1
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Wu R, Zhu W, Shao F, Wang J, Li D, Tuo Z, Yoo KH, Wusiman D, Shu Z, Ge W, Yang Y, Ke M, Wei W, Heavey S, Cho WC, Feng D. Expanding horizons in theragnostics: from oncology to multidisciplinary applications. LA RADIOLOGIA MEDICA 2025; 130:613-628. [PMID: 40042756 DOI: 10.1007/s11547-025-01971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/05/2025] [Indexed: 03/17/2025]
Abstract
Theragnostics is the integration of treatment and diagnosis, involving a drug or technology that combines diagnostic imaging with targeted therapy. This approach utilizes imaging to identify specific biological targets, which are then used to deliver therapeutic effects for the benefit of patients. The effectiveness and potential of theragnostics in improving patient outcomes are supported by significant clinical trials and technological innovations. Theragnostics has demonstrated its capacity to deliver targeted and real-time interventions, making it adaptable to diverse clinical domains. Its applications range from visualizing and eradicating tumors to addressing complex neurological disorders and cardiovascular diseases. The integration of nanomaterials and advancements in molecular biology further enhance the capabilities of theragnostics, promising a future where treatments are highly personalized, and diseases are understood and managed at a molecular level previously unattainable. Our comprehensive overview focuses on the current advancements in theragnostics applications across different disease domains. We highlight the role of molecular imaging technologies, such as PET/CT scans, in early diagnosis and treatment. Additionally, we explore the potential of chemokines as molecular imaging targets in systemic inflammatory diseases and central nervous system pathologies. In conclusion, the progression of theragnostics represents a transformative phase in medical practice, providing new avenues for precise treatment and improved patient outcomes. Its multidisciplinary nature and continuous innovation have the potential to profoundly impact the future of medical research and clinical practice, as well as revolutionizing the treatment and management of a wide array of diseases.
Collapse
Affiliation(s)
- Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, South Korea
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, West Lafayette, USA
- Purdue Institute for Cancer Research, Purdue University, Westlll Lafayette, IN, USA
| | - Ziyu Shu
- Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Wenjing Ge
- Department of Clinical Neurosciences, University of Cambridge, R3, Box 83, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
3
|
Tang S, Han EL, Mitchell MJ. Peptide-functionalized nanoparticles for brain-targeted therapeutics. Drug Deliv Transl Res 2025:10.1007/s13346-025-01840-w. [PMID: 40164912 DOI: 10.1007/s13346-025-01840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Despite the rapid development of nanoparticle (NP)-based drug delivery systems, intravenous delivery of drugs to the brain remains a major challenge due to various biological barriers. To achieve therapeutic effects, NP-encapsulated drugs must avoid accumulation in off-target organs and selectively deliver to the brain, successfully cross the blood-brain barrier (BBB), and reach the target cells in the brain. Conjugating receptor-specific ligands to the surface of NPs is a promising technique for engineering NPs to overcome these barriers. Specifically, peptides as brain-targeting ligands have been of increasing interest given their ease of synthesis, low cytotoxicity, and strong affinity to target proteins. The success of peptides as targeting ligands is largely due to the diverse strategies of designing and modifying peptides with favorable properties, including membrane permeability and multi-receptor targeting. Here, we review the design and implementation of peptide-functionalized NP systems for neurological disease applications. We also explore advances in rational peptide design strategies for brain targeting, including using generative deep-learning models to computationally design new peptides.
Collapse
Affiliation(s)
- Sophia Tang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily L Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Omidian H, Cubeddu LX, Wilson RL. Peptide-Functionalized Nanomedicine: Advancements in Drug Delivery, Diagnostics, and Biomedical Applications. Molecules 2025; 30:1572. [PMID: 40286158 PMCID: PMC11990896 DOI: 10.3390/molecules30071572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Peptide-functionalized nanomedicine has emerged as a transformative approach in precision therapeutics and diagnostics, leveraging the specificity of peptides to enhance the performance of nanocarriers, including gold nanoparticles, polymeric nanoparticles, liposomes, mesoporous silica nanoparticles, and quantum dots. These systems enable targeted drug delivery, molecular imaging, biosensing, and regenerative medicine, offering unparalleled advantages in bioavailability, cellular uptake, and therapeutic selectivity. This review provides a comprehensive analysis of peptide-functionalization strategies, nanocarrier design, and their applications across oncology, neurodegenerative disorders, inflammatory diseases, infectious diseases, and tissue engineering. We further discuss the critical role of physicochemical characterization, in vitro and in vivo validation, and regulatory considerations in translating these technologies into clinical practice. Despite the rapid progress in peptide-functionalized platforms, challenges related to stability, immune response, off-target effects, and large-scale reproducibility remain key obstacles to their widespread adoption. Addressing these through advanced peptide engineering, optimized synthesis methodologies, and regulatory harmonization will be essential for their clinical integration. By bridging fundamental research with translational advancements, this review provides an interdisciplinary roadmap for the next generation of peptide-functionalized nanomedicines poised to revolutionize targeted therapy and diagnostics.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Luigi X. Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
5
|
Zhou D, Li Z, Bao L, Zhao X, Hao J, Xu C, Sun F, He D, Jiang C, Zeng T, Li D. DNAzyme hydrogels specifically inhibit the NLRP3 pathway to prevent radiation-induced skin injury in mice. J Nanobiotechnology 2025; 23:238. [PMID: 40119386 PMCID: PMC11929335 DOI: 10.1186/s12951-025-03147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/22/2025] [Indexed: 03/24/2025] Open
Abstract
Radiation-induced skin injury (RISI) is a frequent complication of radiotherapy, yet current preventive strategies exhibit suboptimal efficacy. Our previous publications have consistently demonstrated the effectiveness of biomaterials and hydrogels in preventing RISI. Based on comprehensive literature reviews, we speculate that NLRP3 overexpression plays a central role in the development of RISI. Therefore, designing DNAzyme (DZ)-hydrogels with targeted inhibition of NLRP3 overexpression is crucial for preventing RISI.To achieve this, we designed and screened the optimal NLRP3-DZ using bioinformatics, molecular dynamics, and gel electrophoresis methods. We encapsulated the NLRP3-DZ within ZIF-8 to enhance its stability, controlled release, and safety. To enhance the material's transdermal penetration and practicality, we attached the TAT transmembrane peptide. The final preparation and characterization of NLRP3-DZ@ZIF-8/TAT was achieved.In vitro cell models revealed that DZ-hydrogels exhibit high biosafety, effectively inhibit NLRP3 expression, promote cell migration, inhibit cell apoptosis, and possess antibacterial properties. Genomics analysis suggested that DZ-hydrogels may exert these functions by regulating changes in relevant mRNA pathways.Furthermore, we established a mouse model of RISI and found that the material can promote wound healing by regulating proteins associated with apoptosis, oxidative stress, and the inflammatory response. These research findings provide valuable insights for the prevention of RISI using DZ-hydrogels.
Collapse
Affiliation(s)
- Daijun Zhou
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Zhihui Li
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Linbo Bao
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jie Hao
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Chuan Xu
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Feifan Sun
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Dan He
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Chaoyang Jiang
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Tian Zeng
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Dong Li
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China.
| |
Collapse
|
6
|
Puttasiddaiah R, Basavegowda N, Lakshmanagowda NK, Raghavendra VB, Sagar N, Sridhar K, Dikkala PK, Bhaswant M, Baek KH, Sharma M. Emerging Nanoparticle-Based Diagnostics and Therapeutics for Cancer: Innovations and Challenges. Pharmaceutics 2025; 17:70. [PMID: 39861718 PMCID: PMC11768644 DOI: 10.3390/pharmaceutics17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer. These methods seek to completely eradicate all cancer cells while having the fewest possible unintended impacts on healthy cell types. Owing to the lack of target selectivity, the majority of medications have substantial side effects. On the other hand, nanomaterials have transformed the identification, diagnosis, and management of cancer. Nanostructures with biomimetic properties have been grown as of late, fully intent on observing and treating the sickness. These nanostructures are expected to be consumed by growth in areas with profound disease. Furthermore, because of their extraordinary physicochemical properties, which incorporate nanoscale aspects, a more prominent surface region, explicit geometrical features, and the ability to embody different substances within or on their outside surfaces, nanostructures are remarkable nano-vehicles for conveying restorative specialists to their designated regions. This review discusses recent developments in nanostructured materials such as graphene, dendrimers, cell-penetrating peptide nanoparticles, nanoliposomes, lipid nanoparticles, magnetic nanoparticles, and nano-omics in the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Rachitha Puttasiddaiah
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | | | - Niju Sagar
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| |
Collapse
|
7
|
Wang F, Qi L, Zhang Z, Duan H, Wang Y, Zhang K, Li J. The Mechanism and Latest Research Progress of Blood-Brain Barrier Breakthrough. Biomedicines 2024; 12:2302. [PMID: 39457617 PMCID: PMC11504064 DOI: 10.3390/biomedicines12102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The bloodstream and the central nervous system (CNS) are separated by the blood-brain barrier (BBB), an intricate network of blood vessels. Its main role is to regulate the environment within the brain. The primary obstacle for drugs to enter the CNS is the low permeability of the BBB, presenting a significant hurdle in treating brain disorders. In recent years, significant advancements have been made in researching methods to breach the BBB. However, understanding how to penetrate the BBB is essential for researching drug delivery techniques. Therefore, this article reviews the methods and mechanisms for breaking through the BBB, as well as the current research progress on this mechanism.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Liujie Qi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Zhongna Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Huimin Duan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Yanchao Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| |
Collapse
|
8
|
Gawel AM, Betkowska A, Gajda E, Godlewska M, Gawel D. Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment. Biomedicines 2024; 12:1822. [PMID: 39200286 PMCID: PMC11351974 DOI: 10.3390/biomedicines12081822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, including chemotherapeutics, nucleic acids, and inhibitors. The main advantages of nanoparticles (NPs) include improved drug stability, increased penetration of the blood-brain barrier, and better precision of tumor targeting. Importantly, alongside their drug-delivery ability, NPs may also present theranostic properties, including applications for targeted imaging or photothermal therapy of malignant brain cells. The available NPs can be classified into two categories according to their core, which can be metal or non-metal based. Among non-metal NPs, the most studied in regard to GBM treatment are exosomes, liposomes, cubosomes, polymeric NPs, micelles, dendrimers, nanogels, carbon nanotubes, and silica- and selenium-based NPs. They are characterized by satisfactory stability and biocompatibility, limited toxicity, and high accumulation in the targeted tumor tissue. Moreover, they can be easily functionalized for the improved delivery of their cargo to GBM cells. Therefore, the non-metal NPs discussed here, offer a promising approach to improving the treatment outcomes of aggressive GBM tumors.
Collapse
Affiliation(s)
- Agata M. Gawel
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Anna Betkowska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Ewa Gajda
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Damian Gawel
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| |
Collapse
|
9
|
Patra S, Dey J, Kar S, Chakraborty A, Tawate M. Methotrexate-Loaded Surface-Modified Solid Lipid Nanoparticles Targeting Cancer Expressing COX-2 Enzyme. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14811-14822. [PMID: 38979753 DOI: 10.1021/acs.langmuir.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cancer is a major public health problem worldwide, and it is the second leading cause of death of humans in the world. The present study has been directed toward the preparation of methotrexate-loaded surface-modified solid lipid nanoparticles (SLNs) for potential use as a chemotherapeutic formulation for cancer therapy. A lipid (C14-AAP) derived from myristic acid (C14H30O2) and acetaminophen (AAP) was employed as a targeting ligand for human breast and lung cancer cells that overexpress the cyclooxygenases-2 (COX-2) enzyme. The SLNs consisting of stearic acid and C14-AAP were characterized by several methods, including dynamic light scattering (DLS), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), ultraviolet-visible (UV-vis) spectroscopy, high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscopy (FESEM) techniques. An in vitro cell cytotoxicity study was done by carrying out an MTT assay and flow cytometry study in the human breast cancer (MCF7) and human lung cancer cell line (A549). The expression level of COX-2 enzyme in MCF7 and A549 cell lines was examined by reverse transcription polymerase chain reaction (RT-PCR). A high level of COX-2 expression was observed in both cell lines. In vitro cell cytotoxicity study in MC7 and A549 cell lines showed the surface-modified, methotrexate-loaded SLN is more effective in cell killing and induction of apoptotic death in both the cell lines than free methotrexate in MTT, flow cytometry, clonogenic assay, and Western blot studies. The surface-modified SLN was radiolabeled with 99mTc with %RCP greater than 95%. In vivo biodistribution study of the 99mTc-labeled SLN in melanoma tumor-bearing C57BL6 mice showed moderate tumor uptake of the radiotracer at 3 h post injection. The SPECT/CT image aligns with the biodistribution results. This study shows that AAP-modified SLNs could be a potential chemotherapeutic formulation for cancer therapy.
Collapse
Affiliation(s)
- Swagata Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somnath Kar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Megha Tawate
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| |
Collapse
|
10
|
Kakinen A, Jiang Y, Davis TP, Teesalu T, Saarma M. Brain Targeting Nanomedicines: Pitfalls and Promise. Int J Nanomedicine 2024; 19:4857-4875. [PMID: 38828195 PMCID: PMC11143448 DOI: 10.2147/ijn.s454553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Brain diseases are the most devastating problem among the world's increasingly aging population, and the number of patients with neurological diseases is expected to increase in the future. Although methods for delivering drugs to the brain have advanced significantly, none of these approaches provide satisfactory results for the treatment of brain diseases. This remains a challenge due to the unique anatomy and physiology of the brain, including tight regulation and limited access of substances across the blood-brain barrier. Nanoparticles are considered an ideal drug delivery system to hard-to-reach organs such as the brain. The development of new drugs and new nanomaterial-based brain treatments has opened various opportunities for scientists to develop brain-specific delivery systems that could improve treatment outcomes for patients with brain disorders such as Alzheimer's disease, Parkinson's disease, stroke and brain tumors. In this review, we discuss noteworthy literature that examines recent developments in brain-targeted nanomedicines used in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Yuhao Jiang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Tambet Teesalu
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Ilieş BD, Yildiz I, Abbas M. Peptide-conjugated Nanoparticle Platforms for Targeted Delivery, Imaging, and Biosensing Applications. Chembiochem 2024; 25:e202300867. [PMID: 38551557 DOI: 10.1002/cbic.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Indexed: 04/24/2024]
Abstract
Peptides have become an indispensable tool in engineering of multifunctional nanostructure platforms for biomedical applications such as targeted drug and gene delivery, imaging and biosensing. They can be covalently incorporated into a variety of nanoparticles (NPs) including polymers, metallic nanoparticles, and others. Using different bioconjugation techniques, multifunctional peptide-modified NPs can be formulated to produce therapeutical and diagnostic platforms offering high specificity, lower toxicity, biocompatibility, and stimuli responsive behavior. Targeting peptides can direct the nanoparticles into specific tissues for targeted drug and gene delivery and imaging applications due to their specificity towards certain receptors. Furthermore, due to their stimuli-responsive features, they can offer controlled release of therapeutics into desired sites of disease. In addition, peptide-based biosensors and imaging agents can provide non-invasive detection and monitoring of diseases including cancer, infectious diseases, and neurological disorders. In this review, we covered the design and formulation of recent peptide-based NP platforms, as well as their utilization in in vitro and in vivo applications such as targeted drug and gene delivery, targeting, sensing, and imaging applications. In the end, we provided the future outlook to design new peptide conjugated nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Bogdan Dragoş Ilieş
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Ibrahim Yildiz
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
12
|
Shadmani N. Voices in Molecular Pharmaceutics: Meet Dr. Nasim Shadmani Who Utilizes Cell Penetrating Peptides and Nanoparticles for Targeting Hard-to-Reach Areas of the Body Including the Brain. Mol Pharm 2024; 21:996-998. [PMID: 38301216 DOI: 10.1021/acs.molpharmaceut.3c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Nasim Shadmani
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| |
Collapse
|
13
|
Tang B, Lau KM, Zhu Y, Shao C, Wong WT, Chow LMC, Wong CTT. Chemical Modification of Cytochrome C for Acid-Responsive Intracellular Apoptotic Protein Delivery for Cancer Eradication. Pharmaceutics 2024; 16:71. [PMID: 38258082 PMCID: PMC10819283 DOI: 10.3390/pharmaceutics16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Delivering bioactive proteins into cells without carriers presents significant challenges in biomedical applications due to limited cell membrane permeability and the need for targeted delivery. Here, we introduce a novel carrier-free method that addresses these challenges by chemically modifying proteins with an acid-responsive cell-penetrating peptide (CPP) for selective intracellular delivery within tumours. Cytochrome C, a protein known for inducing apoptosis, served as a model for intracellular delivery of therapeutic proteins for cancer treatment. The CPP was protected with 2,3-dimethyl maleic anhydride (DMA) and chemically conjugated onto the protein surface, creating an acid-responsive protein delivery system. In the acidic tumour microenvironment, DMA deprotects and exposes the positively charged CPP, enabling membrane penetration. Both in vitro and in vivo assays validated the pH-dependent shielding mechanism, demonstrating the modified cytochrome C could induce apoptosis in cancer cells in a pH-selective manner. These findings provide a promising new approach for carrier-free and tumour-targeted intracellular delivery of therapeutic proteins for a wide range of potential applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Larry M. C. Chow
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (B.T.); (K.M.L.); (Y.Z.); (C.S.); (W.-T.W.)
| | - Clarence T. T. Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (B.T.); (K.M.L.); (Y.Z.); (C.S.); (W.-T.W.)
| |
Collapse
|
14
|
Shadmani N, Gohari S, Kadkhodamanesh A, Ghaderinia P, Hassani M, Sharifyrad M. The synthesis and development of poly(ε-caprolactone) conjugated polyoxyethylene sorbitan oleate-based micelles for curcumin drug release: an in vitro study on breast cancer cells. RSC Adv 2023; 13:23449-23460. [PMID: 37546220 PMCID: PMC10401665 DOI: 10.1039/d3ra03660j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND it is now known that curcumin (Cur) has a broad range of biological properties; however, photosensitivity, as well as low bioavailability and short half-life, have limited its clinical application. To overcome these problems the synthesis of poly(ε-caprolactone)-Tween 80 (PCL-T) copolymers was performed. METHODS the copolymers of PCL-T were created using the solvent evaporation/extraction technique. Then Cur was loaded in PCL-T micelles (PCL-T-M) by a self-assembly method. The characterization of copolymer and micelles was assessed by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1HNMR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and dynamic light scattering (DLS) methods. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to indicate the cytotoxicity of the free Cur, PCL-T-M, and Cur-loaded PCL-T-M. RESULTS TEM analysis showed monodispersed and spherical shapes with a size of about 90 nm. Cur was released from PCL-T-M at pH 7.4 (45%) and 5.5 (90%) during 6 days. After 24 and 48 h, the IC50 of the free Cur, PCL-T-M, and Cur-loaded PCL-T-M on MCF-7 cells were 80.86 and 54.45 μg mL-1, 278.30 and 236.19 μg mL-1, 45.47 and 19.05 μg mL-1, respectively. CONCLUSION this study showed that, in the same concentration, the effectiveness of the Cur-loaded PCL-T-M is more than the free Cur, and the nano-system has been able to overcome delivery obstacles of Cur drug. Thus, PCL-T-M can be a candidate as a drug carrier for the delivery of Cur and future therapeutic investigations on breast cancer.
Collapse
Affiliation(s)
- Nasim Shadmani
- Trita Nanomedicine Research & Technology Development Center (TNRTC) Zanjan Health Technology Park Zanjan Iran
| | - Sepehr Gohari
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences Zanjan Iran
| | - Azin Kadkhodamanesh
- School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Parivash Ghaderinia
- Research and Technology Development Center of the Motahar Zist Gostar, Islamic Azad University Zanjan Branch Zanjan Iran 45156-58145 +98 9191815229
- Department of Microbiology, Islamic Azad University Zanjan Branch Zanjan Iran
| | - Maryam Hassani
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Motahare Sharifyrad
- Research and Technology Development Center of the Motahar Zist Gostar, Islamic Azad University Zanjan Branch Zanjan Iran 45156-58145 +98 9191815229
| |
Collapse
|