1
|
Friedrich RP, Kappes M, Cicha I, Tietze R, Braun C, Schneider-Stock R, Nagy R, Alexiou C, Janko C. Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles. Int J Nanomedicine 2022; 17:2139-2163. [PMID: 35599750 PMCID: PMC9115408 DOI: 10.2147/ijn.s355007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/01/2022] Open
Abstract
Label-free detection of nanoparticles is essential for a thorough evaluation of their cellular effects. In particular, nanoparticles intended for medical applications must be carefully analyzed in terms of their interactions with cells, tissues, and organs. Since the labeling causes a strong change in the physicochemical properties and thus also alters the interactions of the particles with the surrounding tissue, the use of fluorescently labeled particles is inadequate to characterize the effects of unlabeled particles. Further, labeling may affect cellular uptake and biocompatibility of nanoparticles. Thus, label-free techniques have been recently developed and implemented to ensure a reliable characterization of nanoparticles. This review provides an overview of frequently used label-free visualization techniques and highlights recent studies on the development and usage of microscopy systems based on reflectance, darkfield, differential interference contrast, optical coherence, photothermal, holographic, photoacoustic, total internal reflection, surface plasmon resonance, Rayleigh light scattering, hyperspectral and reflectance structured illumination imaging. Using these imaging modalities, there is a strong enhancement in the reliability of experiments concerning cellular uptake and biocompatibility of nanoparticles, which is crucial for preclinical evaluations and future medical applications.
Collapse
Affiliation(s)
- Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Mona Kappes
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, München, 80336, Germany
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Roland Nagy
- Department Elektrotechnik-Elektronik-Informationstechnik (EEI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Correspondence: Christina Janko, Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Glückstrasse 10a, Erlangen, 91054, Germany, Tel +49 9131 85 33142, Fax +49 9131 85 34808, Email
| |
Collapse
|
2
|
Enhancement of Long-Range Surface Plasmon Excitation, Dynamic Range and Figure of Merit Using a Dielectric Resonant Cavity. SENSORS 2018; 18:s18092757. [PMID: 30131469 PMCID: PMC6165055 DOI: 10.3390/s18092757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 11/17/2022]
Abstract
In this paper, we report a theoretical framework on the effect of multiple resonances inside the dielectric cavity of insulator-insulator-metal-insulator (IIMI)-based surface plasmon sensors. It has been very well established that the structure can support both long-range surface plasmon polaritons (LRSPP) and short-range surface plasmon polaritons (SRSPP). We found that the dielectric resonant cavity under certain conditions can be employed as a resonator to enhance the LRSPP properties. These conditions are: (1) the refractive index of the resonant cavity was greater than the refractive index of the sample layer and (2) when light propagated in the resonant cavity and was evanescent in the sample layer. We showed through the analytical calculation using Fresnel equations and rigorous coupled wave theory that the proposed structure with the mentioned conditions can extend the dynamic range of LRSPP excitation and enhance at least five times more plasmon intensity on the surface of the metal compared to the surface plasmon excited by the conventional Kretschmann configuration. It can enhance the dip sensitivity and the dynamic range in refractive index sensing without losing the sharpness of the LRSPP dip. We also showed that the interferometric modes in the cavity can be insensitive to the surface plasmon modes. This allowed a self-referenced surface plasmon resonance structure, in which the interferometric mode measured changes in the sensor structure and the enhanced LRSPP measured changes in the sample channel.
Collapse
|
3
|
Sasso L, Purdie L, Grabowska A, Jones AT, Alexander C. Time and cell-dependent effects of endocytosis inhibitors on the internalization of biomolecule markers and nanomaterials. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/jin2.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Luana Sasso
- School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
- School of Medicine; University of Nottingham; Nottingham NG7 2RD UK
| | - Laura Purdie
- School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
- School of Medicine; University of Nottingham; Nottingham NG7 2RD UK
| | - Anna Grabowska
- School of Medicine; University of Nottingham; Nottingham NG7 2RD UK
| | - Arwyn Tomos Jones
- School of Pharmacy and Pharmaceutical Science; Cardiff University; Cardiff Wales CF10 3NB UK
| | | |
Collapse
|
4
|
Ju B, Nie H, Liu Z, Xu H, Li M, Wu C, Wang H, Zhang SXA. Full-colour carbon dots: integration of multiple emission centres into single particles. NANOSCALE 2017; 9:13326-13333. [PMID: 28858350 DOI: 10.1039/c7nr04576j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The single particle emission behaviours of our previously reported excitation-dependent full-colour carbon dots (F-C dots) have been analyzed by a single-particle fluorescence imaging technique. The co-localization of the F-C dots excited with different wavelengths shows that single F-C dots can also be excited with multiple energies. The co-localization of the F-C dots that emit at different colour regions under the same excitation wavelength or different excitation wavelengths shows that single F-C dots have a broad emission band from blue to red, but the emission intensities in different colour regions vary from one particle to another. So this study concretely proves that the full colour emissions are single particle behaviours; they are different from the other type of excitation dependent full-colour emission carbon dots whose full-colour behaviour originates from the large heterogeneity in both particle size and the structures of the ensemble. Then the origination of the full-colour emission at the single dot level was further studied by comparing the emission properties of the F-C dots and the small molecular byproducts, and it is found that the emissions of the dozens of molecular byproducts can also cover the full visible regions. And the emission positions of F-C dots are very similar to those of the byproducts at the same excitations, but they show different lifetimes. So a mechanism for the full colour emissions of F-C dots is proposed to originate from the hybridization of multiple small emissive molecules on the emissive carbon cores. This single particle level understanding of full-colour emission properties will pave the way towards the development of single dot imaging or tracking.
Collapse
Affiliation(s)
- Bo Ju
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Guggenheim EJ, Lynch I, Rappoport JZ. Imaging In focus: Reflected light imaging: Techniques and applications. Int J Biochem Cell Biol 2016; 83:65-70. [PMID: 28013148 DOI: 10.1016/j.biocel.2016.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/16/2022]
Abstract
Reflectance imaging is a broad term that describes the formation of images by the detection of illumination light that is back-scattered from reflective features within a sample. Reflectance imaging can be performed in a variety of different configurations, such as confocal, oblique angle illumination, structured illumination, interferometry and total internal reflectance, permitting a plethora of biomedical applications. Reflectance imaging has proven indispensable for critical investigations into the safety and understanding of biomedically and environmentally relevant nano-materials, an area of high priority and investment. The non-destructive in vivo imaging ability of reflectance techniques permits alternative diagnostic strategies that may eventually facilitate the eradication of some invasive biopsy procedures. Reflectance can also provide additional structural information and clarity necessary in fluorescent based in vivo studies. Near-coverslip interrogation techniques, such as reflectance interferometry and total internal reflection, have provided a label free means to investigate cell-surface contacts, cell motility and vesicle trafficking in vivo and in vitro. Other key advances include the ability to acquire superresolution reflectance images providing increased spatial resolution.
Collapse
Affiliation(s)
- Emily J Guggenheim
- Physical Science of Imaging in the Biomedical Sciences (PSIBS) Doctoral Training Centre (DTC), Birmingham, Edgbaston, UK; School of Geography, Earth and Environmental Sciences, Birmingham, Edgbaston, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, Birmingham, Edgbaston, UK
| | - Joshua Z Rappoport
- Centre for Advanced Microscopy and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Insight into the relationship between the cell culture model, cell trafficking and siRNA silencing efficiency. Biochem Biophys Res Commun 2016; 477:260-5. [PMID: 27349867 PMCID: PMC4948577 DOI: 10.1016/j.bbrc.2016.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022]
Abstract
Despite research efforts, cell uptake processes determining siRNA silencing efficiency remain unclear. Here, we examine the relationship between in vitro cell culture models, cellular trafficking and siRNA silencing efficiency to provide a mechanistic insight on siRNA delivery system design. Model siRNA-polyplexes, based on chitosan as a ‘classical’ condensing agent, were applied to a panel of lung epithelial cell lines, H1299, A549 and Calu-3 and cell internalization levels, trafficking pathways and gene silencing assessed on exposure to pharmacological inhibitors. The data reveal striking differences in the internalization behaviour and gene silencing efficiency in the tested cell lines, despite their common lung epithelial origins. The model system’s silencing was lower where clathrin internalization pathway predominated in Calu-3, relative to silencing in H1299 cells where a non-clathrin internalization appears dominant. Increased silencing on endosomal disruption was apparent in Calu-3 cells, but absent when cellular internalization was not predominantly clathrin-mediated in A549 cells. This highlights that identifying cell trafficking pathways before incorporation of functional components to siRNA delivery systems (e.g. endosomolytic compounds) is crucial. The study hence stresses the importance of selection of appropriate cell culture model, relevant to in vivo target, to assess the gene silencing efficiency and decide which functionalities the ‘stratified siRNA silencing vector’ requires. Relationship between cell type, uptake path and silencing examined to inform siRNA vector design. Notable differences observed in cell uptake pathways and silencing despite cells’ common origin. Addition of endosomolytic functionality shows no effect when non-clathrin pathways dominate. Cell model important to assess silencing and decide which functionalities siRNA vector requires.
Collapse
|