1
|
Naing MD, Tsume Y. Incorporating the biphasic system to GIS-α Improves In vivo prediction for low solubility drugs. Eur J Pharm Biopharm 2025; 211:114724. [PMID: 40280257 DOI: 10.1016/j.ejpb.2025.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The gastrointestinal simulator alpha (GIS-α) is an in vivo predictive transfer dissolution method that mimics the pH changes and peristalsis in the gastrointestinal tract, factors that are necessary in the biorelevant dissolution of drugs especially those that are under the Biopharmaceutics Classification System (BCS) class II and IV. It can be used to provide increased understanding to the dissolution, precipitation, and supersaturation of various low-solubility drugs, but lacks insights on absorption. Conducting experiments in the GIS-α with a biphasic system to add an absorptive phase in the jejunal compartment increased the observed dissolution and improved the overall in vivo prediction. In this study, the objective was to evaluate the improvement of dissolution on four representative BCS class II drugs using the biphasic format in the GIS-α. A customized double paddle was also used in the jejunal chamber to mix the aqueous buffer and organic layer simultaneously. This paddle floats in the organic layer as the aqueous volume increases and maintains the hydrodynamics in both the aqueous and organic phases. The combination of the biphasic system in the GIS-α and the moving double paddles resulted to increased dissolution profiles of fenofibrate, danazol, and celecoxib while not affecting that of ritonavir. Incorporating these dissolution profiles in a PBPK model using GastroPlus® improved the predictability of bioperformance of those oral medicines. Overall, this methodology considers both dissolution and absorption and proves to be a useful tool in predicting the in vivo performance of low-solubility drugs.
Collapse
Affiliation(s)
- Marvin D Naing
- Biologics Development and Biopharmaceutics, Sterile Product Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Yasuhiro Tsume
- Biologics Development and Biopharmaceutics, Sterile Product Development, Merck & Co., Inc, Rahway, NJ, USA.
| |
Collapse
|
2
|
Li F, Liu R, Li W, Xie M, Qin S. Synchrotron Radiation: A Key Tool for Drug Discovery. Bioorg Med Chem Lett 2024; 114:129990. [PMID: 39406298 DOI: 10.1016/j.bmcl.2024.129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Synchrotron radiation is extensively utilized in the domains of materials science, physical chemistry, and life science, resulting from its high intensity, exceptional monochromaticity, superior collimation, and broad wave spectrum. This top-notch light source has also made significant contributions to the progress of biomedicine. The advancement of synchrotron radiation-based X-ray and protein crystallography technologies has created new prospects for drug discovery. These innovative techniques have opened up exciting avenues in the field. The investigation of protein crystal structures and the elucidation of the spatial configuration of biological macromolecules have revealed intricate details regarding the modes of protein binding. Furthermore, the screening of crystal polymorphs and ligands has laid the groundwork for rational drug modification and the improvement of drug physicochemical properties. As science and technology continue to advance, the techniques for analyzing structures using synchrotron radiation sources and the design of corresponding crystallographic beamline stations are undergoing continuous enhancement. These cutting-edge tools and facilities are expected to expedite the drug development process and rectify the current situation of a lack of targeted drugs.
Collapse
Affiliation(s)
- Fengcheng Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingyuan Xie
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, China.
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
3
|
Łyszczarz E, Sosna O, Srebro J, Rezka A, Majda D, Mendyk A. Electrospun Amorphous Solid Dispersions with Lopinavir and Ritonavir for Improved Solubility and Dissolution Rate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1569. [PMID: 39404296 PMCID: PMC11478052 DOI: 10.3390/nano14191569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Lopinavir (LPV) and ritonavir (RTV) are two of the essential antiretroviral active pharmaceutical ingredients (APIs) characterized by poor solubility. Hence, attempts have been made to improve both their solubility and dissolution rate. One of the most effective approaches used for this purpose is to prepare amorphous solid dispersions (ASDs). To our best knowledge, this is the first attempt aimed at developing ASDs via the electrospinning technique in the form of fibers containing LPV and RTV. In particular, the impact of the various polymeric carriers, i.e., Kollidon K30 (PVP), Kollidon VA64 (KVA), and Eudragit® E100 (E100), as well as the drug content as a result of the LPV and RTV amorphization were investigated. The characterization of the electrospun fibers included microscopic, DSC, and XRD analyses, the assessment of their wettability, and equilibrium solubility and dissolution studies. The application of the electrospinning process led to the full amorphization of both the APIs, regardless of the drug content and the type of polymer matrix used. The utilization of E100 as a polymeric carrier for LPV and KVA for RTV, despite the beads-on-string morphology, had a favorable impact on the equilibrium solubility and dissolution rate. The results showed that the electrospinning method can be successfully used to manufacture ASDs with poorly soluble APIs.
Collapse
Affiliation(s)
- Ewelina Łyszczarz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Oskar Sosna
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Justyna Srebro
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
- Doctoral School of Medicinal and Health Sciences, Jagiellonian University Medical College, Św. Łazarza 16, 31-530 Cracow, Poland
| | - Aleksandra Rezka
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Dorota Majda
- Department of Chemical Technology, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| |
Collapse
|
4
|
Wu EJ, Kelly AW, Iuzzolino L, Lee AY, Zhu X. Unprecedented Packing Polymorphism of Oxindole: An Exploration Inspired by Crystal Structure Prediction. Angew Chem Int Ed Engl 2024; 63:e202406214. [PMID: 38825853 DOI: 10.1002/anie.202406214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Crystal polymorphism, characterized by different packing arrangements of the same compound, strongly ties to the physical properties of a molecule. Determining the polymorphic landscape is complex and time-consuming, with the number of experimentally observed polymorphs varying widely from molecule to molecule. Furthermore, disappearing polymorphs, the phenomenon whereby experimentally observed forms cannot be reproduced, pose a significant challenge for the pharmaceutical industry. Herein, we focused on oxindole (OX), a small rigid molecule with four known polymorphs, including a reported disappearing form. Using crystal structure prediction (CSP), we assessed OX solid-state landscape and thermodynamic stability by comparing predicted structures with experimentally known forms. We then performed melt and solution crystallization in bulk and nanoconfinement to validate our predictions. These experiments successfully reproduced the known forms and led to the discovery of four novel polymorphs. Our approach provided insights into reconstructing disappearing polymorphs and building more comprehensive polymorph landscapes. These results also establish a new record of packing polymorphism for rigid molecules.
Collapse
Affiliation(s)
- Emily J Wu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Andrew W Kelly
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Luca Iuzzolino
- Modeling & Informatics, Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Alfred Y Lee
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Xiaolong Zhu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| |
Collapse
|
5
|
Miyano T, Sugita K, Ueda H. The Continuous and Reversible Transformation of the Polymorphs of an MGAT2 Inhibitor (S-309309) from the Anhydrate to the Hydrate in Response to Relative Humidity. Pharmaceutics 2024; 16:949. [PMID: 39065646 PMCID: PMC11280299 DOI: 10.3390/pharmaceutics16070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Polymorphic control is vital for the quality control of pharmaceutical crystals. Here, we investigated the relationship between the hydrate and anhydrate polymorphs of a monoacylglycerol acyltransferase 2 inhibitor (S-309309). Solvent evaporation and slurry conversion revealed two polymorphs, the hydrate and the solvate. The solvate was transformed into the hydrate by heating. X-ray powder diffraction demonstrated that the hydrate was transformed into an anhydrate via an intermediate state when heated. These crystal forms were confirmed under controlled humidity conditions; the presence of the anhydrate, the intermediate hydrate, or the hydrate depended on the relative humidity at 25 °C. The stoichiometry of S-309309 in water in the hydrate form was 4:1. The hydrates and anhydrates exhibited similar crystal structures and stability. The water of hydration in the intermediate hydrate was 0.1-0.15 mol according to the dynamic vapor sorption profile. The stability and dissolution profile of the anhydrate and hydrate showed no significant change due to similar crystal lattices and quick rehydration of the anhydrate. A mechanism for the reversible crystal transformation between the anhydrate and pseudo-polymorphs of the hydrate was discovered. We concluded that S-309309 causes a pseudo-polymorphic transformation; however, this is not a critical issue for pharmaceutical use.
Collapse
Affiliation(s)
- Tetsuya Miyano
- Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (T.M.); (K.S.)
| | - Katsuji Sugita
- Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (T.M.); (K.S.)
| | - Hiroshi Ueda
- Analysis and Evaluation Laboratory, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| |
Collapse
|
6
|
Jeon D, Seo B, Yang J, Shim WS, Kang NG, Park D, Kim JW. Substantial Confinement of Crystal Growth of Organic Crystalline Materials in Metal-Organic Membrane Microshells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8225-8232. [PMID: 38584357 DOI: 10.1021/acs.langmuir.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
This study proposes a robust microshell encapsulation system in which a metal-organic membrane (MOM), consisting of phytic acids (PAs) and metal ions, intrinsically prevents the molecular crystal growth of organic crystalline materials (OCMs). To develop this system, OCM-containing oil-in-water (O/W) Pickering emulsions were enveloped with the MOM, in which anionic pulp cellulose nanofiber (PCNF) primers electrostatically captured zinc ions at the O/W interface and chelated with PA, thus producing the MOM with a controlled shell thickness at the micron scale. We ascertained that the MOM formation fills and covers ∼75% of the surface pore size of PCNF films, which enhances the interfacial modulus by 2 orders of magnitude compared to that when treated with bare PCNFs. Through a feasibility test using a series of common OCMs, including ethylhexyl triazone, avobenzone, and ceramide, we demonstrated the excellent ability of our MOM microshell system to stably encapsulate OCMs while retaining their original molecular structures over time. These findings indicate that our MOM-reinforced microshell technology can be applied as a platform to substantially confine the crystal growth of various types of OCMs.
Collapse
Affiliation(s)
- Dongyoung Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bokgi Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongryeol Yang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woo Sun Shim
- R&D Campus, LG Household & Health Care, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daehwan Park
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|