as in vivo, with reprogramming of costimulatory receptor (CD80 and CD86) and MHC-I expression on liver antigen-presenting cells (APC). This allowed the generation of IFN-γ producing cytotoxic T cells, capable of mounting an effective immune response in the metastatic KRAS pancreatic cancer (KPC) mouse model. Noteworthy, intravenous injection of cGAMP/mKRAS/LNP suppressed metastatic growth significantly and prolonged animal survival, both prophylactically and during treatment of established metastases. The protective immune response was mediated by the generation of perforin-releasing CD8+ cytotoxic T cells, engaged in pancreatic cancer cell killing. Importantly, the immune response could also be adoptively transferred by injecting splenocytes (containing memory T cells) from treated into nontreated recipient mice. This study demonstrates that reprogramming the immune-protective niche for metastatic pancreatic cancer can be achieved by the delivery of a STING agonist and mutant KRAS mRNA via ionizable LNPs, offering both prophylactic and therapeutic advantages.
Collapse
Affiliation(s)
- Xiao Xu
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Lijia Luo
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Andre E. Nel
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Stiepel RT, Simpson SR, Lukesh NR, Middleton DD, Hendy DA, Ontiveros-Padilla L, Ehrenzeller SA, Islam MJ, Pena ES, Carlock MA, Ross TM, Bachelder EM, Ainslie KM. Induction of Antigen-Specific Tolerance in a Multiple Sclerosis Model without Broad Immunosuppression. ACS NANO 2025; 19:3764-3780. [PMID: 39812522 DOI: 10.1021/acsnano.4c14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Multiple sclerosis (MS) is a severe autoimmune disorder that wreaks havoc on the central nervous system, leading to a spectrum of motor and cognitive impairments. There is no cure, and current treatment strategies rely on broad immunosuppression, leaving patients vulnerable to infections. To address this problem, our approach aims to induce antigen-specific tolerance, a much-needed shift in MS therapy. We have engineered a tolerogenic therapy consisting of spray-dried particles made of a degradable biopolymer, acetalated dextran, and loaded with an antigenic peptide and tolerizing drug, rapamycin (Rapa). After initial characterization and optimization, particles were tested in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis model of MS. Representing the earliest possible time of diagnosis, mice were treated at symptom onset in an early therapeutic model, where particles containing MOG and particles containing Rapa+MOG evoked significant reductions in clinical score. Particles were then applied to a highly clinically relevant late therapeutic model during peak disease, where MOG particles and Rapa+MOG particles each elicited a dramatic therapeutic effect, reversing hind limb paralysis and restoring fully functional limbs. To confirm the antigen specificity of our therapy, we immunized mice against the influenza antigen hemagglutinin (HA) and treated them with MOG particles or Rapa+MOG particles. The particles did not suppress antibody responses against HA. Our findings underscore the potential of this particle-based therapy to reverse autoimmunity in disease-relevant models without compromising immune competence, setting it apart from existing treatments.
Collapse
Affiliation(s)
- Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sean R Simpson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Denzel D Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dylan A Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Luis Ontiveros-Padilla
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen A Ehrenzeller
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Jahirul Islam
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Michael A Carlock
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, Florida 34987, United States
| | - Ted M Ross
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, Florida 34987, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States
- Department of Infectious Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology & Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Arora K, Sheehy TL, Schulman JA, Kimmel BR, McAtee C, Bharti V, Weaver AM, Wilson JT. Macromolecular Diamidobenzimidazole Conjugates Activate STING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634206. [PMID: 39896685 PMCID: PMC11785100 DOI: 10.1101/2025.01.21.634206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pharmacologic activation of the stimulator of interferon genes (STING) pathway has broad potential applications, including the treatment of cancer and viral infections, which has motivated the synthesis and testing of a diversity of STING agonists as next generation immunotherapeutics. A promising class of STING agonists are the non-nucleotide, small molecule, dimeric-amidobenzimidazoles (diABZI), which have been recently used in the synthesis of polymer- and antibody-drug conjugates to improve pharmacokinetics, modulate biodistribution, and to confer other favorable properties for specific disease applications. These approaches have leveraged diABZI variants functionalized with reactive handles and enzyme-cleavable linkers at the 7-position of the benzimidazole for conjugation to and tunable drug release from carriers. However, since this position does not interact with STING and is exposed from the binding pocket when bound in an "open lid" configuration, we sought to evaluate the activity of macromolecular diABZI conjugates that lack enzymatic release and are instead conjugated to polymers via a stable linker. By covalently ligating diABZI to 5 or 20 kDa mPEG chains via an amide bond, we surprisingly found that these conjugates could activate STING in vitro. To further evaluate this phenomenon, we designed a diABZI-functionalized RAFT chain transfer agent that provided an enabling tool for synthesis of large, hydrophilic, dimethylacrylamide (DMA) polymers directly from a single agonist and we found that these conjugates also elicited STING activation in vitro with similar kinetics to highly potent small molecule analogs. We further demonstrated the in vivo activity of these macromolecular diABZI platforms, which inhibited tumor growth to a similar extent as small molecule variants. Using flow cytometry and fluorescence microscopy to evaluate intracellular uptake and distribution of Cy5-labeled analogs, our data indicate that although diABZI-DMA conjugates enter cells via endocytosis, they can still colocalize with the ER, suggesting that intracellular trafficking processes can promote delivery of endocytosed macromolecular diABZI compounds to STING. In conclusion, we have described new chemical strategies for the synthesis of stable macromolecular diABZI conjugates with unexpectedly high immunostimulatory potency, findings with potential implications for the design of polymer-drug conjugates for STING agonist delivery that also further motivate investigation of endosomal and intracellular trafficking as an alternative route for achieving STING activation.
Collapse
|
4
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Bushnell GG, Sharma D, Wilmot HC, Zheng M, Fashina TD, Hutchens CM, Osipov S, Burness M, Wicha MS. Natural Killer Cell Regulation of Breast Cancer Stem Cells Mediates Metastatic Dormancy. Cancer Res 2024; 84:3337-3353. [PMID: 39106452 PMCID: PMC11474167 DOI: 10.1158/0008-5472.can-24-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/04/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Patients with breast cancer with estrogen receptor-positive tumors face a constant risk of disease recurrence for the remainder of their lives. Dormant tumor cells residing in tissues such as the bone marrow may generate clinically significant metastases many years after initial diagnosis. Previous studies suggest that dormant cancer cells display "stem-like" properties (cancer stem cell, CSC), which may be regulated by the immune system. To elucidate the role of the immune system in controlling dormancy and its escape, we studied dormancy in immunocompetent, syngeneic mouse breast cancer models. Three mouse breast cancer cell lines, PyMT, Met1, and D2.0R, contained CSCs that displayed short- and long-term metastatic dormancy in vivo, which was dependent on the host immune system. Each model was regulated by different components of the immune system. Natural killer (NK) cells were key for the metastatic dormancy phenotype in D2.0R cells. Quiescent D2.0R CSCs were resistant to NK cell cytotoxicity, whereas proliferative CSCs were sensitive. Resistance to NK cell cytotoxicity was mediated, in part, by the expression of BACH1 and SOX2 transcription factors. Expression of STING and STING targets was decreased in quiescent CSCs, and the STING agonist MSA-2 enhanced NK cell killing. Collectively, these findings demonstrate the role of immune regulation of breast tumor dormancy and highlight the importance of utilizing immunocompetent models to study this phenomenon. Significance: The immune system controls disseminated breast cancer cells during disease latency, highlighting the need to utilize immunocompetent models to identify strategies for targeting dormant cancer cells and reducing metastatic recurrence. See related commentary by Cackowski and Korkaya, p. 3319.
Collapse
Affiliation(s)
- Grace G. Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Deeksha Sharma
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Henry C. Wilmot
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Michelle Zheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | | | - Chloe M. Hutchens
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Samuel Osipov
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Monika Burness
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Max S. Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
6
|
Hendy DA, Ma Y, Dixon TA, Murphy CT, Pena ES, Carlock MA, Ross TM, Bachelder EM, Ainslie KM, Fenton OS. Polymeric cGAMP microparticles affect the immunogenicity of a broadly active influenza mRNA lipid nanoparticle vaccine. J Control Release 2024; 372:168-175. [PMID: 38844178 PMCID: PMC11283345 DOI: 10.1016/j.jconrel.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Influenza outbreaks are a major burden worldwide annually. While seasonal vaccines do provide protection against infection, they are limited in that they need to be updated every year to account for the constantly mutating virus. Recently, lipid nanoparticles (LNPs) encapsulating mRNA have seen major success as a vaccine platform for SARS-CoV-2. Herein, we applied LNPs to deliver an mRNA encoding a computationally optimized broadly active (COBRA) influenza immunogen. These COBRA mRNA LNPs induced a broadly active neutralizing antibody response and protection after lethal influenza challenge. To further increase the immunogenicity of the COBRA mRNA LNPs, we combined them with acetalated dextran microparticles encapsulating a STING agonist. Contrary to recent findings, the STING agonist decreased the immunogenicity of the COBRA mRNA LNPs which was likely due to a decrease in mRNA translation as shown in vitro. Overall, this work aids in future selection of adjuvants to use with mRNA LNP vaccines.
Collapse
Affiliation(s)
- Dylan A Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Timothy A Dixon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Connor T Murphy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Michael A Carlock
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, FL, USA
| | - Ted M Ross
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, FL, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
7
|
Cossu C, Di Lorenzo A, Fiorilla I, Todesco AM, Audrito V, Conti L. The Role of the Toll-like Receptor 2 and the cGAS-STING Pathways in Breast Cancer: Friends or Foes? Int J Mol Sci 2023; 25:456. [PMID: 38203626 PMCID: PMC10778705 DOI: 10.3390/ijms25010456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer stands as a primary malignancy among women, ranking second in global cancer-related deaths. Despite treatment advancements, many patients progress to metastatic stages, posing a significant therapeutic challenge. Current therapies primarily target cancer cells, overlooking their intricate interactions with the tumor microenvironment (TME) that fuel progression and treatment resistance. Dysregulated innate immunity in breast cancer triggers chronic inflammation, fostering cancer development and therapy resistance. Innate immune pattern recognition receptors (PRRs) have emerged as crucial regulators of the immune response as well as of several immune-mediated or cancer cell-intrinsic mechanisms that either inhibit or promote tumor progression. In particular, several studies showed that the Toll-like receptor 2 (TLR2) and the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathways play a central role in breast cancer progression. In this review, we present a comprehensive overview of the role of TLR2 and STING in breast cancer, and we explore the potential to target these PRRs for drug development. This information will significantly impact the scientific discussion on the use of PRR agonists or inhibitors in cancer therapy, opening up new and promising avenues for breast cancer treatment.
Collapse
Affiliation(s)
- Chiara Cossu
- Department of Molecular Biotechnology and Health Sciences–Molecular Biotechnology Center “Guido Tarone”, University of Turin, Piazza Nizza 44, 10126 Turin, Italy; (C.C.); (A.D.L.)
| | - Antonino Di Lorenzo
- Department of Molecular Biotechnology and Health Sciences–Molecular Biotechnology Center “Guido Tarone”, University of Turin, Piazza Nizza 44, 10126 Turin, Italy; (C.C.); (A.D.L.)
| | - Irene Fiorilla
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (A.M.T.); (V.A.)
| | - Alberto Maria Todesco
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (A.M.T.); (V.A.)
| | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (A.M.T.); (V.A.)
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences–Molecular Biotechnology Center “Guido Tarone”, University of Turin, Piazza Nizza 44, 10126 Turin, Italy; (C.C.); (A.D.L.)
| |
Collapse
|
8
|
Li J, Li Y, Li F, Xu L. NK cell marker gene-based model shows good predictive ability in prognosis and response to immunotherapies in hepatocellular carcinoma. Sci Rep 2023; 13:7294. [PMID: 37147523 PMCID: PMC10163253 DOI: 10.1038/s41598-023-34602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/04/2023] [Indexed: 05/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of malignancy worldwide, and its progression is influenced by the immune microenvironment. Natural killer (NK) cells are essential in the anti-tumor response and have been linked to immunotherapies for cancers. Therefore, it is important to unify and validate the role of NK cell-related gene signatures in HCC. In this study, we used RNA-seq analysis on HCC samples from public databases. We applied the ConsensusClusterPlus tool to construct the consensus matrix and cluster the samples based on their NK cell-related expression profile data. We employed the least absolute shrinkage and selection operator regression analysis to identify the hub genes. Additionally, we utilized the CIBERSORT and ESTIMATE web-based methods to perform immune-related evaluations. Our results showed that the NK cell-related gene-based classification divided HCC patients into three clusters. The C3 cluster was activated in immune activation signaling pathways and showed better prognosis and good clinical features. In contrast, the C1 cluster was remarkably enriched in cell cycle pathways. The stromal score, immune score, and ESTIMATE score in C3 were much higher than those in C2 and C1. Furthermore, we identified six hub genes: CDC20, HMOX1, S100A9, CFHR3, PCN1, and GZMA. The NK cell-related genes-based risk score subgroups demonstrated that a higher risk score subgroup showed poorer prognosis. In summary, our findings suggest that NK cell-related genes play an essential role in HCC prognosis prediction and have therapeutic potential in promoting NK cell antitumor immunity. The six identified hub genes may serve as useful biomarkers for novel therapeutic targets.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
| | - Yi Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
| | - Fulei Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
| |
Collapse
|
9
|
Ontiveros-Padilla L, Batty CJ, Hendy DA, Pena ES, Roque JA, Stiepel RT, Carlock MA, Simpson SR, Ross TM, Abraham SN, Staats HF, Bachelder EM, Ainslie KM. Development of a broadly active influenza intranasal vaccine adjuvanted with self-assembled particles composed of mastoparan-7 and CpG. Front Immunol 2023; 14:1103765. [PMID: 37033992 PMCID: PMC10081679 DOI: 10.3389/fimmu.2023.1103765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Currently licensed vaccine adjuvants offer limited mucosal immunity, which is needed to better combat respiratory infections such as influenza. Mast cells (MCs) are emerging as a target for a new class of mucosal vaccine adjuvants. Here, we developed and characterized a nanoparticulate adjuvant composed of an MC activator [mastoparan-7 (M7)] and a TLR ligand (CpG). This novel nanoparticle (NP) adjuvant was co-formulated with a computationally optimized broadly reactive antigen (COBRA) for hemagglutinin (HA), which is broadly reactive against influenza strains. M7 was combined at different ratios with CpG and tested for in vitro immune responses and cytotoxicity. We observed significantly higher cytokine production in dendritic cells and MCs with the lowest cytotoxicity at a charge-neutralizing ratio of nitrogen/phosphate = 1 for M7 and CpG. This combination formed spherical NPs approximately 200 nm in diameter with self-assembling capacity. Mice were vaccinated intranasally with COBRA HA and M7-CpG NPs in a prime-boost-boost schedule. Vaccinated mice had significantly higher antigen-specific antibody responses (IgG and IgA) in serum and mucosa compared with controls. Splenocytes from vaccinated mice had significantly increased cytokine production upon antigen recall and the presence of central and effector memory T cells in draining lymph nodes. Finally, co-immunization with NPs and COBRA HA induced influenza H3N2-specific HA inhibition antibody titers across multiple strains and partially protected mice from a challenge against an H3N2 virus. These results illustrate that the M7-CpG NP adjuvant combination can induce a protective immune response with a broadly reactive influenza antigen via mucosal vaccination.
Collapse
Affiliation(s)
- Luis Ontiveros-Padilla
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cole J. Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erik S. Pena
- Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, United States
| | - John A. Roque
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebeca T. Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael A. Carlock
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, FL, United States
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Sean R. Simpson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ted M. Ross
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, FL, United States
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Soman N. Abraham
- Departments of Pathology, Molecular Genetics and Microbiology and Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Herman F. Staats
- Department of Pathology, School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccines Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Kristy M. Ainslie,
| |
Collapse
|