1
|
Anteghini M, Gualdi F, Oliva B. How did we get there? AI applications to biological networks and sequences. Comput Biol Med 2025; 190:110064. [PMID: 40184941 DOI: 10.1016/j.compbiomed.2025.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
The rapidly advancing field of artificial intelligence (AI) has transformed numerous scientific domains, including biology, where a vast and complex volume of data is available for analysis. This paper provides a comprehensive overview of the current state of AI-driven methodologies in genomics, proteomics, and systems biology. We discuss how machine learning algorithms, particularly deep learning models, have enhanced the accuracy and efficiency of embedding sequences, motif discovery, and the prediction of gene expression and protein structure. Additionally, we explore the integration of AI in the embedding and analysis of biological networks, including protein-protein interaction networks and multi-layered networks. By leveraging large-scale biological data, AI techniques have enabled unprecedented insights into complex biological processes and disease mechanisms. This work underlines the potential of applying AI to complex biological data, highlighting current applications and suggesting directions for future research to further explore AI in this rapidly evolving field.
Collapse
Affiliation(s)
- Marco Anteghini
- BioFolD Unit, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy; Visual and Data-Centric Computing, Zuse Institut Berlin, Berlin, Germany.
| | - Francesco Gualdi
- Structural Bioinformatics Lab, Universitat Pompeu Fabra, Barcelona, Spain; Istituto dalle Molle di Studi sull'Intelligenza Artificiale, USI/SUPSI (Università Svizzera Italiana/Scuola Universitaria Professionale Svizzera Italiana) Lugano, Switzerland.
| | - Baldo Oliva
- Structural Bioinformatics Lab, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
2
|
Aravazhi PS, Gunasekaran P, Benjamin NZY, Thai A, Chandrasekar KK, Kolanu ND, Prajjwal P, Tekuru Y, Brito LV, Inban P. The integration of artificial intelligence into clinical medicine: Trends, challenges, and future directions. Dis Mon 2025:101882. [PMID: 40140300 DOI: 10.1016/j.disamonth.2025.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
BACKGROUND AND OBJECTIVES AI has emerged as a transformative force in clinical medicine, changing the diagnosis, treatment, and management of patients. Tools have been derived for working with ML, DL, and NLP algorithms to analyze large complex medical datasets with unprecedented accuracy and speed, thereby improving diagnostic precision, treatment personalization, and patient care outcomes. For example, CNNs have dramatically improved the accuracy of medical imaging diagnoses, and NLP algorithms have greatly helped extract insights from unstructured data, including EHRs. However, there are still numerous challenges that face AI integration into clinical workflows, including data privacy, algorithmic bias, ethical dilemmas, and problems with the interpretability of "black-box" AI models. These barriers have thus far prevented the widespread application of AI in health care, and its possible trends, obstacles, and future implications are necessary to be systematically explored. The purpose of this paper is, therefore, to assess the current trends in AI applications in clinical medicine, identify those obstacles that are hindering adoption, and identify possible future directions. This research hopes to synthesize evidence from other peer-reviewed articles to provide a more comprehensive understanding of the role that AI plays to advance clinical practices, improve patient outcomes, or enhance decision-making. METHODS A systematic review was done according to the PRISMA guidelines to explore the integration of Artificial Intelligence in clinical medicine, including trends, challenges, and future directions. PubMed, Cochrane Library, Web of Science, and Scopus databases were searched for peer-reviewed articles from 2014 to 2024 with keywords such as "Artificial Intelligence in Medicine," "AI in Clinical Practice," "Machine Learning in Healthcare," and "Ethical Implications of AI in Medicine." Studies focusing on AI application in diagnostics, treatment planning, and patient care reporting measurable clinical outcomes were included. Non-clinical AI applications and articles published before 2014 were excluded. Selected studies were screened for relevance, and then their quality was critically appraised to synthesize data reliably and rigorously. RESULTS This systematic review includes the findings of 8 studies that pointed out the transformational role of AI in clinical medicine. AI tools, such as CNNs, had diagnostic accuracy more than the traditional methods, particularly in radiology and pathology. Predictive models efficiently supported risk stratification, early disease detection, and personalized medicine. Despite these improvements, significant hurdles, including data privacy, algorithmic bias, and resistance from clinicians regarding the "black-box" nature of AI, had yet to be surmounted. XAI has emerged as an attractive solution that offers the promise to enhance interpretability and trust. As a whole, AI appeared promising in enhancing diagnostics, treatment personalization, and clinical workflows by dealing with systemic inefficiencies. CONCLUSION The transformation potential of AI in clinical medicine can transform diagnostics, treatment strategies, and efficiency. Overcoming obstacles such as concerns about data privacy, the danger of algorithmic bias, and difficulties with interpretability may pave the way for broader use and facilitate improvement in patient outcomes while transforming clinical workflows to bring sustainability into healthcare delivery.
Collapse
Affiliation(s)
| | | | | | - Andy Thai
- Internal Medicine, Alameda Health System, Highland Hospital, Oakland, USA
| | | | | | | | - Yogesh Tekuru
- RVM Institute of Medical Sciences and Research Center, Laxmakkapally, India
| | | | - Pugazhendi Inban
- Internal Medicine, St. Mary's General Hospital and Saint Clare's Health, NY, USA.
| |
Collapse
|
3
|
Huo C, Zhang C, Lu J, Su X, Qi X, Guo Y, Bao Y, Jia H, Cao G, Na R, Zhang W, Li X. A deep learning tissue classifier based on differential co-expression genes predicts the pregnancy outcomes of cattle†. Biol Reprod 2025; 112:550-562. [PMID: 39832283 DOI: 10.1093/biolre/ioaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant). By analyzing gene co-variation and employing machine learning algorithms, the objective was to identify genes that could predict pregnancy outcomes in cattle. Initially, within each tissue type, the top 100 differentially co-expressed genes (DCEGs) were identified based on the analysis of changes in correlation coefficients and network topological structure. Subsequently, these genes were used in models trained by seven different machine learning algorithms. Overall, models trained on DCEGs exhibited superior predictive accuracy compared to those trained on an equivalent number of differential expression genes. Among them, the deep learning models based on differential co-expression genes in blood and endometrial tissue achieved prediction accuracies of 91.7% and 82.6%, respectively. Finally, the importance of DCEGs was ranked using SHapley Additive exPlanations (SHAP) and enrichment analysis, identifying key signaling pathways that influence pregnancy. In summary, this study identified a set of genes potentially affecting pregnancy by analyzing the overall co-variation of gene connections between multiple sources. These key genes facilitated the development of interpretable machine learning models that accurately predict pregnancy outcomes in cattle.
Collapse
Affiliation(s)
- Chenxi Huo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chuanqiang Zhang
- Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Jing Lu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaofeng Su
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| | - Xiaoxia Qi
- Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Yaqiang Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanchun Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongxia Jia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Guifang Cao
- Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Risu Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenguang Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Xihe Li
- Inner Mongolia SK·Xing Animal Breeding and Breeding Biotechnology Research Institute Co., Ltd, Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| |
Collapse
|
4
|
Li J, Zhang J, Guo R, Dai J, Niu Z, Wang Y, Wang T, Jiang X, Hu W. Progress of machine learning in the application of small molecule druggability prediction. Eur J Med Chem 2025; 285:117269. [PMID: 39808972 DOI: 10.1016/j.ejmech.2025.117269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Machine learning (ML) has become an important tool for predicting the pharmaceutical properties of small molecules. Recent advancements in ML algorithms enable the rapid and accurate evaluation of solubility, activity, toxicity, pharmacokinetics, and other molecular properties through ML-based models. By conducting virtual screening of drug targets and elucidating drug-target protein interactions, researchers can conduct preliminary evaluations of the activity and safety of compounds from the ultra-large drug compound libraries, thereby accelerating the screening process for lead compounds. Moreover, ML leverages existing experimental data to train and generate new datasets, addressing the challenge of limited compounds and protein target data. This review provided a concise overview of ML applications in predicting small molecule properties, focusing on model construction principles, molecular feature selection, and other essential aspects. It also discussed the potential applications of ML in the screening of pharmaceutical small molecules.
Collapse
Affiliation(s)
- Junyao Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China; School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China; Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jianmei Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Rui Guo
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China; Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jiawei Dai
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Niu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yan Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Taoyun Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China.
| | - Xiaojian Jiang
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Shahid A, Zahra A, Aslam S, Shamim A, Ali WR, Aslam B, Khan SH, Arshad MI. Appraisal of CRISPR Technology as an Innovative Screening to Therapeutic Toolkit for Genetic Disorders. Mol Biotechnol 2025:10.1007/s12033-025-01374-z. [PMID: 39894889 DOI: 10.1007/s12033-025-01374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
The high frequency of genetic diseases compels the development of refined diagnostic and therapeutic systems. CRISPR is a precise genome editing tool that offers detection of genetic mutation with high sensitivity, specificity and flexibility for point-of-care testing in low resource environment. Advancements in CRISPR ushered new hope for the detection of genetic diseases. This review aims to explore the recent advances in CRISPR for the detection and treatment of genetic disorders. It delves into the advances like next-generation CRISPR diagnostics like nano-biosensors, digitalized CRISPR, and omics-integrated CRISPR technologies to enhance the detection limits and to facilitate the "lab-on-chip" technologies. Additionally, therapeutic potential of CRISPR technologies is reviewed to evaluate the implementation potential of CRISPR technologies for the treatment of hematological diseases, (sickle cell anemia and β-thalassemia), HIV, cancer, cardiovascular diseases, and neurological disorders, etc. Emerging CRISPR therapeutic approaches such as base/epigenetic editing and stem cells for the development of foreseen CRIPSR drugs are explored for the development of point-of-care testing. A combination of predictive models of artificial intelligence and machine learning with growing knowledge of genetic disorders has also been discussed to understand their role in acceleration of genetic detection. Ethical consideration are briefly discussed towards to end of review. This review provides the comprehensive insights into advances in the CRISPR diagnostics/therapeutics which are believed to pave the way for reliable, effective, and low-cost genetic testing.
Collapse
Affiliation(s)
- Ayesha Shahid
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ambreen Zahra
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sabin Aslam
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amen Shamim
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
- Department of Computer Science, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sultan Habibullah Khan
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Arshad
- National Center for Genome Editing, Center for Advanced Studies/D-8 Research Center, University of Agriculture, Faisalabad, 38000, Pakistan.
- Institute of Microbiology, University of Agriculture Faisalabad, Pakistan Academy of Sciences (PAS), Faisalabad, 38000, Pakistan.
- Jiangsu University, Jiangsu, 212013, People's Republic of China.
| |
Collapse
|
6
|
Wilczok D. Deep learning and generative artificial intelligence in aging research and healthy longevity medicine. Aging (Albany NY) 2025; 17:251-275. [PMID: 39836094 PMCID: PMC11810058 DOI: 10.18632/aging.206190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
With the global population aging at an unprecedented rate, there is a need to extend healthy productive life span. This review examines how Deep Learning (DL) and Generative Artificial Intelligence (GenAI) are used in biomarker discovery, deep aging clock development, geroprotector identification and generation of dual-purpose therapeutics targeting aging and disease. The paper explores the emergence of multimodal, multitasking research systems highlighting promising future directions for GenAI in human and animal aging research, as well as clinical application in healthy longevity medicine.
Collapse
Affiliation(s)
- Dominika Wilczok
- Duke University, Durham, NC 27708, USA
- Duke Kunshan University, Kunshan, Jiangsu 215316, China
| |
Collapse
|
7
|
Wang J, Mao J, Li C, Xiang H, Wang X, Wang S, Wang Z, Chen Y, Li Y, No KT, Song T, Zeng X. Interface-aware molecular generative framework for protein-protein interaction modulators. J Cheminform 2024; 16:142. [PMID: 39707457 DOI: 10.1186/s13321-024-00930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
Protein-protein interactions (PPIs) play a crucial role in numerous biochemical and biological processes. Although several structure-based molecular generative models have been developed, PPI interfaces and compounds targeting PPIs exhibit distinct physicochemical properties compared to traditional binding pockets and small-molecule drugs. As a result, generating compounds that effectively target PPIs, particularly by considering PPI complexes or interface hotspot residues, remains a significant challenge. In this work, we constructed a comprehensive dataset of PPI interfaces with active and inactive compound pairs. Based on this, we propose a novel molecular generative framework tailored to PPI interfaces, named GENiPPI. Our evaluation demonstrates that GENiPPI captures the implicit relationships between the PPI interfaces and the active molecules, and can generate novel compounds that target these interfaces. Moreover, GENiPPI can generate structurally diverse novel compounds with limited PPI interface modulators. To the best of our knowledge, this is the first exploration of a structure-based molecular generative model focused on PPI interfaces, which could facilitate the design of PPI modulators. The PPI interface-based molecular generative model enriches the existing landscape of structure-based (pocket/interface) molecular generative model. SCIENTIFIC CONTRIBUTION: This study introduces GENiPPI, a protein-protein interaction (PPI) interface-aware molecular generative framework. The framework first employs Graph Attention Networks to capture atomic-level interaction features at the protein complex interface. Subsequently, Convolutional Neural Networks extract compound representations in voxel and electron density spaces. These features are integrated into a Conditional Wasserstein Generative Adversarial Network, which trains the model to generate compound representations targeting PPI interfaces. GENiPPI effectively captures the relationship between PPI interfaces and active/inactive compounds. Furthermore, in fewshot molecular generation, GENiPPI successfully generates compounds comparable to known disruptors. GENiPPI provides an efficient tool for structure-based design of PPI modulators.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Integrative Biotechnology, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jiashun Mao
- Department of Integrative Biotechnology, Yonsei University, Incheon, 21983, Republic of Korea
| | - Chunyan Li
- School of Informatics, Yunnan Normal University, Kunming, China
| | - Hongxin Xiang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Xun Wang
- School of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, Shandong, China
- High Performance Computer Research Center, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuang Wang
- School of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, Shandong, China
| | - Zixu Wang
- Department of Computer Science, University of Tsukuba, Tsukuba, 3058577, Japan
| | - Yangyang Chen
- Department of Computer Science, University of Tsukuba, Tsukuba, 3058577, Japan
| | - Yuquan Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Kyoung Tai No
- Department of Integrative Biotechnology, Yonsei University, Incheon, 21983, Republic of Korea.
| | - Tao Song
- School of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, Shandong, China.
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
8
|
Wu Y, Ding X, Wang Y, Ouyang D. Harnessing the power of machine learning into tissue engineering: current progress and future prospects. BURNS & TRAUMA 2024; 12:tkae053. [PMID: 39659561 PMCID: PMC11630859 DOI: 10.1093/burnst/tkae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/17/2024] [Accepted: 08/07/2024] [Indexed: 12/12/2024]
Abstract
Tissue engineering is a discipline based on cell biology and materials science with the primary goal of rebuilding and regenerating lost and damaged tissues and organs. Tissue engineering has developed rapidly in recent years, while scaffolds, growth factors, and stem cells have been successfully used for the reconstruction of various tissues and organs. However, time-consuming production, high cost, and unpredictable tissue growth still need to be addressed. Machine learning is an emerging interdisciplinary discipline that combines computer science and powerful data sets, with great potential to accelerate scientific discovery and enhance clinical practice. The convergence of machine learning and tissue engineering, while in its infancy, promises transformative progress. This paper will review the latest progress in the application of machine learning to tissue engineering, summarize the latest applications in biomaterials design, scaffold fabrication, tissue regeneration, and organ transplantation, and discuss the challenges and future prospects of interdisciplinary collaboration, with a view to providing scientific references for researchers to make greater progress in tissue engineering and machine learning.
Collapse
Affiliation(s)
- Yiyang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Xiaotong Ding
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, PR China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, PR China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
- DPM, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
9
|
Liu D, Song T, Wang S. MM-DRPNet: A multimodal dynamic radial partitioning network for enhanced protein-ligand binding affinity prediction. Comput Struct Biotechnol J 2024; 23:4396-4405. [PMID: 39737077 PMCID: PMC11683220 DOI: 10.1016/j.csbj.2024.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/23/2024] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
Accurate prediction of drug-target binding affinity remains a fundamental challenge in contemporary drug discovery. Despite significant advances in computational methods for protein-ligand binding affinity prediction, current approaches still face substantial limitations in prediction accuracy. Moreover, the prevalent methodologies often overlook critical three-dimensional (3D) structural information, thereby constraining their practical utility in computer-aided drug design (CADD). Here we present MM-DRPNet, a multimodal deep learning framework that enhances binding affinity prediction by integrating protein-ligand structural information with interaction features and physicochemical properties. The core innovation lies in our dynamic radial partitioning (DRP) algorithm, which adaptively segments 3D space based on complex-specific interaction patterns, surpassing traditional fixed partitioning methods in capturing spatial interactions. MM-DRPNet further incorporates molecular topological features to comprehensively model both structural and spatial relationships. Extensive evaluations on benchmark datasets demonstrate that MM-DRPNet significantly outperforms state-of-the-art methods across multiple metrics, with ablation studies confirming the substantial contribution of each architectural component. Source code for MM-DRPNet is freely available for download at https://github.com/Bigrock-dd/MMDRPv1.
Collapse
Affiliation(s)
- Dayan Liu
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Tao Song
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Shudong Wang
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| |
Collapse
|
10
|
Shao Y, Lv X, Ying S, Guo Q. Artificial Intelligence-Driven Precision Medicine: Multi-Omics and Spatial Multi-Omics Approaches in Diffuse Large B-Cell Lymphoma (DLBCL). FRONT BIOSCI-LANDMRK 2024; 29:404. [PMID: 39735973 DOI: 10.31083/j.fbl2912404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 12/31/2024]
Abstract
In this comprehensive review, we delve into the transformative role of artificial intelligence (AI) in refining the application of multi-omics and spatial multi-omics within the realm of diffuse large B-cell lymphoma (DLBCL) research. We scrutinized the current landscape of multi-omics and spatial multi-omics technologies, accentuating their combined potential with AI to provide unparalleled insights into the molecular intricacies and spatial heterogeneity inherent to DLBCL. Despite current progress, we acknowledge the hurdles that impede the full utilization of these technologies, such as the integration and sophisticated analysis of complex datasets, the necessity for standardized protocols, the reproducibility of findings, and the interpretation of their biological significance. We proceeded to pinpoint crucial research voids and advocated for a trajectory that incorporates the development of advanced AI-driven data integration and analytical frameworks. The evolution of these technologies is crucial for enhancing resolution and depth in multi-omics studies. We also emphasized the importance of amassing extensive, meticulously annotated multi-omics datasets and fostering translational research efforts to connect laboratory discoveries with clinical applications seamlessly. Our review concluded that the synergistic integration of multi-omics, spatial multi-omics, and AI holds immense promise for propelling precision medicine forward in DLBCL. By surmounting the present challenges and steering towards the outlined futuristic pathways, we can harness these potent investigative tools to decipher the molecular and spatial conundrums of DLBCL. This will pave the way for refined diagnostic precision, nuanced risk stratification, and individualized therapeutic regimens, ushering in a new era of patient-centric oncology care.
Collapse
Affiliation(s)
- Yanping Shao
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China
| | - Xiuyan Lv
- Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 317000 Taizhou, Zhejiang, China
| | - Shuangwei Ying
- Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 317000 Taizhou, Zhejiang, China
| | - Qunyi Guo
- Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 317000 Taizhou, Zhejiang, China
| |
Collapse
|
11
|
Noor F, Junaid M, Almalki AH, Almaghrabi M, Ghazanfar S, Tahir Ul Qamar M. Deep learning pipeline for accelerating virtual screening in drug discovery. Sci Rep 2024; 14:28321. [PMID: 39550439 PMCID: PMC11569207 DOI: 10.1038/s41598-024-79799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
In the race to combat ever-evolving diseases, the drug discovery process often faces the hurdles of high-cost and time-consuming procedures. To tackle these challenges and enhance the efficiency of identifying new therapeutic agents, we introduce VirtuDockDL, which is a streamlined Python-based web platform utilizing deep learning for drug discovery. This pipeline employs a Graph Neural Network to analyze and predict the effectiveness of various compounds as potential drug candidates. During the validation phase, VirtuDockDL was instrumental in identifying non-covalent inhibitors against the VP35 protein of the Marburg virus, a critical target given the virus's high fatality rate and limited treatment options. Further, in benchmarking, VirtuDockDL achieved 99% accuracy, an F1 score of 0.992, and an AUC of 0.99 on the HER2 dataset, surpassing DeepChem (89% accuracy) and AutoDock Vina (82% accuracy). Compared to RosettaVS, MzDOCK, and PyRMD, VirtuDockDL outperformed them by combining both ligand- and structure-based screening with deep learning. While RosettaVS excels in accurate docking but lacks high-throughput screening, and PyRMD focuses on ligand-based methods without AI integration, VirtuDockDL offers superior predictive accuracy and full automation for large-scale datasets, making it ideal for comprehensive drug discovery workflows. These results underscore the tool's capability to identify high-affinity inhibitors accurately across various targets, including the HER2 protein for cancer therapy, TEM-1 beta-lactamase for bacterial infections, and the CYP51 enzyme for fungal infections like Candidiasis. To sum up, VirtuDockDL combines user-friendly interface design with powerful computational capabilities to facilitate rapid, cost-effective drug discovery and development. The integration of AI in drug discovery could potentially transform the landscape of pharmaceutical research, providing faster responses to global health challenges. The VirtuDockDL is available at https://github.com/FatimaNoor74/VirtuDockDL .
Collapse
Affiliation(s)
- Fatima Noor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 35000, Pakistan
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan
| | - Muhammad Junaid
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, 21944, Taif, Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taibah University, 30001, Al Madinah Al Munawarah, Saudi Arabia
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Islamabad, Pakistan
| | - Muhammad Tahir Ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| |
Collapse
|
12
|
Chen CC, Chan YM, Jeong H. REDalign: accurate RNA structural alignment using residual encoder-decoder network. BMC Bioinformatics 2024; 25:346. [PMID: 39501155 PMCID: PMC11539752 DOI: 10.1186/s12859-024-05956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND RNA secondary structural alignment serves as a foundational procedure in identifying conserved structural motifs among RNA sequences, crucially advancing our understanding of novel RNAs via comparative genomic analysis. While various computational strategies for RNA structural alignment exist, they often come with high computational complexity. Specifically, when addressing a set of RNAs with unknown structures, the task of simultaneously predicting their consensus secondary structure and determining the optimal sequence alignment requires an overwhelming computational effort of O ( L 6 ) for each RNA pair. Such an extremely high computational complexity makes these methods impractical for large-scale analysis despite their accurate alignment capabilities. RESULTS In this paper, we introduce REDalign, an innovative approach based on deep learning for RNA secondary structural alignment. By utilizing a residual encoder-decoder network, REDalign can efficiently capture consensus structures and optimize structural alignments. In this learning model, the encoder network leverages a hierarchical pyramid to assimilate high-level structural features. Concurrently, the decoder network, enhanced with residual skip connections, integrates multi-level encoded features to learn detailed feature hierarchies with fewer parameter sets. REDalign significantly reduces computational complexity compared to Sankoff-style algorithms and effectively handles non-nested structures, including pseudoknots, which are challenging for traditional alignment methods. Extensive evaluations demonstrate that REDalign provides superior accuracy and substantial computational efficiency. CONCLUSION REDalign presents a significant advancement in RNA secondary structural alignment, balancing high alignment accuracy with lower computational demands. Its ability to handle complex RNA structures, including pseudoknots, makes it an effective tool for large-scale RNA analysis, with potential implications for accelerating discoveries in RNA research and comparative genomics.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Department of Electrical Engineering, National Chiayi University, No.300 Xuefu Rd, Chiayi City, 600355, Taiwan.
| | - Yi-Ming Chan
- MindtronicAI Co., 7 F., No. 218, Sec. 6, Roosevelt Road, Taipei, 11674, Taiwan
| | - Hyundoo Jeong
- Biomedical and Robotics Engineering, Incheon National University, 119 Academy-ro, Incheon, 22012, Yeonsu-gu, South Korea.
| |
Collapse
|
13
|
Mukherjee J, Sharma R, Dutta P, Bhunia B. Artificial intelligence in healthcare: a mastery. Biotechnol Genet Eng Rev 2024; 40:1659-1708. [PMID: 37013913 DOI: 10.1080/02648725.2023.2196476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
There is a vast development of artificial intelligence (AI) in recent years. Computational technology, digitized data collection and enormous advancement in this field have allowed AI applications to penetrate the core human area of specialization. In this review article, we describe current progress achieved in the AI field highlighting constraints on smooth development in the field of medical AI sector, with discussion of its implementation in healthcare from a commercial, regulatory and sociological standpoint. Utilizing sizable multidimensional biological datasets that contain individual heterogeneity in genomes, functionality and milieu, precision medicine strives to create and optimize approaches for diagnosis, treatment methods and assessment. With the arise of complexity and expansion of data in the health-care industry, AI can be applied more frequently. The main application categories include indications for diagnosis and therapy, patient involvement and commitment and administrative tasks. There has recently been a sharp rise in interest in medical AI applications due to developments in AI software and technology, particularly in deep learning algorithms and in artificial neural network (ANN). In this overview, we enlisted the major categories of issues that AI systems are ideally equipped to resolve followed by clinical diagnostic tasks. It also includes a discussion of the future potential of AI, particularly for risk prediction in complex diseases, and the difficulties, constraints and biases that must be meticulously addressed for the effective delivery of AI in the health-care sector.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy Affiliated to Jawaharlal Nehru Technological University, Hyderabad, Telangana, India
| | - Ramesh Sharma
- Department of Bioengineering, National Institute of Technology, Agartala, India
| | - Prasenjit Dutta
- Department of Production Engineering, National Institute of Technology, Agartala, India
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology, Agartala, India
| |
Collapse
|
14
|
Lyu YX, Fu Q, Wilczok D, Ying K, King A, Antebi A, Vojta A, Stolzing A, Moskalev A, Georgievskaya A, Maier AB, Olsen A, Groth A, Simon AK, Brunet A, Jamil A, Kulaga A, Bhatti A, Yaden B, Pedersen BK, Schumacher B, Djordjevic B, Kennedy B, Chen C, Huang CY, Correll CU, Murphy CT, Ewald CY, Chen D, Valenzano DR, Sołdacki D, Erritzoe D, Meyer D, Sinclair DA, Chini EN, Teeling EC, Morgen E, Verdin E, Vernet E, Pinilla E, Fang EF, Bischof E, Mercken EM, Finger F, Kuipers F, Pun FW, Gyülveszi G, Civiletto G, Zmudze G, Blander G, Pincus HA, McClure J, Kirkland JL, Peyer J, Justice JN, Vijg J, Gruhn JR, McLaughlin J, Mannick J, Passos J, Baur JA, Betts-LaCroix J, Sedivy JM, Speakman JR, Shlain J, von Maltzahn J, Andreasson KI, Moody K, Palikaras K, Fortney K, Niedernhofer LJ, Rasmussen LJ, Veenhoff LM, Melton L, Ferrucci L, Quarta M, Koval M, Marinova M, Hamalainen M, Unfried M, Ringel MS, Filipovic M, Topors M, Mitin N, Roy N, Pintar N, Barzilai N, Binetti P, Singh P, Kohlhaas P, Robbins PD, Rubin P, Fedichev PO, Kamya P, Muñoz-Canoves P, de Cabo R, Faragher RGA, Konrad R, Ripa R, Mansukhani R, et alLyu YX, Fu Q, Wilczok D, Ying K, King A, Antebi A, Vojta A, Stolzing A, Moskalev A, Georgievskaya A, Maier AB, Olsen A, Groth A, Simon AK, Brunet A, Jamil A, Kulaga A, Bhatti A, Yaden B, Pedersen BK, Schumacher B, Djordjevic B, Kennedy B, Chen C, Huang CY, Correll CU, Murphy CT, Ewald CY, Chen D, Valenzano DR, Sołdacki D, Erritzoe D, Meyer D, Sinclair DA, Chini EN, Teeling EC, Morgen E, Verdin E, Vernet E, Pinilla E, Fang EF, Bischof E, Mercken EM, Finger F, Kuipers F, Pun FW, Gyülveszi G, Civiletto G, Zmudze G, Blander G, Pincus HA, McClure J, Kirkland JL, Peyer J, Justice JN, Vijg J, Gruhn JR, McLaughlin J, Mannick J, Passos J, Baur JA, Betts-LaCroix J, Sedivy JM, Speakman JR, Shlain J, von Maltzahn J, Andreasson KI, Moody K, Palikaras K, Fortney K, Niedernhofer LJ, Rasmussen LJ, Veenhoff LM, Melton L, Ferrucci L, Quarta M, Koval M, Marinova M, Hamalainen M, Unfried M, Ringel MS, Filipovic M, Topors M, Mitin N, Roy N, Pintar N, Barzilai N, Binetti P, Singh P, Kohlhaas P, Robbins PD, Rubin P, Fedichev PO, Kamya P, Muñoz-Canoves P, de Cabo R, Faragher RGA, Konrad R, Ripa R, Mansukhani R, Büttner S, Wickström SA, Brunemeier S, Jakimov S, Luo S, Rosenzweig-Lipson S, Tsai SY, Dimmeler S, Rando TA, Peterson TR, Woods T, Wyss-Coray T, Finkel T, Strauss T, Gladyshev VN, Longo VD, Dwaraka VB, Gorbunova V, Acosta-Rodríguez VA, Sorrentino V, Sebastiano V, Li W, Suh Y, Zhavoronkov A, Scheibye-Knudsen M, Bakula D. Longevity biotechnology: bridging AI, biomarkers, geroscience and clinical applications for healthy longevity. Aging (Albany NY) 2024; 16:12955-12976. [PMID: 39418098 PMCID: PMC11552646 DOI: 10.18632/aging.206135] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 10/19/2024]
Abstract
The recent unprecedented progress in ageing research and drug discovery brings together fundamental research and clinical applications to advance the goal of promoting healthy longevity in the human population. We, from the gathering at the Aging Research and Drug Discovery Meeting in 2023, summarised the latest developments in healthspan biotechnology, with a particular emphasis on artificial intelligence (AI), biomarkers and clocks, geroscience, and clinical trials and interventions for healthy longevity. Moreover, we provide an overview of academic research and the biotech industry focused on targeting ageing as the root of age-related diseases to combat multimorbidity and extend healthspan. We propose that the integration of generative AI, cutting-edge biological technology, and longevity medicine is essential for extending the productive and healthy human lifespan.
Collapse
Affiliation(s)
- Yu-Xuan Lyu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Qiang Fu
- Institute of Aging Medicine, College of Pharmacy, Binzhou Medical University, Yantai, China
- Anti-aging Innovation Center, Subei Research Institute at Shanghai Jiaotong University, China
- Shandong Cellogene Pharmaceutics Co. LTD, Yantai, China
| | - Dominika Wilczok
- Duke Kunshan University, Kunshan, Jiangsu, China
- Duke University, Durham, NC, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Aaron King
- Foresight Institute, San Francisco, CA 91125, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aleksandar Vojta
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Alexandra Stolzing
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky University, Nizhny Novgorod, Russia
| | | | - Andrea B. Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Olsen
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Katharina Simon
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- The Kennedy Institute of Rheumatology, Oxford, UK
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aisyah Jamil
- Insilico Medicine AI Limited, Level 6, Masdar City, Abu Dhabi, UAE
| | - Anton Kulaga
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | | | - Benjamin Yaden
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University - Purdue University Indianapolis, Indianapolis Indiana 46077, USA
| | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, CECAD Research Center, University and University Hospital of Cologne, Cologne 50931, Germany
| | - Boris Djordjevic
- 199 Biotechnologies Ltd., London, UK
- University College London, London, UK
| | - Brian Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chieh Chen
- Molecular, Cellular, And Integrative Physiology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Christoph U. Correll
- Zucker School of Medicine at Hofstra/Northwell, NY 10001, USA
- Charité - University Medicine, Berlin, Germany
| | - Coleen T. Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
- Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
- Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dario Riccardo Valenzano
- Leibniz Institute on Aging, Fritz Lipmann Institute, Friedrich Schiller University, Jena, Germany
| | | | - David Erritzoe
- Centre for Psychedelic Research, Dpt Brain Sciences, Imperial College London, UK
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, CECAD Research Center, University and University Hospital of Cologne, Cologne 50931, Germany
| | - David A. Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA 02108, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, Belfield, Univeristy College Dublin, Dublin 4, Ireland
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Erik Vernet
- Research and Early Development, Maaleov 2760, Denmark
| | | | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Evelyne Bischof
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Evi M. Mercken
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Fabian Finger
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Folkert Kuipers
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | | | | | | | - Harold A. Pincus
- Department of Psychiatry, Columbia University, New York, NY 10012, USA
| | | | - James L. Kirkland
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Jan Vijg
- Department of Genetics Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jennifer R. Gruhn
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Joan Mannick
- Tornado Therapeutics, Cambrian Bio Inc. PipeCo, New York, NY 10012, USA
| | - João Passos
- Department of Physiology and Biomedical Engineering and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19019, USA
| | | | - John M. Sedivy
- Center on the Biology of Aging, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02860, USA
| | - John R. Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg and Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelsey Moody
- Ichor Life Sciences, Inc., LaFayette, NY 13084, USA
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55414, USA
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lisa Melton
- Nature Biotechnology, Springer Nature, London, UK
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21201, USA
| | - Marco Quarta
- Rubedo Life Sciences, Sunnyvale, CA 94043, USA
- Turn Biotechnologies, Mountain View 94039, CA, USA
- Phaedon Institute, Oakland, CA 94501, USA
| | - Maria Koval
- Institute of Biochemistry of the Romanian Academy, Romania
| | - Maria Marinova
- Fertility and Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Hamalainen
- Longevity Biotech Fellowship, Longevity Acceleration Fund, Vitalism, SF Bay, CA 94101, USA
| | - Maximilian Unfried
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117608, Singapore
| | | | - Milos Filipovic
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V., Dortmund, Germany
| | - Mourad Topors
- Repair Biotechnologies, Inc., Syracuse, NY 13210, USA
| | | | | | | | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10452, USA
| | | | | | | | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN 55111, USA
| | | | | | - Petrina Kamya
- Insilico Medicine Canada Inc., Montreal, Quebec H3B 4W8 Canada
| | - Pura Muñoz-Canoves
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging (NIH), Baltimore, Maryland 21201, USA
| | | | | | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden
| | - Sara A. Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | - Shan Luo
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | - Shih-Yin Tsai
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Germany
| | - Thomas A. Rando
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Tina Woods
- Collider Heath, London, UK
- Healthy Longevity Champion, National Innovation Centre for Ageing, UK
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15106, USA
| | - Tzipora Strauss
- Sheba Longevity Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
| | - Valter D. Longo
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90001, USA
| | | | - Vera Gorbunova
- Department of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Victoria A. Acosta-Rodríguez
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincenzo Sorrentino
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA 94301, USA
| | - Wenbin Li
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York City, NY 10032, USA
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Level 6, Masdar City, Abu Dhabi, UAE
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
15
|
Gao Y, Liu M. Application of machine learning based genome sequence analysis in pathogen identification. Front Microbiol 2024; 15:1474078. [PMID: 39417073 PMCID: PMC11480060 DOI: 10.3389/fmicb.2024.1474078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Infectious diseases caused by pathogenic microorganisms pose a serious threat to human health. Despite advances in molecular biology, genetics, computation, and medicinal chemistry, infectious diseases remain a significant public health concern. Addressing the challenges posed by pathogen outbreaks, pandemics, and antimicrobial resistance requires concerted interdisciplinary efforts. With the development of computer technology and the continuous exploration of artificial intelligence(AI)applications in the biomedical field, the automatic morphological recognition and image processing of microbial images under microscopes have advanced rapidly. The research team of Institute of Microbiology, Chinese Academy of Sciences has developed a single cell microbial identification technology combining Raman spectroscopy and artificial intelligence. Through laser Raman acquisition system and convolutional neural network analysis, the average accuracy rate of 95.64% has been achieved, and the identification can be completed in only 5 min. These technologies have shown substantial advantages in the visible morphological detection of pathogenic microorganisms, expanding anti-infective drug discovery, enhancing our understanding of infection biology, and accelerating the development of diagnostics. In this review, we discuss the application of AI-based machine learning in image analysis, genome sequencing data analysis, and natural language processing (NLP) for pathogen identification, highlighting the significant role of artificial intelligence in pathogen diagnosis. AI can improve the accuracy and efficiency of diagnosis, promote early detection and personalized treatment, and enhance public health safety.
Collapse
Affiliation(s)
- Yunqiu Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Min Liu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Institute of Respiratory Disease, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Bharadwaj S, Deepika K, Kumar A, Jaiswal S, Miglani S, Singh D, Fartyal P, Kumar R, Singh S, Singh MP, Gaidhane AM, Kumar B, Jha V. Exploring the Artificial Intelligence and Its Impact in Pharmaceutical Sciences: Insights Toward the Horizons Where Technology Meets Tradition. Chem Biol Drug Des 2024; 104:e14639. [PMID: 39396920 DOI: 10.1111/cbdd.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The technological revolutions in computers and the advancement of high-throughput screening technologies have driven the application of artificial intelligence (AI) for faster discovery of drug molecules with more efficiency, and cost-friendly finding of hit or lead molecules. The ability of software and network frameworks to interpret molecular structures' representations and establish relationships/correlations has enabled various research teams to develop numerous AI platforms for identifying new lead molecules or discovering new targets for already established drug molecules. The prediction of biological activity, ADME properties, and toxicity parameters in early stages have reduced the chances of failure and associated costs in later clinical stages, which was observed at a high rate in the tedious, expensive, and laborious drug discovery process. This review focuses on the different AI and machine learning (ML) techniques with their applications mainly focused on the pharmaceutical industry. The applications of AI frameworks in the identification of molecular target, hit identification/hit-to-lead optimization, analyzing drug-receptor interactions, drug repurposing, polypharmacology, synthetic accessibility, clinical trial design, and pharmaceutical developments are discussed in detail. We have also compiled the details of various startups in AI in this field. This review will provide a comprehensive analysis and outline various state-of-the-art AI/ML techniques to the readers with their framework applications. This review also highlights the challenges in this field, which need to be addressed for further success in pharmaceutical applications.
Collapse
Affiliation(s)
- Shruti Bharadwaj
- Center for SeNSE, Indian Institute of Technology Delhi (IIT), New Delhi, India
| | - Kumari Deepika
- Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Manesar, India
| | - Shivani Jaiswal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Shaweta Miglani
- Department of Education, Central University of Punjab, Bathinda, India
| | - Damini Singh
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh, India
| | - Prachi Fartyal
- Department of Mathematics, Govt PG College Bajpur (US Nagar), Bazpur, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
- Department of Microbiology, Central University of Punjab, VPO-Ghudda, Punjab, India
| | - Shareen Singh
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education, Wardha, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar, Uttarakhand, India
| | - Vibhu Jha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
17
|
Gangwal A, Lavecchia A. Unleashing the power of generative AI in drug discovery. Drug Discov Today 2024; 29:103992. [PMID: 38663579 DOI: 10.1016/j.drudis.2024.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 05/04/2024]
Abstract
Artificial intelligence (AI) is revolutionizing drug discovery by enhancing precision, reducing timelines and costs, and enabling AI-driven computer-aided drug design. This review focuses on recent advancements in deep generative models (DGMs) for de novo drug design, exploring diverse algorithms and their profound impact. It critically analyses the challenges that are intricately interwoven into these technologies, proposing strategies to unlock their full potential. It features case studies of both successes and failures in advancing drugs to clinical trials with AI assistance. Last, it outlines a forward-looking plan for optimizing DGMs in de novo drug design, thereby fostering faster and more cost-effective drug development.
Collapse
Affiliation(s)
- Amit Gangwal
- Department of Natural Product Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Antonio Lavecchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy.
| |
Collapse
|
18
|
Faria M, Ganz A, Galkin F, Zhavoronkov A, Snyder M. Psychogenic Aging: A Novel Prospect to Integrate Psychobiological Hallmarks of Aging. Transl Psychiatry 2024; 14:226. [PMID: 38816369 PMCID: PMC11139997 DOI: 10.1038/s41398-024-02919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Psychological factors are amongst the most robust predictors of healthspan and longevity, yet are rarely incorporated into scientific and medical frameworks of aging. The prospect of characterizing and integrating the psychological influences of aging is therefore an unmet step for the advancement of geroscience. Psychogenic Aging research is an emerging branch of biogerontology that aims to address this gap by investigating the impact of psychological factors on human longevity. It is an interdisciplinary field that integrates complex psychological, neurological, and molecular relationships that can be best understood with precision medicine methodologies. This perspective argues that psychogenic aging should be considered an integral component of the Hallmarks of Aging framework, opening the doors for future biopsychosocial integration in longevity research. By providing a unique perspective on frequently overlooked aspects of organismal aging, psychogenic aging offers new insights and targets for anti-aging therapeutics on individual and societal levels that can significantly benefit the scientific and medical communities.
Collapse
Affiliation(s)
- Manuel Faria
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ariel Ganz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Alex Zhavoronkov
- Deep Longevity, Hong Kong, China
- Insilico Medicine, Hong Kong, China
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Zhang C, Xie L, Lu X, Mao R, Xu L, Xu X. Developing an Improved Cycle Architecture for AI-Based Generation of New Structures Aimed at Drug Discovery. Molecules 2024; 29:1499. [PMID: 38611779 PMCID: PMC11013495 DOI: 10.3390/molecules29071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Drug discovery involves a crucial step of optimizing molecules with the desired structural groups. In the domain of computer-aided drug discovery, deep learning has emerged as a prominent technique in molecular modeling. Deep generative models, based on deep learning, play a crucial role in generating novel molecules when optimizing molecules. However, many existing molecular generative models have limitations as they solely process input information in a forward way. To overcome this limitation, we propose an improved generative model called BD-CycleGAN, which incorporates BiLSTM (bidirectional long short-term memory) and Mol-CycleGAN (molecular cycle generative adversarial network) to preserve the information of molecular input. To evaluate the proposed model, we assess its performance by analyzing the structural distribution and evaluation matrices of generated molecules in the process of structural transformation. The results demonstrate that the BD-CycleGAN model achieves a higher success rate and exhibits increased diversity in molecular generation. Furthermore, we demonstrate its application in molecular docking, where it successfully increases the docking score for the generated molecules. The proposed BD-CycleGAN architecture harnesses the power of deep learning to facilitate the generation of molecules with desired structural features, thus offering promising advancements in the field of drug discovery processes.
Collapse
Affiliation(s)
| | | | | | | | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China; (C.Z.); (L.X.); (X.L.); (R.M.)
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China; (C.Z.); (L.X.); (X.L.); (R.M.)
| |
Collapse
|
20
|
Metin B, Uyulan Ç, Ergüzel TT, Farhad S, Çifçi E, Türk Ö, Tarhan N. The Deep Learning Method Differentiates Patients with Bipolar Disorder from Controls with High Accuracy Using EEG Data. Clin EEG Neurosci 2024; 55:167-175. [PMID: 36341750 DOI: 10.1177/15500594221137234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Bipolar disorder (BD) is a mental disorder characterized by depressive and manic or hypomanic episodes. The complexity in the diagnosis of Bipolar disorder (BD) due to its overlapping symptoms with other mood disorders prompted researchers and clinicians to seek new and advanced techniques for the precise detection of Bipolar disorder (BD). One of these methods is the use of advanced machine learning algorithms such as deep learning (DL). However, no study of BD has previously adopted DL techniques using EEG signals. Method: EEG signals of 169 BD patients and 45 controls were cleaned from the artifacts and processed using two different DL methods: a one-dimensional convolutional neural network (1D-CNN) combined with the long-short term memory (LSTM) and a two-dimensional convolutional neural network (2D-CNN). Additionally, Class Activation Maps (CAMs) acquired from the bipolar and control groups were used to obtain distinctive regions to specify a particular class in an image. Results: Group identifications were confirmed with 95.91% overall accuracy through the 2D-CNN method, demonstrating very high sensitivity and lower specificity. Also, the overall accuracy obtained from the 1D-CNN + LSTM method was 93%. We also found that F4, C3, F7, and F8 electrode activities produce predominant features to detect the bipolar group. Conclusion: To our knowledge, this study used EEG-based DL analysis for the first time in BD. Our results suggest that the raw EEG-based DL algorithm can successfully differentiate individuals with BD from controls. Class Activation Map (CAM) analysis suggests that prefrontal changes are predominant in EEG data of patients with BD.
Collapse
Affiliation(s)
- Barış Metin
- Medical Faculty, Neurology Department, Uskudar University, Istanbul, Turkey
| | - Çağlar Uyulan
- Department of Mechanical Engineering, Katip Çelebi University, İzmir, Turkey
| | - Türker Tekin Ergüzel
- Faculty of Engineering and Natural Sciences, Department of Software Engineering, Uskudar University, Istanbul, Turkey
| | - Shams Farhad
- Department of Neuroscience, Uskudar University, Istanbul, Turkey
| | - Elvan Çifçi
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
| | - Ömer Türk
- Department of Computer Technologies, Artuklu University, Mardin, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
| |
Collapse
|
21
|
Qi X, Zhao Y, Qi Z, Hou S, Chen J. Machine Learning Empowering Drug Discovery: Applications, Opportunities and Challenges. Molecules 2024; 29:903. [PMID: 38398653 PMCID: PMC10892089 DOI: 10.3390/molecules29040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Drug discovery plays a critical role in advancing human health by developing new medications and treatments to combat diseases. How to accelerate the pace and reduce the costs of new drug discovery has long been a key concern for the pharmaceutical industry. Fortunately, by leveraging advanced algorithms, computational power and biological big data, artificial intelligence (AI) technology, especially machine learning (ML), holds the promise of making the hunt for new drugs more efficient. Recently, the Transformer-based models that have achieved revolutionary breakthroughs in natural language processing have sparked a new era of their applications in drug discovery. Herein, we introduce the latest applications of ML in drug discovery, highlight the potential of advanced Transformer-based ML models, and discuss the future prospects and challenges in the field.
Collapse
Affiliation(s)
- Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| | - Zhuang Qi
- School of Software, Shandong University, Jinan 250101, China;
| | - Siyu Hou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| |
Collapse
|
22
|
Gangwal A, Ansari A, Ahmad I, Azad AK, Kumarasamy V, Subramaniyan V, Wong LS. Generative artificial intelligence in drug discovery: basic framework, recent advances, challenges, and opportunities. Front Pharmacol 2024; 15:1331062. [PMID: 38384298 PMCID: PMC10879372 DOI: 10.3389/fphar.2024.1331062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
There are two main ways to discover or design small drug molecules. The first involves fine-tuning existing molecules or commercially successful drugs through quantitative structure-activity relationships and virtual screening. The second approach involves generating new molecules through de novo drug design or inverse quantitative structure-activity relationship. Both methods aim to get a drug molecule with the best pharmacokinetic and pharmacodynamic profiles. However, bringing a new drug to market is an expensive and time-consuming endeavor, with the average cost being estimated at around $2.5 billion. One of the biggest challenges is screening the vast number of potential drug candidates to find one that is both safe and effective. The development of artificial intelligence in recent years has been phenomenal, ushering in a revolution in many fields. The field of pharmaceutical sciences has also significantly benefited from multiple applications of artificial intelligence, especially drug discovery projects. Artificial intelligence models are finding use in molecular property prediction, molecule generation, virtual screening, synthesis planning, repurposing, among others. Lately, generative artificial intelligence has gained popularity across domains for its ability to generate entirely new data, such as images, sentences, audios, videos, novel chemical molecules, etc. Generative artificial intelligence has also delivered promising results in drug discovery and development. This review article delves into the fundamentals and framework of various generative artificial intelligence models in the context of drug discovery via de novo drug design approach. Various basic and advanced models have been discussed, along with their recent applications. The review also explores recent examples and advances in the generative artificial intelligence approach, as well as the challenges and ongoing efforts to fully harness the potential of generative artificial intelligence in generating novel drug molecules in a faster and more affordable manner. Some clinical-level assets generated form generative artificial intelligence have also been discussed in this review to show the ever-increasing application of artificial intelligence in drug discovery through commercial partnerships.
Collapse
Affiliation(s)
- Amit Gangwal
- Department of Natural Product Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, Maharashtra, India
| | - Azim Ansari
- Computer Aided Drug Design Center Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, Maharashtra, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, India
| | - Abul Kalam Azad
- Faculty of Pharmacy, University College of MAIWP International, Batu Caves, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| |
Collapse
|
23
|
Jinsong S, Qifeng J, Xing C, Hao Y, Wang L. Molecular fragmentation as a crucial step in the AI-based drug development pathway. Commun Chem 2024; 7:20. [PMID: 38302655 PMCID: PMC10834946 DOI: 10.1038/s42004-024-01109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
The AI-based small molecule drug discovery has become a significant trend at the intersection of computer science and life sciences. In the pursuit of novel compounds, fragment-based drug discovery has emerged as a novel approach. The Generative Pre-trained Transformers (GPT) model has showcased remarkable prowess across various domains, rooted in its pre-training and representation learning of fundamental linguistic units. Analogous to natural language, molecular encoding, as a form of chemical language, necessitates fragmentation aligned with specific chemical logic for accurate molecular encoding. This review provides a comprehensive overview of the current state of the art in molecular fragmentation. We systematically summarize the approaches and applications of various molecular fragmentation techniques, with special emphasis on the characteristics and scope of applicability of each technique, and discuss their applications. We also provide an outlook on the current development trends of molecular fragmentation techniques, including some potential research directions and challenges.
Collapse
Affiliation(s)
- Shao Jinsong
- Nantong University, School of Information Science and Technology, Nantong, China
| | - Jia Qifeng
- Nantong University, School of Information Science and Technology, Nantong, China
| | - Chen Xing
- Nantong University, School of Information Science and Technology, Nantong, China
| | - Yajie Hao
- Nantong University, School of Information Science and Technology, Nantong, China
| | - Li Wang
- Nantong University, Research Center for Intelligence Information Technology, Nantong, China.
| |
Collapse
|
24
|
Playdon MC, Tinker LF, Prentice RL, Loftfield E, Hayden KM, Van Horn L, Sampson JN, Stolzenberg-Solomon R, Lampe JW, Neuhouser ML, Moore SC. Measuring diet by metabolomics: a 14-d controlled feeding study of weighed food intake. Am J Clin Nutr 2024; 119:511-526. [PMID: 38212160 PMCID: PMC10884612 DOI: 10.1016/j.ajcnut.2023.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Metabolomics has the potential to enhance dietary assessment by revealing objective measures of many aspects of human food intake. Although metabolomics studies indicate that hundreds of metabolites are associated with dietary intake, correlations have been modest (e.g., r < 0.50), and few have been evaluated in controlled feeding studies. OBJECTIVES The aim of this study was to evaluate associations between metabolites and weighed food and beverage intake in a controlled feeding study of habitual diet. METHODS Healthy postmenopausal females from the Women's Health Initiative (N = 153) were provided with a customized 2-wk controlled diet designed to emulate their usual diet. Metabolites were measured by liquid chromatography tandem mass spectrometry in end-of-study 24-h urine and fasting serum samples (1293 urine metabolites; 1113 serum metabolites). We calculated partial Pearson correlations between these metabolites and intake of 65 food groups, beverages, and supplements during the feeding study. The threshold for significance was Bonferroni-adjusted to account for multiple testing (5.94 × 10-07 for urine metabolites; 6.91 × 10-07 for serum metabolites). RESULTS Significant diet-metabolite correlations were identified for 23 distinct foods, beverages, and supplements (171 distinct metabolites). Among foods, strong metabolite correlations (r ≥ 0.60) were evident for citrus (highest r = 0.80), dairy (r = 0.65), and broccoli (r = 0.63). Among beverages and supplements, strong correlations were evident for coffee (r = 0.86), alcohol (r = 0.69), multivitamins (r = 0.69), and vitamin E supplements (r = 0.65). Moderate correlations (r = 0.50-0.60) were also observed for avocado, fish, garlic, grains, onion, poultry, and black tea. Correlations were specific; each metabolite correlated with one food, beverage, or supplement, except for metabolites correlated with juice or multivitamins. CONCLUSIONS Metabolite levels had moderate to strong correlations with weighed intake of habitually consumed foods, beverages, and supplements. These findings exceed in magnitude those previously observed in population studies and exemplify the strong potential of metabolomics to contribute to nutrition research. The Women's Health Initiative is registered at clinicaltrials.gov as NCT00000611.
Collapse
Affiliation(s)
- Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT; Cancer Control and Population Sciences Division, Huntsman Cancer Institute, Salt Lake City, UT; Division of Cancer Epidemiology and Genetics, National Cancer institute, Rockville, MD
| | - Lesley F Tinker
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Ross L Prentice
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer institute, Rockville, MD
| | - Kathleen M Hayden
- School of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Linda Van Horn
- Feinberg School of Medicine, Northwestern University, Chicago IL
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer institute, Rockville, MD
| | | | - Johanna W Lampe
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Marian L Neuhouser
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer institute, Rockville, MD.
| |
Collapse
|
25
|
Duan X, Xing F, Zhang J, Li H, Chen Y, Lei Y, Zhao Y, Cao R, Guan H, Kong N, Li Y, Wu Z, Wang K, Tian R, Yang P. Bioinformatic analysis of related immune cell infiltration and key genes in the progression of osteonecrosis of the femoral head. Front Immunol 2024; 14:1340446. [PMID: 38283345 PMCID: PMC10811953 DOI: 10.3389/fimmu.2023.1340446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Objective Osteonecrosis of the femoral head (ONFH) is a common orthopedic condition that will prompt joint dysfunction, significantly impacting patients' quality of life. However, the specific pathogenic mechanisms underlying this disease remain elusive. The objective of this study is to examine the differentially expressed messenger RNAs (DE mRNAs) and key genes linked to ONFH, concurrently investigating the immune cell infiltration features in ONFH patients through the application of the CIBERSORT algorithm. Methods Microarray was applied to scrutinize mRNA expression profiles in both ONFH patients and healthy controls, with data integration sourced from the GEO database. DE mRNAs were screened using the Limma method. The biological functions of DE mRNAs were explored through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Gene Ontology (GO) functional analysis, and Gene Set Enrichment Analysis (GSEA). Additionally, support vector machine-recursive feature elimination (SVM-RFE) and the least absolute shrinkage and selection operator (LASSO) were employed to discern diagnostic biomarkers associated with the disease. Receiver operating characteristic (ROC) analysis was utilized to assess the statistical performance of the feature genes. The validation of key genes was performed using qRT-PCR in bone tissues obtained from ONFH patients and healthy controls. Osteogenic differentiation of BMSC was then performed and detected by alkaline phosphatase staining (ALP) and qRT-PCR to verify the correlation between key genes and osteogenic differentiation. Finally, immune cell infiltration analysis was executed to evaluate immune cell dysregulation in ONFH, concurrently exploring the correlation between the infiltration of immune cells and key genes. Results After consolidating the datasets, the Limma method revealed 107 DEGs, comprising 76 downregulated and 31 upregulated genes. Enrichment analysis revealed close associations of these DE mRNAs with functions such as cell migration, osteoblast differentiation, cartilage development and extracellular region. Machine learning algorithms further identified APOD, FBXO43 and LRP12 as key genes. ROC curves demonstrated the high diagnostic efficacy of these genes. The results of qRT-PCR showed that the expression levels of key genes were consistent with those of microarray analysis. In addition, the results of in vitro experiments showed that APOD was closely related to osteogenic differentiation of BMSC. Immune infiltration analysis suggested a close correlation between ONFH and imbalances in levels of Neutrophils, Monocytes, Macrophages M2, Dendritic cells activated and Dendritic cells resting. Conclusion APOD is closely related to osteogenic differentiation of BMSCs and can be used as a diagnostic marker of ONFH. Immune cell infiltration significantly differs between controls and ONFH patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Run Tian
- *Correspondence: Run Tian, ; Pei Yang,
| | - Pei Yang
- *Correspondence: Run Tian, ; Pei Yang,
| |
Collapse
|
26
|
Arora P, Behera M, Saraf SA, Shukla R. Leveraging Artificial Intelligence for Synergies in Drug Discovery: From Computers to Clinics. Curr Pharm Des 2024; 30:2187-2205. [PMID: 38874046 DOI: 10.2174/0113816128308066240529121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024]
Abstract
Over the period of the preceding decade, artificial intelligence (AI) has proved an outstanding performance in entire dimensions of science including pharmaceutical sciences. AI uses the concept of machine learning (ML), deep learning (DL), and neural networks (NNs) approaches for novel algorithm and hypothesis development by training the machines in multiple ways. AI-based drug development from molecule identification to clinical approval tremendously reduces the cost of development and the time over conventional methods. The COVID-19 vaccine development and approval by regulatory agencies within 1-2 years is the finest example of drug development. Hence, AI is fast becoming a boon for scientific researchers to streamline their advanced discoveries. AI-based FDA-approved nanomedicines perform well as target selective, synergistic therapies, recolonize the theragnostic pharmaceutical stream, and significantly improve drug research outcomes. This comprehensive review delves into the fundamental aspects of AI along with its applications in the realm of pharmaceutical life sciences. It explores AI's role in crucial areas such as drug designing, drug discovery and development, traditional Chinese medicine, integration of multi-omics data, as well as investigations into drug repurposing and polypharmacology studies.
Collapse
Affiliation(s)
- Priyanka Arora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Manaswini Behera
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| |
Collapse
|
27
|
Ahmadi M, Ayyoubzadeh SM, Ghorbani-Bidkorpeh F. Toxicity prediction of nanoparticles using machine learning approaches. Toxicology 2024; 501:153697. [PMID: 38056590 DOI: 10.1016/j.tox.2023.153697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Nanoparticle toxicity analysis is critical for evaluating the safety of nanomaterials due to their potential harm to the biological system. However, traditional experimental methods for evaluating nanoparticle toxicity are expensive and time-consuming. As an alternative approach, machine learning offers a solution for predicting cellular responses to nanoparticles. This study focuses on developing ML models for nanoparticle toxicity prediction. The training dataset used for building these models includes the physicochemical properties of nanoparticles, exposure conditions, and cellular responses of different cell lines. The impact of each parameter on cell death was assessed using the Gini index. Five classifiers, namely Decision Tree, Random Forest, Support Vector Machine, Naïve Bayes, and Artificial Neural Network, were employed to predict toxicity. The models' performance was compared based on accuracy, sensitivity, specificity, area under the curve, F measure, K-fold validation, and classification error. The Gini index indicated that cell line, exposure dose, and tissue are the most influential factors in cell death. Among the models tested, Random Forest exhibited the highest performance in the given dataset. Other models demonstrated lower performance compared to Random Forest. Researchers can utilize the Random Forest model to predict nanoparticle toxicity, resulting in cost and time savings for toxicity analysis.
Collapse
Affiliation(s)
- Mahnaz Ahmadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran; Health Information Management Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Khanna NN, Singh M, Maindarkar M, Kumar A, Johri AM, Mentella L, Laird JR, Paraskevas KI, Ruzsa Z, Singh N, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh I, Teji JS, Al-Maini M, Isenovic ER, Viswanathan V, Khanna P, Fouda MM, Saba L, Suri JS. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J Korean Med Sci 2023; 38:e395. [PMID: 38013648 PMCID: PMC10681845 DOI: 10.3346/jkms.2023.38.e395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
- Asia Pacific Vascular Society, New Delhi, India
| | - Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Bennett University, Greater Noida, India
| | - Mahesh Maindarkar
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- School of Bioengineering Sciences and Research, Maharashtra Institute of Technology's Art, Design and Technology University, Pune, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura Mentella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Inder Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, Beograd, Serbia
| | | | - Puneet Khanna
- Department of Anaesthesiology, AIIMS, New Delhi, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Jasjit S Suri
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, India.
| |
Collapse
|
29
|
Mavaie P, Holder L, Skinner MK. Hybrid deep learning approach to improve classification of low-volume high-dimensional data. BMC Bioinformatics 2023; 24:419. [PMID: 37936066 PMCID: PMC10631218 DOI: 10.1186/s12859-023-05557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND The performance of machine learning classification methods relies heavily on the choice of features. In many domains, feature generation can be labor-intensive and require domain knowledge, and feature selection methods do not scale well in high-dimensional datasets. Deep learning has shown success in feature generation but requires large datasets to achieve high classification accuracy. Biology domains typically exhibit these challenges with numerous handcrafted features (high-dimensional) and small amounts of training data (low volume). METHOD A hybrid learning approach is proposed that first trains a deep network on the training data, extracts features from the deep network, and then uses these features to re-express the data for input to a non-deep learning method, which is trained to perform the final classification. RESULTS The approach is systematically evaluated to determine the best layer of the deep learning network from which to extract features and the threshold on training data volume that prefers this approach. Results from several domains show that this hybrid approach outperforms standalone deep and non-deep learning methods, especially on low-volume, high-dimensional datasets. The diverse collection of datasets further supports the robustness of the approach across different domains. CONCLUSIONS The hybrid approach combines the strengths of deep and non-deep learning paradigms to achieve high performance on high-dimensional, low volume learning tasks that are typical in biology domains.
Collapse
Affiliation(s)
- Pegah Mavaie
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164, USA
| | - Lawrence Holder
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164, USA
| | - Michael K Skinner
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
30
|
Aliper A, Kudrin R, Polykovskiy D, Kamya P, Tutubalina E, Chen S, Ren F, Zhavoronkov A. Prediction of Clinical Trials Outcomes Based on Target Choice and Clinical Trial Design with Multi-Modal Artificial Intelligence. Clin Pharmacol Ther 2023; 114:972-980. [PMID: 37483175 DOI: 10.1002/cpt.3008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Drug discovery and development is a notoriously risky process with high failure rates at every stage, including disease modeling, target discovery, hit discovery, lead optimization, preclinical development, human safety, and efficacy studies. Accurate prediction of clinical trial outcomes may help significantly improve the efficiency of this process by prioritizing therapeutic programs that are more likely to succeed in clinical trials and ultimately benefit patients. Here, we describe inClinico, a transformer-based artificial intelligence software platform designed to predict the outcome of phase II clinical trials. The platform combines an ensemble of clinical trial outcome prediction engines that leverage generative artificial intelligence and multimodal data, including omics, text, clinical trial design, and small molecule properties. inClinico was validated in retrospective, quasi-prospective, and prospective validation studies internally and with pharmaceutical companies and financial institutions. The platform achieved 0.88 receiver operating characteristic area under the curve in predicting the phase II to phase III transition on a quasi-prospective validation dataset. The first prospective predictions were made and placed on date-stamped preprint servers in 2016. To validate our model in a real-world setting, we published forecasted outcomes for several phase II clinical trials achieving 79% accuracy for the trials that have read out. We also present an investment application of inClinico using date stamped virtual trading portfolio demonstrating 35% 9-month return on investment.
Collapse
Affiliation(s)
- Alex Aliper
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi, United Arab Emirates
| | - Roman Kudrin
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi, United Arab Emirates
| | | | - Petrina Kamya
- Insilico Medicine Canada Inc., Quebec, Montreal, Canada
| | - Elena Tutubalina
- Insilico Medicine Hong Kong Ltd, New Territories, Pak Shek Kok, Hong Kong
| | - Shan Chen
- Insilico Medicine Shanghai Ltd, Pudong New District, Shanghai, China
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Pudong New District, Shanghai, China
| | - Alex Zhavoronkov
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi, United Arab Emirates
- Insilico Medicine Hong Kong Ltd, New Territories, Pak Shek Kok, Hong Kong
| |
Collapse
|
31
|
Raza A, Chohan TA, Buabeid M, Arafa ESA, Chohan TA, Fatima B, Sultana K, Ullah MS, Murtaza G. Deep learning in drug discovery: a futuristic modality to materialize the large datasets for cheminformatics. J Biomol Struct Dyn 2023; 41:9177-9192. [PMID: 36305195 DOI: 10.1080/07391102.2022.2136244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
Abstract
Artificial intelligence (AI) development imitates the workings of the human brain to comprehend modern problems. The traditional approaches such as high throughput screening (HTS) and combinatorial chemistry are lengthy and expensive to the pharmaceutical industry as they can only handle a smaller dataset. Deep learning (DL) is a sophisticated AI method that uses a thorough comprehension of particular systems. The pharmaceutical industry is now adopting DL techniques to enhance the research and development process. Multi-oriented algorithms play a crucial role in the processing of QSAR analysis, de novo drug design, ADME evaluation, physicochemical analysis, preclinical development, followed by clinical trial data precision. In this study, we investigated the performance of several algorithms, including deep neural networks (DNN), convolutional neural networks (CNN) and multi-task learning (MTL), with the aim of generating high-quality, interpretable big and diverse databases for drug design and development. Studies have demonstrated that CNN, recurrent neural network and deep belief network are compatible, accurate and effective for the molecular description of pharmacodynamic properties. In Covid-19, existing pharmacological compounds has also been repurposed using DL models. In the absence of the Covid-19 vaccine, remdesivir and oseltamivir have been widely employed to treat severe SARS-CoV-2 infections. In conclusion, the results indicate the potential benefits of employing the DL strategies in the drug discovery process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Raza
- Department of pharmaceutical chemistry, Faculty of Pharmacy, The University of Lahore, Pakistan
- Institute of Molecular Biology and Biochemistry, The University of Lahore, Pakistan
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biochemistry, The University of Lahore, Pakistan
- Institute of Pharmaceutical Science, UVAS, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - El-Shaima A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | | | - Batool Fatima
- Department of biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Kishwar Sultana
- Department of pharmaceutical chemistry, Faculty of Pharmacy, The University of Lahore, Pakistan
| | - Malik Saad Ullah
- Department of Pharmacy, Government College University, Faisalabad, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Pakistan
| |
Collapse
|
32
|
Niazi SK. The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug Des Devel Ther 2023; 17:2691-2725. [PMID: 37701048 PMCID: PMC10493153 DOI: 10.2147/dddt.s424991] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
Artificial intelligence (AI) and machine learning (ML) represent significant advancements in computing, building on technologies that humanity has developed over millions of years-from the abacus to quantum computers. These tools have reached a pivotal moment in their development. In 2021 alone, the U.S. Food and Drug Administration (FDA) received over 100 product registration submissions that heavily relied on AI/ML for applications such as monitoring and improving human performance in compiling dossiers. To ensure the safe and effective use of AI/ML in drug discovery and manufacturing, the FDA and numerous other U.S. federal agencies have issued continuously updated, stringent guidelines. Intriguingly, these guidelines are often generated or updated with the aid of AI/ML tools themselves. The overarching goal is to expedite drug discovery, enhance the safety profiles of existing drugs, introduce novel treatment modalities, and improve manufacturing compliance and robustness. Recent FDA publications offer an encouraging outlook on the potential of these tools, emphasizing the need for their careful deployment. This has expanded market opportunities for retraining personnel handling these technologies and enabled innovative applications in emerging therapies such as gene editing, CRISPR-Cas9, CAR-T cells, mRNA-based treatments, and personalized medicine. In summary, the maturation of AI/ML technologies is a testament to human ingenuity. Far from being autonomous entities, these are tools created by and for humans designed to solve complex problems now and in the future. This paper aims to present the status of these technologies, along with examples of their present and future applications.
Collapse
|
33
|
Kate A, Seth E, Singh A, Chakole CM, Chauhan MK, Singh RK, Maddalwar S, Mishra M. Artificial Intelligence for Computer-Aided Drug Discovery. Drug Res (Stuttg) 2023; 73:369-377. [PMID: 37276884 DOI: 10.1055/a-2076-3359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The continuous implementation of Artificial Intelligence (AI) in multiple scientific domains and the rapid advancement in computer software and hardware, along with other parameters, have rapidly fuelled this development. The technology can contribute effectively in solving many challenges and constraints in the traditional development of the drug. Traditionally, large-scale chemical libraries are screened to find one promising medicine. In recent years, more reasonable structure-based drug design approaches have avoided the first screening phases while still requiring chemists to design, synthesize, and test a wide range of compounds to produce possible novel medications. The process of turning a promising chemical into a medicinal candidate can be expensive and time-consuming. Additionally, a new medication candidate may still fail in clinical trials even after demonstrating promise in laboratory research. In fact, less than 10% of medication candidates that undergo Phase I trials really reach the market. As a consequence, the unmatched data processing power of AI systems may expedite and enhance the drug development process in four different ways: by opening up links to novel biological systems, superior or distinctive chemistry, greater success rates, and faster and less expensive innovation trials. Since these technologies may be used to address a variety of discovery scenarios and biological targets, it is essential to comprehend and distinguish between use cases. As a result, we have emphasized how AI may be used in a variety of areas of the pharmaceutical sciences, including in-depth opportunities for drug research and development.
Collapse
Affiliation(s)
- Aditya Kate
- Amity Institute of Biotechnology, Amity University, Chhattisgarh, India
| | - Ekkita Seth
- Amity Institute of Biotechnology, Amity University, Chhattisgarh, India
| | - Ananya Singh
- Amity Institute of Biotechnology, Amity University, Chhattisgarh, India
| | - Chandrashekhar Mahadeo Chakole
- Bajiraoji Karanjekar college of Pharmacy, Sakoli, Dist-Bhandara, India
- NDDS Research Lab, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi
| | - Meenakshi Kanwar Chauhan
- NDDS Research Lab, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi
| | - Ravi Kant Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | | | - Mohit Mishra
- Amity Institute of Biotechnology, Amity University, Chhattisgarh, India
| |
Collapse
|
34
|
Pyrkov A, Aliper A, Bezrukov D, Lin YC, Polykovskiy D, Kamya P, Ren F, Zhavoronkov A. Quantum computing for near-term applications in generative chemistry and drug discovery. Drug Discov Today 2023; 28:103675. [PMID: 37331692 DOI: 10.1016/j.drudis.2023.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
In recent years, drug discovery and life sciences have been revolutionized with machine learning and artificial intelligence (AI) methods. Quantum computing is touted to be the next most significant leap in technology; one of the main early practical applications for quantum computing solutions is predicted to be in quantum chemistry simulations. Here, we review the near-term applications of quantum computing and their advantages for generative chemistry and highlight the challenges that can be addressed with noisy intermediate-scale quantum (NISQ) devices. We also discuss the possible integration of generative systems running on quantum computers into established generative AI platforms.
Collapse
Affiliation(s)
- Alexey Pyrkov
- Insilico Medicine Hong Kong Ltd, Pak Shek Kok, New Territories, Hong Kong.
| | - Alex Aliper
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi, United Arab Emirates
| | - Dmitry Bezrukov
- Insilico Medicine Hong Kong Ltd, Pak Shek Kok, New Territories, Hong Kong
| | - Yen-Chu Lin
- Insilico Medicine Taiwan Ltd, Taipei, Taiwan
| | | | | | - Feng Ren
- Insilico Medicine Shanghai Ltd, Shanghai, China
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd, Pak Shek Kok, New Territories, Hong Kong
| |
Collapse
|
35
|
Robinson JP, Ostafe R, Iyengar SN, Rajwa B, Fischer R. Flow Cytometry: The Next Revolution. Cells 2023; 12:1875. [PMID: 37508539 PMCID: PMC10378642 DOI: 10.3390/cells12141875] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Unmasking the subtleties of the immune system requires both a comprehensive knowledge base and the ability to interrogate that system with intimate sensitivity. That task, to a considerable extent, has been handled by an iterative expansion in flow cytometry methods, both in technological capability and also in accompanying advances in informatics. As the field of fluorescence-based cytomics matured, it reached a technological barrier at around 30 parameter analyses, which stalled the field until spectral flow cytometry created a fundamental transformation that will likely lead to the potential of 100 simultaneous parameter analyses within a few years. The simultaneous advance in informatics has now become a watershed moment for the field as it competes with mature systematic approaches such as genomics and proteomics, allowing cytomics to take a seat at the multi-omics table. In addition, recent technological advances try to combine the speed of flow systems with other detection methods, in addition to fluorescence alone, which will make flow-based instruments even more indispensable in any biological laboratory. This paper outlines current approaches in cell analysis and detection methods, discusses traditional and microfluidic sorting approaches as well as next-generation instruments, and provides an early look at future opportunities that are likely to arise.
Collapse
Affiliation(s)
- J Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production Facility (PI4D), Purdue University, West Lafayette, IN 47907, USA
| | | | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Rainer Fischer
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
36
|
Latypov TH, So MC, Hung PSP, Tsai P, Walker MR, Tohyama S, Tawfik M, Rudzicz F, Hodaie M. Brain imaging signatures of neuropathic facial pain derived by artificial intelligence. Sci Rep 2023; 13:10699. [PMID: 37400574 DOI: 10.1038/s41598-023-37034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Advances in neuroimaging have permitted the non-invasive examination of the human brain in pain. However, a persisting challenge is in the objective differentiation of neuropathic facial pain subtypes, as diagnosis is based on patients' symptom descriptions. We use artificial intelligence (AI) models with neuroimaging data to distinguish subtypes of neuropathic facial pain and differentiate them from healthy controls. We conducted a retrospective analysis of diffusion tensor and T1-weighted imaging data using random forest and logistic regression AI models on 371 adults with trigeminal pain (265 classical trigeminal neuralgia (CTN), 106 trigeminal neuropathic pain (TNP)) and 108 healthy controls (HC). These models distinguished CTN from HC with up to 95% accuracy, and TNP from HC with up to 91% accuracy. Both classifiers identified gray and white matter-based predictive metrics (gray matter thickness, surface area, and volume; white matter diffusivity metrics) that significantly differed across groups. Classification of TNP and CTN did not show significant accuracy (51%) but highlighted two structures that differed between pain groups-the insula and orbitofrontal cortex. Our work demonstrates that AI models with brain imaging data alone can differentiate neuropathic facial pain subtypes from healthy data and identify regional structural indicates of pain.
Collapse
Affiliation(s)
- Timur H Latypov
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Matthew C So
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Shih-Ping Hung
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Pascale Tsai
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew R Walker
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sarasa Tohyama
- A.A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Marina Tawfik
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Frank Rudzicz
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Urban A, Sidorenko D, Zagirova D, Kozlova E, Kalashnikov A, Pushkov S, Naumov V, Sarkisova V, Leung GHD, Leung HW, Pun FW, Ozerov IV, Aliper A, Ren F, Zhavoronkov A. Precious1GPT: multimodal transformer-based transfer learning for aging clock development and feature importance analysis for aging and age-related disease target discovery. Aging (Albany NY) 2023; 15:4649-4666. [PMID: 37315204 PMCID: PMC10292881 DOI: 10.18632/aging.204788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
Aging is a complex and multifactorial process that increases the risk of various age-related diseases and there are many aging clocks that can accurately predict chronological age, mortality, and health status. These clocks are disconnected and are rarely fit for therapeutic target discovery. In this study, we propose a novel approach to multimodal aging clock we call Precious1GPT utilizing methylation and transcriptomic data for interpretable age prediction and target discovery developed using a transformer-based model and transfer learning for case-control classification. While the accuracy of the multimodal transformer is lower within each individual data type compared to the state of art specialized aging clocks based on methylation or transcriptomic data separately it may have higher practical utility for target discovery. This method provides the ability to discover novel therapeutic targets that hypothetically may be able to reverse or accelerate biological age providing a pathway for therapeutic drug discovery and validation using the aging clock. In addition, we provide a list of promising targets annotated using the PandaOmics industrial target discovery platform.
Collapse
Affiliation(s)
- Anatoly Urban
- Insilico Medicine, Pak Shek Kok, New Territories, Hong Kong
| | | | - Diana Zagirova
- Insilico Medicine, Pak Shek Kok, New Territories, Hong Kong
| | | | | | - Stefan Pushkov
- Insilico Medicine, Pak Shek Kok, New Territories, Hong Kong
| | | | | | | | - Hoi Wing Leung
- Insilico Medicine, Pak Shek Kok, New Territories, Hong Kong
| | - Frank W. Pun
- Insilico Medicine, Pak Shek Kok, New Territories, Hong Kong
| | - Ivan V. Ozerov
- Insilico Medicine, Pak Shek Kok, New Territories, Hong Kong
| | - Alex Aliper
- Insilico Medicine, Pak Shek Kok, New Territories, Hong Kong
- Insilico Medicine, Masdar City, United Arab Emirates
| | - Feng Ren
- Insilico Medicine, Shanghai, China
| | - Alex Zhavoronkov
- Insilico Medicine, Pak Shek Kok, New Territories, Hong Kong
- Insilico Medicine, Masdar City, United Arab Emirates
| |
Collapse
|
38
|
Wong F, Omori S, Donghia NM, Zheng EJ, Collins JJ. Discovering small-molecule senolytics with deep neural networks. NATURE AGING 2023; 3:734-750. [PMID: 37142829 DOI: 10.1038/s43587-023-00415-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
The accumulation of senescent cells is associated with aging, inflammation and cellular dysfunction. Senolytic drugs can alleviate age-related comorbidities by selectively killing senescent cells. Here we screened 2,352 compounds for senolytic activity in a model of etoposide-induced senescence and trained graph neural networks to predict the senolytic activities of >800,000 molecules. Our approach enriched for structurally diverse compounds with senolytic activity; of these, three drug-like compounds selectively target senescent cells across different senescence models, with more favorable medicinal chemistry properties than, and selectivity comparable to, those of a known senolytic, ABT-737. Molecular docking simulations of compound binding to several senolytic protein targets, combined with time-resolved fluorescence energy transfer experiments, indicate that these compounds act in part by inhibiting Bcl-2, a regulator of cellular apoptosis. We tested one compound, BRD-K56819078, in aged mice and found that it significantly decreased senescent cell burden and mRNA expression of senescence-associated genes in the kidneys. Our findings underscore the promise of leveraging deep learning to discover senotherapeutics.
Collapse
Affiliation(s)
- Felix Wong
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Integrated Biosciences, Inc, San Carlos, CA, USA
| | - Satotaka Omori
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Integrated Biosciences, Inc, San Carlos, CA, USA
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, Japan
| | - Nina M Donghia
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Erica J Zheng
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Chemical Biology, Harvard University, Cambridge, MA, USA
| | - James J Collins
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
39
|
Paylar B, Längkvist M, Jass J, Olsson PE. Utilization of Computer Classification Methods for Exposure Prediction and Gene Selection in Daphnia magna Toxicogenomics. BIOLOGY 2023; 12:biology12050692. [PMID: 37237504 DOI: 10.3390/biology12050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Zinc (Zn) is an essential element that influences many cellular functions. Depending on bioavailability, Zn can cause both deficiency and toxicity. Zn bioavailability is influenced by water hardness. Therefore, water quality analysis for health-risk assessment should consider both Zn concentration and water hardness. However, exposure media selection for traditional toxicology tests are set to defined hardness levels and do not represent the diverse water chemistry compositions observed in nature. Moreover, these tests commonly use whole organism endpoints, such as survival and reproduction, which require high numbers of test animals and are labor intensive. Gene expression stands out as a promising alternative to provide insight into molecular events that can be used for risk assessment. In this work, we apply machine learning techniques to classify the Zn concentrations and water hardness from Daphnia magna gene expression by using quantitative PCR. A method for gene ranking was explored using techniques from game theory, namely, Shapley values. The results show that standard machine learning classifiers can classify both Zn concentration and water hardness simultaneously, and that Shapley values are a versatile and useful alternative for gene ranking that can provide insight about the importance of individual genes.
Collapse
Affiliation(s)
- Berkay Paylar
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Martin Längkvist
- Center for Applied Autonomous Sensor Systems, Örebro University, SE-701 82 Örebro, Sweden
| | - Jana Jass
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
40
|
Tong Y, Jie B, Wang X, Xu Z, Ding P, He Y. Is Convolutional Neural Network Accurate for Automatic Detection of Zygomatic Fractures on Computed Tomography? J Oral Maxillofac Surg 2023:S0278-2391(23)00393-2. [PMID: 37217163 DOI: 10.1016/j.joms.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Zygomatic fractures involve complex anatomical structures of the mid-face and the diagnosis can be challenging and labor-consuming. This research is aimed to evaluate the performance of an automatic algorithm for the detection of zygomatic fractures based on convolutional neural network (CNN) on spiral computed tomography (CT). MATERIALS AND METHODS We designed a cross-sectional retrospective diagnostic trial study. Clinical records and CT scans of patients with zygomatic fractures were reviewed. The sample consisted of two types of patients with different zygomatic fractures statuses (positive or negative) in Peking University School of Stomatology from 2013 to 2019. All CT samples were randomly divided into three groups at a ratio of 6:2:2 as training set, validation set, and test set, respectively. All CT scans were viewed and annotated by three experienced maxillofacial surgeons, serving as the gold standard. The algorithm consisted of two modules as follows: (1) segmentation of the zygomatic region of CT based on U-Net, a type of CNN model; (2) detection of fractures based on Deep Residual Network 34(ResNet34). The region segmentation model was used first to detect and extract the zygomatic region, then the detection model was used to detect the fracture status. The Dice coefficient was used to evaluate the performance of the segmentation algorithm. The sensitivity and specificity were used to assess the performance of the detection model. The covariates included age, gender, duration of injury, and the etiology of fractures. RESULTS A total of 379 patients with an average age of 35.43 ± 12.74 years were included in the study. There were 203 nonfracture patients and 176 fracture patients with 220 sites of zygomatic fractures (44 patients underwent bilateral fractures). The Dice coefficientof zygomatic region detection model and gold standard verified by manual labeling were 0.9337 (coronal plane) and 0.9269 (sagittal plane), respectively. The sensitivity and specificity of the fracture detection model were 100% (p>.05). CONCLUSION The performance of the algorithm based on CNNs was not statistically different from the gold standard (manual diagnosis) for zygomatic fracture detection in order for the algorithm to be applied clinically.
Collapse
Affiliation(s)
- Yanhang Tong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology; National Clinical Research Center for Oral Diseases, Beijing, China
| | - Bimeng Jie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology; National Clinical Research Center for Oral Diseases, Beijing, China
| | - Xuebing Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology; National Clinical Research Center for Oral Diseases, Beijing, China
| | | | | | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology; National Clinical Research Center for Oral Diseases, Beijing, China.
| |
Collapse
|
41
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
42
|
Olsen A, Harpaz Z, Ren C, Shneyderman A, Veviorskiy A, Dralkina M, Konnov S, Shcheglova O, Pun FW, Leung GHD, Leung HW, Ozerov IV, Aliper A, Korzinkin M, Zhavoronkov A. Identification of dual-purpose therapeutic targets implicated in aging and glioblastoma multiforme using PandaOmics - an AI-enabled biological target discovery platform. Aging (Albany NY) 2023; 15:2863-2876. [PMID: 37100462 DOI: 10.18632/aging.204678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023]
Abstract
Glioblastoma Multiforme (GBM) is the most aggressive and most common primary malignant brain tumor. The age of GBM patients is considered as one of the disease's negative prognostic factors and the mean age of diagnosis is 62 years. A promising approach to preventing both GBM and aging is to identify new potential therapeutic targets that are associated with both conditions as concurrent drivers. In this work, we present a multi-angled approach of identifying targets, which takes into account not only the disease-related genes but also the ones important in aging. For this purpose, we developed three strategies of target identification using the results of correlation analysis augmented with survival data, differences in expression levels and previously published information of aging-related genes. Several studies have recently validated the robustness and applicability of AI-driven computational methods for target identification in both cancer and aging-related diseases. Therefore, we leveraged the AI predictive power of the PandaOmics TargetID engine in order to rank the resulting target hypotheses and prioritize the most promising therapeutic gene targets. We propose cyclic nucleotide gated channel subunit alpha 3 (CNGA3), glutamate dehydrogenase 1 (GLUD1) and sirtuin 1 (SIRT1) as potential novel dual-purpose therapeutic targets to treat aging and GBM.
Collapse
Affiliation(s)
- Andrea Olsen
- The Youth Longevity Association, Sevenoaks, NA, United Kingdom
| | - Zachary Harpaz
- The Youth Longevity Association, Sevenoaks, NA, United Kingdom
- Pine Crest School Science Research Department, Fort Lauderdale, Florida 33334, USA
| | - Christopher Ren
- Shanghai High School International Division, Shanghai 200231, China
| | - Anastasia Shneyderman
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alexander Veviorskiy
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Maria Dralkina
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Simon Konnov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Olga Shcheglova
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Hoi Wing Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ivan V Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alex Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Mikhail Korzinkin
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| |
Collapse
|
43
|
Dandu R, Vinayaka Murthy M, Ravi Kumar Y. Transfer learning for segmentation with hybrid classification to Detect Melanoma Skin Cancer. Heliyon 2023; 9:e15416. [PMID: 37151638 PMCID: PMC10161578 DOI: 10.1016/j.heliyon.2023.e15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Melanoma is an abnormal proliferation of skin cells that arises and develops in most of the cases on surface of skin that is exposed to copious amounts of sunlight. This common type of cancer may develop in areas of the skin that are not exposed to a much abundant sunlight. The research addresses the problem of Segmentation and Classification of Melanoma Skin Cancer. Melanoma is the fifth most common skin cancer lesion. Bio-medical Imaging and Analysis has become more promising, interesting, and beneficial in recent years to address the eventual problems of Melanoma Skin Cancerous Tissues that may develop on Skin Surfaces. The evolved research finds that Attributes Selected for Classification with Color Layout Filter model. The research has produced an optimal result in terms of certain performance metrics accuracy, precision, recall, PRC (what is PRC? Expansion is needed in Abstract), The proposed method has yielded 90.96% of accuracy and 91% percent of precise and 0.91 of recall out of 1.0, 0.95 of ROC AUC, 0.87 of Kappa Statistic, 0.91 of F-Measure. It has been noticed a lowest error with reference to proposed method on certain dataset. Finally, this research recommends that the Attribute Selected Classifier by implementing one of the image enhancement techniques like Color Layout Filter is showing an efficient outcome.
Collapse
|
44
|
Kumar AK, Jain S, Jain S, Ritam M, Xia Y, Chandra R. Physics-informed neural entangled-ladder network for inhalation impedance of the respiratory system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107421. [PMID: 36805280 DOI: 10.1016/j.cmpb.2023.107421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES The use of machine learning methods for modelling bio-systems is becoming prominent which can further improve bio-medical technologies. Physics-informed neural networks (PINNs) can embed the knowledge of physical laws that govern a system during the model training process. PINNs utilise differential equations in the model which traditionally used numerical methods that are computationally complex. METHODS We integrate PINNs with an entangled ladder network for modelling respiratory systems by considering a lungs conduction zone to evaluate the respiratory impedance for different initial conditions. We evaluate the respiratory impedance for the inhalation phase of breathing for a symmetric model of the human lungs using entanglement and continued fractions. RESULTS We obtain the impedance of the conduction zone of the lungs pulmonary airways using PINNs for nine different combinations of velocity and pressure of inhalation. We compare the results from PINNs with the finite element method using the mean absolute error and root mean square error. The results show that the impedance obtained with PINNs contrasts with the conventional forced oscillation test used for deducing the respiratory impedance. The results show similarity with the impedance plots for different respiratory diseases. CONCLUSION We find a decrease in impedance when the velocity of breathing is lowered gradually by 20%. Hence, the methodology can be used to design smart ventilators to the improve flow of breathing.
Collapse
Affiliation(s)
- Amit Krishan Kumar
- Faculty of Electrical-Electronic Engineering, Duy Tan University, Da Nang, 550000, Vietnam; State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| | - Snigdha Jain
- Department of Electronics and Communications Engineering, Indian Institute of Technology Guwahati, Assam, India.
| | - Shirin Jain
- Department of Electronics and Communications Engineering, Indian Institute of Technology Guwahati, Assam, India.
| | - M Ritam
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India.
| | - Yuanqing Xia
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| | - Rohitash Chandra
- Transitional Artificial Intelligence Research Group, School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
45
|
Bougueroua S, Bricage M, Aboulfath Y, Barth D, Gaigeot MP. Algorithmic Graph Theory, Reinforcement Learning and Game Theory in MD Simulations: From 3D Structures to Topological 2D-Molecular Graphs (2D-MolGraphs) and Vice Versa. Molecules 2023; 28:molecules28072892. [PMID: 37049654 PMCID: PMC10096312 DOI: 10.3390/molecules28072892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
This paper reviews graph-theory-based methods that were recently developed in our group for post-processing molecular dynamics trajectories. We show that the use of algorithmic graph theory not only provides a direct and fast methodology to identify conformers sampled over time but also allows to follow the interconversions between the conformers through graphs of transitions in time. Examples of gas phase molecules and inhomogeneous aqueous solid interfaces are presented to demonstrate the power of topological 2D graphs and their versatility for post-processing molecular dynamics trajectories. An even more complex challenge is to predict 3D structures from topological 2D graphs. Our first attempts to tackle such a challenge are presented with the development of game theory and reinforcement learning methods for predicting the 3D structure of a gas-phase peptide.
Collapse
Affiliation(s)
- Sana Bougueroua
- Université Paris-Saclay, University Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Marie Bricage
- Université Paris-Saclay, University Versailles Saint Quentin, DAVID, 78000 Versailles, France
| | - Ylène Aboulfath
- Université Paris-Saclay, University Versailles Saint Quentin, DAVID, 78000 Versailles, France
| | - Dominique Barth
- Université Paris-Saclay, University Versailles Saint Quentin, DAVID, 78000 Versailles, France
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, University Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| |
Collapse
|
46
|
Banaye Yazdipour A, Masoorian H, Ahmadi M, Mohammadzadeh N, Ayyoubzadeh SM. Predicting the toxicity of nanoparticles using artificial intelligence tools: a systematic review. Nanotoxicology 2023; 17:62-77. [PMID: 36883698 DOI: 10.1080/17435390.2023.2186279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Nanoparticles have been used extensively in different scientific fields. Due to the possible destructive effects of nanoparticles on the environment or the biological systems, their toxicity evaluation is a crucial phase for studying nanomaterial safety. In the meantime, experimental approaches for toxicity assessment of various nanoparticles are expensive and time-consuming. Thus, an alternative technique, such as artificial intelligence (AI), could be valuable for predicting nanoparticle toxicity. Therefore, in this review, the AI tools were investigated for the toxicity assessment of nanomaterials. To this end, a systematic search was performed on PubMed, Web of Science, and Scopus databases. Articles were included or excluded based on pre-defined inclusion and exclusion criteria, and duplicate studies were excluded. Finally, twenty-six studies were included. The majority of the studies were conducted on metal oxide and metallic nanoparticles. In addition, Random Forest (RF) and Support Vector Machine (SVM) had the most frequency in the included studies. Most of the models demonstrated acceptable performance. Overall, AI could provide a robust, fast, and low-cost tool for the evaluation of nanoparticle toxicity.
Collapse
Affiliation(s)
- Alireza Banaye Yazdipour
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hoorie Masoorian
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Mohammadzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Luciani LL, Miller LM, Zhai B, Clarke K, Hughes Kramer K, Schratz LJ, Balasubramani GK, Dauer K, Nowalk MP, Zimmerman RK, Shoemaker JE, Alcorn JF. Blood Inflammatory Biomarkers Differentiate Inpatient and Outpatient Coronavirus Disease 2019 From Influenza. Open Forum Infect Dis 2023; 10:ofad095. [PMID: 36949873 PMCID: PMC10026548 DOI: 10.1093/ofid/ofad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Background The ongoing circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a diagnostic challenge because symptoms of coronavirus disease 2019 (COVID-19) are difficult to distinguish from other respiratory diseases. Our goal was to use statistical analyses and machine learning to identify biomarkers that distinguish patients with COVID-19 from patients with influenza. Methods Cytokine levels were analyzed in plasma and serum samples from patients with influenza and COVID-19, which were collected as part of the Centers for Disease Control and Prevention's Hospitalized Adult Influenza Vaccine Effectiveness Network (inpatient network) and the US Flu Vaccine Effectiveness (outpatient network). Results We determined that interleukin (IL)-10 family cytokines are significantly different between COVID-19 and influenza patients. The results suggest that the IL-10 family cytokines are a potential diagnostic biomarker to distinguish COVID-19 and influenza infection, especially for inpatients. We also demonstrate that cytokine combinations, consisting of up to 3 cytokines, can distinguish SARS-CoV-2 and influenza infection with high accuracy in both inpatient (area under the receiver operating characteristics curve [AUC] = 0.84) and outpatient (AUC = 0.81) groups, revealing another potential screening tool for SARS-CoV-2 infection. Conclusions This study not only reveals prospective screening tools for COVID-19 infections that are independent of polymerase chain reaction testing or clinical condition, but it also emphasizes potential pathways involved in disease pathogenesis that act as potential targets for future mechanistic studies.
Collapse
Affiliation(s)
- Lauren L Luciani
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leigh M Miller
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bo Zhai
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karen Clarke
- Department of Family Medicine and Clinical Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kailey Hughes Kramer
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lucas J Schratz
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - G K Balasubramani
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Klancie Dauer
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Patricia Nowalk
- Department of Family Medicine and Clinical Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard K Zimmerman
- Department of Family Medicine and Clinical Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason E Shoemaker
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
48
|
Zhan H, Zhu X, Qiao Z, Hu J. Graph Neural Tree: A novel and interpretable deep learning-based framework for accurate molecular property predictions. Anal Chim Acta 2023; 1244:340558. [PMID: 36737143 DOI: 10.1016/j.aca.2022.340558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Determining various properties of molecules is a critical step in drug discovery. Recently, with the improvement of large heterogeneous datasets and the development of deep learning approaches, more and more scientists have turned their attention to neural network-based virtual preliminary screening to reduce the time and monetary cost of drug discovery. However, the poor interpretability of deep learning masks causality, so models' conclusions are often beyond the comprehension of human users, which reduces the credibility of the model and makes it difficult for chemists to further narrow the huge chemical space based on models' results. Thus, this study develops a novel framework consisting of Graph Neural Networks for feature extraction, Curriculum-Based Learning Strategies for optimization, and a Learning Binary Neural Tree (LBNT) for prediction, to improve the performance of neural networks and reveal their decision-making process to chemists. The framework encodes molecular graph data with graph neural networks (GNNs), then retrains the encoder with curriculum-based learning strategies to reduce uncertainty and improve accuracy, and finally uses LBNT as the predictor, which joint retrains with the encoder after independently training, for prediction and visualization. The framework is validated on the public datasets and compared to single GNNs with normal training strategies as well as GNN encoders with common machine learning predictors instead of the LBNT predictor. The result reveals that the proposed framework enhances the point prediction accuracy of the completely trained GNN and reduces its uncertainty through curriculum-based learning, and further improves the accuracy by combining LBNT. Besides, compared with common machine learning tools, the LBNT predictor generally has the best performance because of joint retraining with the GNN encoder. The decision-making process of LBNT is also better and easier to explain than that of other models.
Collapse
Affiliation(s)
- Haolin Zhan
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China; College of Economics and Statistics, Guangzhou University, Guangzhou, China
| | - Xin Zhu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China.
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China; Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou, 510006, China.
| | - Jianming Hu
- College of Economics and Statistics, Guangzhou University, Guangzhou, China.
| |
Collapse
|
49
|
Yu X, Zhou S, Zou H, Wang Q, Liu C, Zang M, Liu T. Survey of deep learning techniques for disease prediction based on omics data. HUMAN GENE 2023; 35:201140. [DOI: 10.1016/j.humgen.2022.201140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
50
|
Sun J, Kulandaisamy A, Liu J, Hu K, Gromiha MM, Zhang Y. Machine learning in computational modelling of membrane protein sequences and structures: From methodologies to applications. Comput Struct Biotechnol J 2023; 21:1205-1226. [PMID: 36817959 PMCID: PMC9932300 DOI: 10.1016/j.csbj.2023.01.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Membrane proteins mediate a wide spectrum of biological processes, such as signal transduction and cell communication. Due to the arduous and costly nature inherent to the experimental process, membrane proteins have long been devoid of well-resolved atomic-level tertiary structures and, consequently, the understanding of their functional roles underlying a multitude of life activities has been hampered. Currently, computational tools dedicated to furthering the structure-function understanding are primarily focused on utilizing intelligent algorithms to address a variety of site-wise prediction problems (e.g., topology and interaction sites), but are scattered across different computing sources. Moreover, the recent advent of deep learning techniques has immensely expedited the development of computational tools for membrane protein-related prediction problems. Given the growing number of applications optimized particularly by manifold deep neural networks, we herein provide a review on the current status of computational strategies mainly in membrane protein type classification, topology identification, interaction site detection, and pathogenic effect prediction. Meanwhile, we provide an overview of how the entire prediction process proceeds, including database collection, data pre-processing, feature extraction, and method selection. This review is expected to be useful for developing more extendable computational tools specific to membrane proteins.
Collapse
Affiliation(s)
- Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7LD, UK
| | - Arulsamy Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Jacklyn Liu
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Kai Hu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India,Corresponding authors.
| | - Yuan Zhang
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China,Corresponding authors.
| |
Collapse
|