1
|
Garrett M, Curry S, Feris S, Lu Y, Gu Q, Clark A, Martin SF, Kastellorizios M. Delivery of a novel neuroprotective compound to the retina in rat and rabbit animal models. J Control Release 2025; 382:113659. [PMID: 40139393 DOI: 10.1016/j.jconrel.2025.113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Posterior segment-related diseases are among the leading causes of irreversible blindness and loss of vision globally. These diseases are extremely difficult to treat due to the drug delivery barriers posed by the eye, among other challenges. One delivery method that bypasses many of these obstacles, albeit not without risk, is ocular injections, and long-acting formulations such as implants can improve patient compliance by allowing for longer intervals between injections. Here, we report our development of a preclinical in situ-forming implant dosage form that provides sustained release of a novel compound, DKR-1677, with a target in the retina. An in situ-forming implant based on polylactic co glycolic acid (PLGA) was chosen in this preclinical stage because it is readily translatable to a preformed implant product. The formulations were tested in vitro, in rat and rabbit animal models for drug release and pharmacokinetics. A two-step in vitro dissolution method with implant formation in a biorelevant gel followed by incubation in release media showed a 30-day three-phase release profile with an initial burst release of 36.04 ± 4.23 %, a plateau, and a controlled release up to 93.75 ± 4.68 % at day 30, typical of PLGA-based implant formulations. Immediate and controlled-release formulations were tested in rat and rabbit animal models and confirmed that DKR-1677 is taken up by the retina after intravitreal administration. Furthermore, the in situ-forming implant was found to prolong drug presence in the retina to 30 days following a single administration, confirming that a PLGA-based implant is a viable approach for this drug candidate.
Collapse
Affiliation(s)
- Meredith Garrett
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Stacy Curry
- North Texas Eye Research Institute, The University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sherri Feris
- North Texas Eye Research Institute, The University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Yan Lu
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Qi Gu
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Abe Clark
- North Texas Eye Research Institute, The University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Stephen F Martin
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Michail Kastellorizios
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| |
Collapse
|
2
|
Lehner E, Trutschel ML, Menzel M, Jacobs J, Kunert J, Scheffler J, Binder WH, Schmelzer CEH, Plontke SK, Liebau A, Mäder K. Enhancing drug release from PEG-PLGA implants: The role of Hydrophilic Dexamethasone Phosphate in modulating release kinetics and degradation behavior. Eur J Pharm Sci 2025; 209:107067. [PMID: 40068768 DOI: 10.1016/j.ejps.2025.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a prominent biodegradable polymer used in biomedical applications, including drug delivery systems (DDS) and tissue engineering. PLGA's ability to control drug release is often hindered by nonlinear release profiles and slow initial drug release for hydrophobic drugs. This study investigates the incorporation of dexamethasone phosphate (DEXP) into polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) implants to enhance the initial release rate of dexamethasone (DEX). Implants were fabricated via hot-melt extrusion with varying DEX to DEXP ratios. X-ray diffraction (XRD) analysis confirmed that DEX remained crystalline in all formulations, whereas DEXP's crystallinity was detectable only in higher concentrations. Energy-dispersive X-ray spectroscopy (EDX) provided insights into the distribution of DEX and DEXP within the polymer matrix. Drug release studies revealed that PEG-PLGA implants accelerated initial drug release with increasing quantity of DEXP, though it also led to a shorter overall release duration. Despite these improvements, all implants exhibited a biphasic release profile. DEXP also influenced the characteristics of the polymer matrix, evidenced by increased swelling, water absorption, and mass loss. 1H NMR analysis revealed a faster decrease in glycolic acid monomers in DEXP-containing implants. These findings demonstrate that DEXP enhances early drug release of DEX-loaded PEG-PLGA implants prepared by hot-melt extrusion. However, balancing initial and sustained release profiles remains challenging.
Collapse
Affiliation(s)
- Eric Lehner
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany
| | - Marie-Luise Trutschel
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany
| | - Matthias Menzel
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1 06120 Halle (Saale), Germany
| | - Jonas Jacobs
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2 06120 Halle (Saale), Germany
| | - Julian Kunert
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany
| | - Jonas Scheffler
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany
| | - Wolfgang H Binder
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4 06120 Halle (Saale), Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany; Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1 06120 Halle (Saale), Germany
| | - Stefan K Plontke
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany
| | - Arne Liebau
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany.
| |
Collapse
|
3
|
Omidian H, Wilson RL. PLGA Implants for Controlled Drug Delivery and Regenerative Medicine: Advances, Challenges, and Clinical Potential. Pharmaceuticals (Basel) 2025; 18:631. [PMID: 40430452 PMCID: PMC12114454 DOI: 10.3390/ph18050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Poly(lactide-co-glycolide) (PLGA) implants have become a cornerstone in drug delivery and regenerative medicine due to their biocompatibility, tunable degradation, and capacity for sustained, localized therapeutic release. Recent innovations in polymer design, fabrication methods, and functional modifications have expanded their utility across diverse clinical domains, including oncology, neurology, orthopedics, and ophthalmology. This review provides a comprehensive analysis of PLGA implant properties, fabrication strategies, and biomedical applications, while addressing key challenges such as burst release, incomplete drug release, manufacturing complexity, and inflammatory responses. Emerging solutions-such as 3D printing, in situ forming systems, predictive modeling, and patient-specific customization-are improving implant performance and clinical translation. Emphasis is placed on scalable production, long-term biocompatibility, and personalized design to support the next generation of precision therapeutics.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
4
|
Subhash NE, Nair S, Srinivas SP, Theruveethi N, Bhandary SV, Guru B. Development of a biodegradable polymer-based implant to release dual drugs for post-operative management of cataract surgery. Drug Deliv Transl Res 2025; 15:508-522. [PMID: 38696092 PMCID: PMC11683021 DOI: 10.1007/s13346-024-01604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 01/01/2025]
Abstract
Cataract surgery is followed by post-operative eye drops for a duration of 4-6 weeks. The multitude of ocular barriers, coupled with the discomfort experienced by both the patient and their relatives in frequently administering eye drops, significantly undermines patient compliance, ultimately impeding the recovery of the patient. This study aimed to design and develop an ocular drug delivery system as an effort to achieve a drop-free post-operative care after cataract surgery. An implant was prepared containing a biodegradable polymer Poly-lactic-co-glycolic acid (PLGA), Dexamethasone (DEX) as an anti-inflammatory drug, and Moxifloxacin(MOX) as an antibiotic. Implant characterization and drug loading analysis were conducted. In vitro drug release profile showed that the release of the two drugs are correlated with the clinical prescription for post operative eye drops. In vivo study was conducted on New Zealand albino rabbits where one eye underwent cataract surgery, and the drug delivery implant was inserted into the capsular bag after placement of the synthetic intraocular lens (IOL). Borderline increase in the intraocular pressure (IOP) was noted in the test sample group. Slit-lamp observations revealed no significant anterior chamber reaction in all study groups. Histopathology study of the operated eye revealed no significant pathology in the test samples. This work aims at developing the intra ocular drug delivery implant which will replace the post-operative eye drops and help the patient with the post-operative hassle of eye drops.
Collapse
Affiliation(s)
- Nayana E- Subhash
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Soumya Nair
- Department of Ophthalmology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srilatha Parampalli Srinivas
- Department of Pathology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sulatha V- Bhandary
- Department of Ophthalmology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - BharathRaja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
5
|
Wang H, Roof M, Burgher K, Pham C, Samuels ER, He Y, Jian H, Wang T. Measuring erosion of biodegradable polymers in brimonidine drug delivery implants by quantitative proton NMR spectroscopy (q-HNMR). J Pharm Sci 2025; 114:245-255. [PMID: 39218154 DOI: 10.1016/j.xphs.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Erosion of biodegradable polymeric excipients, such as polylactic acid (PLA) and polylactic-co-glycolic acid (PLGA), is generally characterized by microbalance for the remaining mass of PLA and/or PLGA and Gel Permeation Chromatography (GPC) for molecular weight (MW) decrease. For polymer erosion studies of intravitreal sustained release brimonidine implants, however, both microbalance and GPC present several challenges. Mass loss measurement by microbalance does not have specificity for excipient polymers and drug substances. Accuracy of the remaining mass by weighing could also be low due to sample mass loss through retrieval-drying steps, especially at later drug release (DR) time points. When measuring the decrease of polymer MW by GPC, trace amounts of polymeric degradants (oligomers and/or monomers) trapped inside the implants during DR tests may not be measurable due to sensitivity limitations of the GPC detector and column MW range. Previous efforts to measure remained PLGA weight of dexamethasone micro-implants using qNMR with external calibration have been performed, however, these measurements do not account for chemical structure changes (i.e. LA to GA ratio changes from time zero) of PLGA implants during drug release tests. Here, a qNMR method with an internal standard was developed to monitor the following changes in micro-implants during drug release tests: 1. The remaining overall PLA/PLGA mass. 2. The remaining lactic acid (LA), glycolic acid (GA) unit and PLGA's lauryl ester end group percentages. 3. The trace content of PLA/PLGA oligomers as degradants retained in the implants. Unlike microbalance analysis, qNMR has both specificity for drug substance, excipient polymer, and accuracy due to minimal implant loss during sample preparation. Compared to the overall PLA/PLGA remaining mass generally monitored in erosion studies, the percentage of remaining LA, GA, and the ester end group provide more information about the microstructure change (such as hydrophobicity) of PLA/PLGA. Additionally, the qNMR method can complement GPC methods by measuring the change of remaining PLA and PLGA oligomer concentrations in brimonidine implants, with tenfold less sample and no MW cutoff. The qNMR method can be used as a sensitive tool for both polymer excipient characterization and kinetics studies of brimonidine implant erosion.
Collapse
Affiliation(s)
- Hongpeng Wang
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA.
| | - Mike Roof
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Kyle Burgher
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Chiem Pham
- Drug Product Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Eric R Samuels
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Yan He
- Analytical Research and Development, AbbVie, 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Huahua Jian
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Tao Wang
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| |
Collapse
|
6
|
Yang F, Stahnke R, Lawal K, Mahnen C, Duffy P, Xu S, Durig T. Development of poly (lactic-co-glycolic acid) (PLGA) based implants using hot melt extrusion (HME) for sustained release of drugs: The impacts of PLGA's material characteristics. Int J Pharm 2024; 663:124556. [PMID: 39122196 DOI: 10.1016/j.ijpharm.2024.124556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Hot melt extrusion (HME) processed Poly (lactic-co-glycolic acid) (PLGA) implant is one of the commercialized drug delivery products, which has solid, well-designed shape and rigid structures that afford efficient locoregional drug delivery on the spot of interest for months. In general, there are a variety of material, processing, and physiological factors that impact the degradation rates of PLGA-based implants and concurrent drug release kinetics. The objective of this study was to investigate the impacts of PLGA's material characteristics on PLGA degradation and subsequent drug release behavior from the implants. Three model drugs (Dexamethasone, Carbamazepine, and Metformin hydrochloride) with different water solubility and property were formulated with different grades of PLGAs possessing distinct co-polymer ratios, molecular weights, end groups, and levels of residual monomer (high/ViatelTM and low/ ViatelTM Ultrapure). Physicochemical characterizations revealed that the plasticity of PLGA was inversely proportional to its molecular weight; moreover, the residual monomer could impose a plasticizing effect on PLGA, which increased its thermal plasticity and enhanced its thermal processability. Although the morphology and microstructure of the implants were affected by many factors, such as processing parameters, polymer and drug particle size and distribution, polymer properties and polymer-drug interactions, implants prepared with ViatelTM PLGA showed a smoother surface and a stronger PLGA-drug intimacy than the implants with ViatelTM Ultrapure PLGA, due to the higher plasticity of the ViatelTM PLGA. Subsequently, the implants with ViatelTM PLGA exhibited less burst release than implants with ViatelTM Ultrapure PLGA, however, their onset and progress of the lag and substantial release phases were shorter and faster than the ViatelTM Ultrapure PLGA-based implants, owing to the residual monomer accelerated the water diffusion and autocatalyzed PLGA hydrolysis. Even though the drug release profiles were also influenced by other factors, such as composition, drug properties and polymer-drug interaction, all three cases revealed that the residual monomer accelerated the swelling and degradation of PLGA and impaired the implant's integrity, which could negatively affect the subsequent drug release behavior and performance of the implants. These results provided insights to formulators on rational PLGA implant design and polymer selection.
Collapse
Affiliation(s)
| | - Ryan Stahnke
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Kamaru Lawal
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Cory Mahnen
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | | | - Shuyu Xu
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Thomas Durig
- Ashland Specialty Ingredients, Wilmington, DE, USA
| |
Collapse
|
7
|
Sunazuka Y, Ueda K, Higashi K, Wada K, Moribe K. Mechanistic Analysis of Temperature-Dependent Curcumin Release from Poly(lactic-co-glycolic acid)/Poly(lactic acid) Polymer Nanoparticles. Mol Pharm 2024; 21:1424-1435. [PMID: 38324797 DOI: 10.1021/acs.molpharmaceut.3c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In this study, we investigated the mechanism of curcumin (CUR) release from poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) nanoparticles (NPs) by evaluating the temperature-dependent CUR release. NPs were prepared by the nanoprecipitation method using various PLGA/PLA polymers with different lactic:glycolic ratios (L:G ratios) and molecular weights. Increasing the polymer molecular weight resulted in a decrease in the particle size of NPs. The wet glass transition temperature (Tg) of PLGA/PLA NPs was lower than the intrinsic polymer Tg, which can be derived from the water absorption and nanosizing of the polymer. The reduction in Tg was more significant for the PLGA/PLA NPs with lower polymer L:G ratios and lower polymer molecular weight. The greater decrease of Tg in the lower polymer L:G ratios was possibly caused by the higher water absorption due to the more hydrophilic nature of the glycolic acid segment than that of the lactic acid segment. The efficient water absorption in PLGA/PLA NPs with lower molecular weight could cause a significant reduction of Tg as it has lower hydrophobicity. CUR release tests from the PLGA/PLA NPs exhibited enhanced CUR release with increasing temperatures, irrespective of polymer species. By fitting the CUR release profiles into mathematical models, the CUR release process was well described by an initial burst release followed by a diffusion-controlled release. The wet Tg and particle size of the PLGA/PLA NPs affected the amount and temperature dependence of the initial burst release of CUR. Above the wet Tg of NPs, the initial burst release of CUR increased sharply. Smaller particle sizes of PLGA/PLA NPs led to a higher fraction of initial CUR burst release, which was more pronounced above the wet Tg of NPs. The wet Tg and particle sizes of the PLGA/PLA NPs also influenced the diffusion-controlled CUR release. The diffusion rate of CUR in the NPs increased as the wet Tg values of the NPs decreased. The diffusion path length of CUR was affected by the particle size, with larger particle size resulting in a prolonged diffusion-controlled release of CUR. This study highlighted that for the formulation development of PLGA/PLA NPs, suitable PLGA/PLA polymers should be selected considering the physicochemical properties of PLGA/PLA NPs and their correlation with the release behavior of encapsulated drugs at the application temperature.
Collapse
Affiliation(s)
- Yushi Sunazuka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Nippon Boehringer Ingelheim Co. Ltd., 6-7-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Koichi Wada
- Nippon Boehringer Ingelheim Co. Ltd., 6-7-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
8
|
Poudel I, Annaji M, Zhang C, Panizzi PR, Arnold RD, Kaddoumi A, Amin RH, Lee S, Shamsaei N, Babu RJ. Gentamicin Eluting 3D-Printed Implants for Preventing Post-Surgical Infections in Bone Fractures. Mol Pharm 2023; 20:4236-4255. [PMID: 37455392 DOI: 10.1021/acs.molpharmaceut.3c00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A surgically implantable device is an inevitable treatment option for millions of people worldwide suffering from diseases arising from orthopedic injuries. A global paradigm shift is currently underway to tailor and personalize replacement or reconstructive joints. Additive manufacturing (AM) has provided dynamic outflow to the customized fabrication of orthopedic implants by enabling need-based design and surface modification possibilities. Surgical grade 316L Stainless Steel (316L SS) is promising with its cost, strength, composition, and corrosion resistance to fabricate 3D implants. This work investigates the possibilities of application of the laser powder bed fusion (L-PBF) technique to fabricate 3D-printed (3DP) implants, which are functionalized with a multilayered antimicrobial coating to treat potential complications arising due to postsurgical infections (PSIs). Postsurgical implant-associated infection is a primary reason for implantation failure and is complicated mainly by bacterial colonization and biofilm formation at the installation site. PLGA (poly-d,l-lactide-co-glycolide), a biodegradable polymer, was utilized to impart multiple layers of coating using the airbrush spray technique on 3DP implant surfaces loaded with gentamicin (GEN). Various PLGA-based polymers were tested to optimize the ideal lactic acid: glycolic acid ratio and molecular weight suited for our investigation. 3D-Printed PLGA-GEN substrates sustained the release of gentamicin from the surface for approximately 6 weeks. The 3DP surface modification with PLGA-GEN facilitated cell adhesion and proliferation compared to control surfaces. The cell viability studies showed that the implants were safe for application. The 3DP PLGA-GEN substrates showed good concentration-dependent antibacterial efficacy against the common PSI pathogen Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). The GEN-loaded substrates demonstrated antimicrobial longevity and showed significant biofilm growth inhibition compared to control. The substrates offered great versatility regarding the in vitro release rates, antimicrobial properties, and biocompatibility studies. These results radiate great potential in future human and veterinary clinical applications pertinent to complications arising from PSIs, focusing on personalized sustained antibiotic delivery.
Collapse
Affiliation(s)
- Ishwor Poudel
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Chu Zhang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Peter R Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Rajesh H Amin
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Seungjong Lee
- Department of Mechanical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama 36849, United States
- National Center for Additive Manufacturing Excellence (NCAME), Auburn University, Auburn, Alabama 36849, United States
| | - Nima Shamsaei
- Department of Mechanical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama 36849, United States
- National Center for Additive Manufacturing Excellence (NCAME), Auburn University, Auburn, Alabama 36849, United States
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
9
|
de Jesús Martín-Camacho U, Rodríguez-Barajas N, Alberto Sánchez-Burgos J, Pérez-Larios A. Weibull β value for the discernment of drug release mechanism of PLGA particles. Int J Pharm 2023; 640:123017. [PMID: 37149112 DOI: 10.1016/j.ijpharm.2023.123017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Mathematical models are used to characterize and optimize drug release in drug delivery systems (DDS). One of the most widely used DDS is the poly(lactic-co-glycolic acid) (PLGA)-based polymeric matrix owing to its biodegradability, biocompatibility, and easy manipulation of its properties through the manipulation of synthesis processes. Over the years, the Korsmeyer-Peppas model has been the most widely used model for characterizing the release profiles of PLGA DDS. However, owing to the limitations of the Korsmeyer-Peppas model, the Weibull model has emerged as an alternative for the characterization of the release profiles of PLGA polymeric matrices. The purpose of this study was to establish a correlation between the n and β parameters of the Korsmeyer-Peppas and Weibull models and to use the Weibull model to discern the drug release mechanism. A total of 451 datasets describing the overtime drug release of PLGA-based formulations from 173 scientific articles were fitted to both models. The Korsmeyer-Peppas model had a mean Akaike Information Criteria (AIC) value of 54.52 and an n value of 0.42, while the Weibull model had a mean AIC of 51.99 and a β value of 0.55, and by using reduced major axis regression values, a high correlation was found between the n and β values. These results demonstrate the ability of the Weibull model to characterize the release profiles of PLGA-based matrices and the usefulness of the β parameter for determining the drug release mechanism.
Collapse
Affiliation(s)
- Ubaldo de Jesús Martín-Camacho
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | - Noé Rodríguez-Barajas
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | | | - Alejandro Pérez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600.
| |
Collapse
|
10
|
Costello MA, Liu J, Chen B, Wang Y, Qin B, Xu X, Li Q, Lynd NA, Zhang F. Drug release mechanisms of high-drug-load, melt-extruded dexamethasone intravitreal implants. Eur J Pharm Biopharm 2023; 187:46-56. [PMID: 37037387 DOI: 10.1016/j.ejpb.2023.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Ozurdex is an FDA-approved sustained-release, biodegradable implant formulated to deliver the corticosteroid dexamethasone to the posterior segment of the eye for up to 6 months. Hot-melt extrusion is used to prepare the 0.46 mm × 6 mm, rod-shaped implant by embedding the drug in a matrix of poly(lactic-co-glycolic acid) (PLGA) in a 60:40 drug:polymer ratio by weight. In our previous work, the Ozurdex implant was carefully studied and reverse engineered to produce a compositionally and structurally equivalent implant for further analysis. In this work, the reverse-engineered implant is thoroughly characterized throughout the in vitro dissolution process to elucidate the mechanisms of controlled drug release. The implant exhibits a triphasic release profile in 37 °C normal saline with a small burst release (1-2 %), a one-week lag phase with limited release (less than10 %), and a final phase where the remainder of the dose is released over 3-4 weeks. The limited intermolecular interaction between dexamethasone and PLGA renders the breakdown of the polymer the dominating mechanism of controlled release. A close relationship between drug release and total implant mass loss was observed. Unique chemical and structural differences were seen between the core of the implant and the implant surface driven by diffusional limitations, autocatalytic hydrolysis, and osmotic effects.
Collapse
Affiliation(s)
- Mark A Costello
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Joseph Liu
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Beibei Chen
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Yan Wang
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Bin Qin
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Xiaoming Xu
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Silver Spring, MD, USA
| | - Qi Li
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Nathaniel A Lynd
- University of Texas at Austin, McKetta Department of Chemical Engineering and Texas Materials Institute, Austin, TX, USA
| | - Feng Zhang
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| |
Collapse
|
11
|
Guerra MCA, Neto JT, Gomes MG, Dourado LFN, Oréfice RL, Heneine LGD, Silva-Cunha A, Fialho SL. Nanofiber-coated implants: Development and safety after intravitreal application in rabbits. Int J Pharm 2023; 636:122809. [PMID: 36894043 DOI: 10.1016/j.ijpharm.2023.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Intravitreal injections are the preferred choice for drug administration to the posterior segment of the eye. However, the required frequent injections may cause complications to the patient and low adherence to the treatment. Intravitreal implants are able to maintain therapeutic levels for a long period. Biodegradable nanofibers can modulate drug release and allow the incorporation of fragile bioactive drugs. Age-related macular degeneration is one of the world major causes of blindness and irreversible vision loss. It involves the interaction between VEGF and inflammatory cells. In this work we developed nanofiber-coated intravitreal implants containing dexamethasone and bevacizumab for simultaneously delivery of these drugs. The implant was successfully prepared and the efficiency of the coating process was confirmed by scanning electron microscopy. Around 68% of dexamethasone was released in 35 days and 88% of bevacizumab in 48hs. The formulation presented activity in the reduction of vessels and was safe to the retina. It was not observed any clinical or histopathological change, neither alteration in retina function or thickness by electroretinogram and optical coherence tomography during 28 days. The nanofiber-coated implants of dexamethasone and bevacizumab may be considered as a new delivery system that can be effective for the treatment of AMD.
Collapse
Affiliation(s)
- Maria Carolina Andrade Guerra
- Federal University of Goias, Rua 240 w/n, CEP 74605-220, Goias, Goiania, Brazil; Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, CEP 30510-010, Belo Horizonte, Minas Gerais, Brazil.
| | - Julia Teixeira Neto
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, CEP 30510-010, Belo Horizonte, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Michele Gouvea Gomes
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Lays Fernanda Nunes Dourado
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, CEP 30510-010, Belo Horizonte, Minas Gerais, Brazil.
| | - Rodrigo Lambert Oréfice
- School of Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Luiz Guilherme Dias Heneine
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, CEP 30510-010, Belo Horizonte, Minas Gerais, Brazil.
| | - Armando Silva-Cunha
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Silvia Ligorio Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, CEP 30510-010, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|