1
|
Ashique S, Kumar P, Taj T, Debnath B, Mukherjee S, Patel A, Sridhar SB, Panigrahy UP, Poonia P, Selim S, Hussain MS. Nanotechnology: A State of the Art for the Management of Ocular Disorders—A Roadmap. BIONANOSCIENCE 2025; 15:285. [DOI: 10.1007/s12668-025-01895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 05/04/2025]
|
2
|
Brako F, Boateng J. Transmucosal drug delivery: prospects, challenges, advances, and future directions. Expert Opin Drug Deliv 2025; 22:525-553. [PMID: 39976299 DOI: 10.1080/17425247.2025.2470224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Traditional administration routes have limitations including first-pass metabolism and gastrointestinal degradation for sensitive drugs (oral) and pain associated with parenteral injections, which also require trained personnel and refrigeration, making them expensive. This has increased interest in alternative routes, with mucosal surfaces being of high priority. AREAS COVERED Mucosal routes include ocular, oral (buccal/sublingual), nasal and vaginal mucosae which avoid the limitations of the oral and parenteral routes. Though mucosal routes show great potential, they are still hindered by several barriers, especially for systemic absorption, resulting in the development of more advanced novel drug delivery systems to overcome these limitations and achieve therapeutic actions both locally and systemically, similar to or exceeding the oral route. This paper systematically reviews and compares the different mucosal routes, challenges, and recent advances in advanced novel drug delivery system design for emerging clinical challenges including the advent of large biological macromolecules (proteins, peptides, and RNA) for treatment and prevention of diseases. The review also focuses on current challenges and future perspectives. EXPERT OPINION Among the various transmucosal routes discussed, nose-to-brain drug delivery has the greatest translational potential to go beyond the current state of the art and achieve significant clinical impact for neurological diseases.
Collapse
Affiliation(s)
- Francis Brako
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Maritime, UK
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham, Maritime, UK
| |
Collapse
|
3
|
Brugnera M, Vicario-de-la-Torre M, González-Cela Casamayor MA, López-Cano JJ, Bravo-Osuna I, Huete-Toral F, González Rubio ML, Carracedo G, Molina-Martínez IT, Andrés-Guerrero V, Herrero-Vanrell R. Enhancing the hypotensive effect of latanoprost by combining synthetic phosphatidylcholine liposomes with hyaluronic acid and osmoprotective agents. Drug Deliv Transl Res 2024; 14:2804-2822. [PMID: 38602615 PMCID: PMC11385046 DOI: 10.1007/s13346-024-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
The first line of glaucoma treatment focuses on reducing intraocular pressure (IOP) through the prescription of topical prostaglandin analogues, such as latanoprost (LAT). Topical ophthalmic medicines have low bioavailability due to their rapid elimination from the ocular surface. Nanotechnology offers innovative ways of enhancing the ocular bioavailability of antiglaucoma agents while reducing administration frequency. This study aims to combine LAT-loaded synthetic phosphatidylcholine liposomes with hyaluronic acid (0.2% w/v) and the osmoprotectants betaine (0.40% w/v) and leucine (0.90% w/v) (LAT-HA-LIP) to extend the hypotensive effect of LAT while protecting the ocular surface. LAT-HA-LIP was prepared as a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine, cholesterol and α-tocopherol acetate. LAT-HA-LIP exhibited high drug-loading capacity (104.52 ± 4.10%), unimodal vesicle sizes (195.14 ± 14.34 nm) and a zeta potential of -13.96 ± 0.78 mV. LAT-HA-LIP was isotonic (284.00 ± 1.41 mOsm L-1), had neutral pH (7.63 ± 0.01) and had suitable surface tension (44.07 ± 2.70 mN m-1) and viscosity (2.69 ± 0.15 mPa s-1) for topical ophthalmic administration. LAT-HA-LIP exhibited optimal in vitro tolerance in human corneal and conjunctival epithelial cells. No signs of ocular alteration or discomfort were observed when LAT-HA-LIP was instilled in albino male New Zealand rabbits. Hypotensive studies revealed that, after a single eye drop, the effect of LAT-HA-LIP lasted 24 h longer than that of a marketed formulation and that relative ocular bioavailability was almost three times higher (p < 0.001). These findings indicate the potential ocular protection and hypotensive effect LAT-HA-LIP offers in glaucoma treatment.
Collapse
Affiliation(s)
- Marco Brugnera
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Miriam Ana González-Cela Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, UCM, Madrid, Spain
| | - María Luisa González Rubio
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, UCM, Madrid, Spain
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, UCM, Madrid, Spain
| | - Irene Teresa Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain.
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain.
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain.
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Complutense University of Madrid (UCM), Madrid, Spain.
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, UCM; IdISSC, Madrid, Spain.
- University Institute of Industrial Pharmacy (IUFI), Faculty of Pharmacy, UCM, Madrid, Spain.
| |
Collapse
|
4
|
Vallejo R, Quinteros D, Gutiérrez J, Martínez S, Rodríguez Rojo S, Ignacio Tártara L, Palma S, Javier Arias F. Acetazolamide encapsulation in elastin like recombinamers using a supercritical antisolvent (SAS) process for glaucoma treatment. Int J Pharm 2024; 657:124098. [PMID: 38621614 DOI: 10.1016/j.ijpharm.2024.124098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Glaucoma, the second most common cause of blindness worldwide, requires the development of new and effective treatments. This study introduces a novel controlled-release system utilizing elastin-like recombinamers (ELR) and the Supercritical Antisolvent (SAS) technique with supercritical CO2. Acetazolamide (AZM), a class IV drug with limited solubility and permeability, is successfully encapsulated in an amphiphilic ELR at three different ELR:AZM ratios, yielding up to 62 %. Scanning electron microscopy (SEM) reveals spherical microparticles that disintegrate into monodisperse nanoparticles measuring approximately 42 nm under physiological conditions. The nanoparticles, as observed via Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), do not exhibit aggregates, a fact confirmed by the zeta potential displaying a value of -33 mV over a period of 30 days. Transcorneal permeation tests demonstrate a 10 % higher permeation level compared to the control solution, which increases to 30 % after 2 h. Ocular irritation tests demonstrate no adverse effects or damage. Intraocular pressure (IOP) tests conducted on hypertensive rabbits indicate greater effectiveness for all three analyzed formulations, suggesting enhanced drug bioavailability during treatment. Consequently, the combination of recombinant biopolymers and high-pressure techniques represents a promising approach for advancing glaucoma therapy, emphasizing its potential clinical significance.
Collapse
Affiliation(s)
- Reinaldo Vallejo
- Smart Devices for Nano Medicine Group, Unidad Excelencia Instituto de BioMedicina y Genética Molecular (IBGM) de Valladolid, University of Valladolid and CSIC, Valladolid, Spain; BioEcoUVa, Research Institute on Bioeconomy, High Pressure Process Group, University of Valladolid, Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Mergelina, 47011 Valladolid, Spain
| | - Daniela Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Javier Gutiérrez
- Smart Devices for Nano Medicine Group, Unidad Excelencia Instituto de BioMedicina y Genética Molecular (IBGM) de Valladolid, University of Valladolid and CSIC, Valladolid, Spain
| | - Sofía Martínez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Soraya Rodríguez Rojo
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Process Group, University of Valladolid, Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Mergelina, 47011 Valladolid, Spain
| | - Luis Ignacio Tártara
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Santiago Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Francisco Javier Arias
- Smart Devices for Nano Medicine Group, Unidad Excelencia Instituto de BioMedicina y Genética Molecular (IBGM) de Valladolid, University of Valladolid and CSIC, Valladolid, Spain.
| |
Collapse
|
5
|
Sun H, Wang G, Feng Q, Liu S. Polymer-Based Self-Assembled Drug Delivery Systems for Glaucoma Treatment: Design Strategies and Recent Advances. Polymers (Basel) 2023; 15:4466. [PMID: 38006190 PMCID: PMC10675782 DOI: 10.3390/polym15224466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Glaucoma has become the world's leading cause of irreversible blindness, and one of its main characteristics is high intraocular pressure. Currently, the non-surgical drug treatment scheme to reduce intraocular pressure is a priority method for glaucoma treatment. However, the complex and special structure of the eye poses significant challenges to the treatment effect and safety adherence of this drug treatment approach. To address these challenges, the application of polymer-based self-assembled drug delivery systems in glaucoma treatment has emerged. This review focuses on the utilization of polymer-based self-assembled structures or materials as important functional and intelligent carriers for drug delivery in glaucoma treatment. Various drug delivery systems, such as eye drops, hydrogels, and contact lenses, are discussed. Additionally, the review primarily summarizes the design strategies and methods used to enhance the treatment effect and safety compliance of these polymer-based drug delivery systems. Finally, the discussion delves into the new challenges and prospects of employing polymer-based self-assembled drug delivery systems for the treatment of glaucoma.
Collapse
Affiliation(s)
- Hao Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China;
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Guangtong Wang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Qingying Feng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China;
| | - Shaoqin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China;
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
6
|
Sanap SN, Bisen AC, Agrawal S, Kedar A, Bhatta RS. Ophthalmic nano-bioconjugates: critical challenges and technological advances. Ther Deliv 2023; 14:419-441. [PMID: 37535389 DOI: 10.4155/tde-2023-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Ophthalmic disease can cause permanent loss of vision and blindness. Easy-to-administer topical and systemic treatments are preferred for treating sight-threatening disorders. Typical ocular anatomy makes topical and systemic ophthalmic drug delivery challenging. Various novel nano-drug delivery approaches are developed to attain the desired bioavailability in the eye by increasing residence time and improved permeability across the cornea. The review focuses on novel methods that are biocompatible, safe and highly therapeutic. Novelty in nanocarrier design and modification can overcome their drawbacks and make them potential drug carriers for eye disorders in both the anterior and posterior eye segments. This review briefly discussed technologies, patented developments, and clinical trial data to support nanocarriers' use in ocular drug delivery.
Collapse
Affiliation(s)
- Sachin Nashik Sanap
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sristi Agrawal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Kedar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Dhull A, Yu C, Wilmoth AH, Chen M, Sharma A, Yiu S. Dendrimers in Corneal Drug Delivery: Recent Developments and Translational Opportunities. Pharmaceutics 2023; 15:1591. [PMID: 37376040 DOI: 10.3390/pharmaceutics15061591] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Dendrimers are biocompatible organic nanomaterials with unique physicochemical properties, making them the focus of recent research in drug delivery. The cornea of the human eye presents a challenge for drug transit due to its inherently impenetrable nature, requiring nanocarrier-mediated targeted drug delivery. This review intends to examine recent advancements in the use of dendrimers for corneal drug delivery, including their properties and their potential for treating various ocular diseases. The review will also highlight the benefit of the novel technologies that have been developed and applied in the field, such as corneal targeting, drug release kinetics, treatments for dry eye disease, antibacterial drug delivery, corneal inflammation, and corneal tissue engineering. The review seeks to provide a comprehensive overview of the current state of research in this field, along with the translational developments in the field of dendrimer-based therapeutics and imaging agents and inspire the potential for future developments and translational opportunities in dendrimers based corneal drug delivery.
Collapse
Affiliation(s)
- Anubhav Dhull
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Carson Yu
- Center for Nanomedicine, Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cornea Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alex Hunter Wilmoth
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Minjie Chen
- Center for Nanomedicine, Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cornea Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anjali Sharma
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Samuel Yiu
- Center for Nanomedicine, Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cornea Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Gugleva V, Andonova V. Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms. Pharmaceuticals (Basel) 2023; 16:ph16030474. [PMID: 36986574 PMCID: PMC10058782 DOI: 10.3390/ph16030474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sufficient ocular bioavailability is often considered a challenge by the researchers, due to the complex structure of the eye and its protective physiological mechanisms. In addition, the low viscosity of the eye drops and the resulting short ocular residence time further contribute to the observed low drug concentration at the target site. Therefore, various drug delivery platforms are being developed to enhance ocular bioavailability, provide controlled and sustained drug release, reduce the number of applications, and maximize therapy outcomes. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) exhibit all these benefits, in addition to being biocompatible, biodegradable, and susceptible to sterilization and scale-up. Furthermore, their successive surface modification contributes to prolonged ocular residence time (by adding cationic compounds), enhanced penetration, and improved performance. The review highlights the salient characteristics of SLNs and NLCs concerning ocular drug delivery, and updates the research progress in this area.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| |
Collapse
|
9
|
Wang J, Li B, Kompella UB, Yang H. Dendrimer and dendrimer gel-derived drug delivery systems: Breaking bottlenecks of topical administration of glaucoma medications. MEDCOMM - BIOMATERIALS AND APPLICATIONS 2023; 2:e30. [PMID: 38562247 PMCID: PMC10983815 DOI: 10.1002/mba2.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 04/04/2024]
Abstract
Due to high structural flexibility, multidrug carrying capability, and tunable size, dendrimers have been used as suitable carriers for ophthalmic drug delivery. Drug molecules can be either encapsulated or chemically coupled to dendrimers. The nanoscopic size, spheroidal shape, and cationic surface of polyamidoamine (PAMAM) dendrimers promote their interaction with the cornea and result in prolonged precorneal retention. Dendrimers could be further cross-linked to produce three-dimensional hydrogel networks or dendrimer hydrogels (DH). The properties of the DH can be readily adjusted to maintain both fluidity and adhesiveness, making them suitable for developing topical ocular drug formulations. Micro-/nano-sized DHs, that is, dendrimer micro-/nano-gels, have unique properties such as ease of administration, large specific surface area for adhesion, and drug targeting functionalities, making them attractive for ophthalmic drug delivery. This perspective reports advances in PAMAM dendrimer based drug delivery systems including drug conjugates and micro- and nano-gels to enhance and sustain the delivery of multiple anti-glaucoma drugs, Dendrimer and dendrimer gel-derived drug delivery systems hold great potential as multifunctional topical drug delivery systems for the eye.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Uday B. Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| |
Collapse
|
10
|
Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354:465-488. [PMID: 36642250 DOI: 10.1016/j.jconrel.2023.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Obinna Sabastine Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Enugu State, Nigeria; Pharmacology and Physiology Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Prosper Emeh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Pharmaceutics and Pharmaceutical Technology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
11
|
Mehrizi TZ, Ardestani MS. The Introduction of Dendrimers as a New Approach to Improve the Performance and Quality of Various Blood Products (Platelets, Plasma and Erythrocytes): A 2010-2022 Review Study. CURRENT NANOSCIENCE 2023; 19:103-122. [DOI: 10.2174/1573413718666220728141511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/06/2025]
Abstract
Objectives:Platelet-, erythrocyte- and plasma-related products are vital for some patients. The main problems with these products are storage lesions, shelf life limitations, and function and quality maintenance. Dendrimers, a well-known group of polymeric nanoparticles, may help overcome these challenges due to their special properties.Methods:This review article, for the first time, comprehensively discusses studies from 2010 to 2022 on the compatibility of positive, negative, neutral, and modified charge dendrimers with each blood product. Moreover, it provides information regarding dendrimers' applications for improving the quality and function of blood products.Results:A total of one hundred and twenty-six studies showed that dendrimers affect blood components depending on their load, size, molecular weight, functional group, concentration, and exposure time. Generally, cationic dendrimers with higher concentrations and molecular weight and larger size showed little hemocompatibility, while anionic or neutral dendrimers with lower concentrations and molecular weight, and small size were more hemocompatible. Further, some modifications of cationic dendrimers were found to improve their compatibility. For erythrocytes, they included PEGylation and thiolation of dendrimers or functionalizing them with cyclic RGD, nmaleyl chitosan, zwitterionic chitosan, prednisolone, or carbohydrates. Additionally, dendrimers functionalized with arginine-birch, lysine-Cbz, polyethylene glycol, polyethylene glycol-cyclic RGD, thiol, TiO2, maltotriose, or streptokinase decreased the platelet toxicity of dendrimers. The dendrimers modified with polyethylene glycol, glucose, and gold nanoparticles showed increased compatibility in the case of albumin products. Moreover, the PAMAM-dendrimer-antibody conjugates had no adverse effect on antibodies. Dendrimers have a wide range of applications, including virus detection kits, synthetic O2 carriers, bacterial nanofilters, drug carriers, anticoagulants, and enhanced blood product storage.Conclusion:It can be concluded that due to the outstanding properties of different types of dendrimers, particularly their manipulability, nanomaterials can be promising to enhance the quality of blood products. Thus, further research in this area is required.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
de la Mata FJ, Gómez R, Cano J, Sánchez‐Nieves J, Ortega P, Gallego SG. Carbosilane dendritic nanostructures, highly versatile platforms for pharmaceutical applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1871. [PMID: 36417901 DOI: 10.1002/wnan.1871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022]
Abstract
Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action. This article summarizes the most recent advances in the pharmaceutical applications of carbosilane dendritic molecules, from therapeutics to diagnostics and prevention tools. Dendrimers decorated with cationic, anionic, or other moieties, including metallodendrimers; supramolecular assemblies; dendronized nanoparticles and surfaces; as well as dendritic networks like hydrogels are described. The collected examples confirm the potential of carbosilane dendrimers and dendritic materials as antiviral or antibacterial agents; in therapy against cancer, neurodegenerative disease, or oxidative stress; or many other biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Javier Sánchez‐Nieves
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Sandra García Gallego
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| |
Collapse
|
13
|
M Grover L, Moakes R, Rauz S. Innovations in fluid-gel eye drops for treating disease of the eye: prospects for enhancing drug retention and reducing corneal scarring. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Richard Moakes
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Saaeha Rauz
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham and Midland Eye Centre, SWBH NHS Trust, Birmingham, UK
| |
Collapse
|
14
|
González-Cela-Casamayor MA, López-Cano JJ, Bravo-Osuna I, Andrés-Guerrero V, Vicario-de-la-Torre M, Guzmán-Navarro M, Benítez-del-Castillo JM, Herrero-Vanrell R, Molina-Martínez IT. Novel Osmoprotective DOPC-DMPC Liposomes Loaded with Antihypertensive Drugs as Potential Strategy for Glaucoma Treatment. Pharmaceutics 2022; 14:pharmaceutics14071405. [PMID: 35890300 PMCID: PMC9317418 DOI: 10.3390/pharmaceutics14071405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a group of chronic irreversible neuropathies that affect the retina and the optic nerve. It is considered one of the leading causes of blindness in the world. Although it can be due to various causes, the most important modifiable risk factor is the elevated intraocular pressure (IOP). In this case, the treatment of choice consists of instilling antihypertensive formulations on the ocular surface. The chronicity of the pathology, together with the low bioavailability of the drugs that are applied on the ocular surface, make it necessary to instill the formulations very frequently, which is associated, in many cases, with the appearance of dry eye disease (DED). The objective of this work is the design of topical ocular formulations capable of treating glaucoma and, at the same time, preventing DED. For this, two liposome formulations, loaded with brimonidine or with travoprost, were Tadeveloped using synthetic phospholipids and enriched by the addition of compounds with osmoprotective activity. The proposed formulations not only presented physicochemical characteristics (size, pH, osmolarity, surface tension, and viscosity) and encapsulation efficiency values (EE% of 24.78% and ≥99.01% for brimonidine and travoprost, respectively) suitable for ocular surface administration, but also showed good tolerance in human corneal and conjunctival cell cultures, as well as an in vitro osmoprotective activity. The hypotensive effect of both liposomal formulations was evaluated in normotensive albino New Zealand rabbits, showing a faster and longer lasting reduction of intraocular pressure in comparison to the corresponding commercialized products used as control. According to these results, the hypotensive liposomal formulations combined with osmoprotective agents would result in a very promising platform for the treatment of glaucoma and the simultaneous protection of the ocular surface.
Collapse
Affiliation(s)
- Miriam Ana González-Cela-Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Manuel Guzmán-Navarro
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Facultad de Farmacia, Universidad de Alcalá, 28801 Madrid, Spain;
| | - José Manuel Benítez-del-Castillo
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Ocular Surface and Inflammation Unit (USIO), Departamento de Inmunología, Oftalmología y OLR, Hospital Clínico San Carlos, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (R.H.-V.); (I.T.M.-M.)
| | - Irene Teresa Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (R.H.-V.); (I.T.M.-M.)
| |
Collapse
|
15
|
Wang Y, Wang C. Novel Eye Drop Delivery Systems: Advance on Formulation Design Strategies Targeting Anterior and Posterior Segments of the Eye. Pharmaceutics 2022; 14:pharmaceutics14061150. [PMID: 35745723 PMCID: PMC9229693 DOI: 10.3390/pharmaceutics14061150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Eye drops are the most common and convenient route of topical administration and the first choice of treatment for many ocular diseases. However, the ocular bioavailability of traditional eye drops (i.e., solutions, suspensions, and ointments) is very low because of ophthalmic physiology and barriers, which greatly limits their therapeutic effect. Over the past few decades, many novel eye drop delivery systems, such as prodrugs, cyclodextrins, in situ gels, and nanoparticles, have been developed to improve ophthalmic bioavailability. These novel eye drop delivery systems have good biocompatibility, adhesion, and propermeation properties and have shown superior performance and efficacy over traditional eye drops. Therefore, the purpose of this review was to systematically present the research progress on novel eye drop delivery systems and provide a reference for the development of dosage form, clinical application, and commercial transformation of eye drops.
Collapse
|
16
|
Cruz-Hernández C, López-Méndez LJ, Guadarrama P. Dendronization: A practical strategy to improve the performance of molecular systems used in biomedical applications. Eur J Med Chem 2021; 229:113988. [PMID: 34801269 DOI: 10.1016/j.ejmech.2021.113988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023]
Abstract
Nanomedicine is an emerging area that largely influences the efficacy of various therapies through the rational design of new materials exhibiting more targeted behavior. The synthetic effort, the amount of used material, and the cost are critical parameters to bear in mind if the production of the designed material is intended to be scaled for their widespread use. Even though materials science offers diverse options for different types of therapies, it is a difficult task to meet all the parameters mentioned above. The dendronization appears as an insightful approach to incorporate all the known benefits of the dendritic architecture by the attachment of dendrons to therapeutic agents, but in a much more affordable manner in terms of synthetic effort, amount of material, and cost. As will be presented, the most common dendrons used for biomedical applications are polyamide, polyester, carbosilane, polyether, and glycol-type, which are bonded to biological active molecules (BAMs), or molecular nanoplatforms (MPs) by hydrolysable bonds. Also relevant is the fact that the incorporation of dendrons not larger than third generation (G3) is sufficient to improve essential properties of these molecular systems, such as aqueous solubility, stability, and cellular internalization, among others. The type of dendron and its location on the BAMs or MPs, similar to placing a Lego piece on a model, will be decisive for obtaining the desired properties.
Collapse
Affiliation(s)
- Carlos Cruz-Hernández
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Luis José López-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Patricia Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
17
|
Abstract
Acetazolamide is the drug of choice for glaucoma treatment in an emergency. However, it is not available in any topical formulation and it is available only as systemic tablets. Despite its efficiency as a drug in decreasing intraocular pressure, it has negative systemic effects as renal toxicity and metabolic acidosis. Moreover, it suffers from poor aqueous solubility and low corneal permeability limiting its ocular bioavailability and its use topically. Cubosomes have enormous advantages as a drug delivery system, most importantly, high surface area, thermal stability, and ability to encapsulate hydrophobic, amhiphilic, and hydrophilic molecules. Herein, we have exploited the unique properties of cubosomes as a novel nano-delivery system for acetazolamide as eye drops dosage form for glaucoma treatment. Different acetazolamide-loaded cubosomes have been developed and evaluated. The best-optimized formulation (F5), was cubic shaped structure, with an average particle size of 359.5 ± 2.8 nm, surface charge −10.8 ± 3.2 mV, and 59.8% entrapment efficiency. Ex-vivo corneal permeation studies have revealed a 4-fold increase in acetazolamide permeability coefficient compared to that stated in the literature. F5 showed superior therapeutic efficacy represented by a 38.22% maximum decrease in intraocular pressure vs. 31.14 and 21.99% decrease for the commercial Azopt® eye drops and Cidamex® tablets, respectively. It also exhibited higher (AUC0–10) compared to Azopt® eye drops and Cidamex® tablets by 2.3 and 3 times, respectively. F5 showed mean residence time 4.22 h vs. 2.36 and 2.62 h for Azopt® and Cidamex® with no eye irritation observed according to the modified Draize test. To the best of our knowledge, this is the first study for developing acetazolamide-loaded cubosomes as the topical delivery system for glaucoma treatment.
Collapse
Affiliation(s)
- Hoda E Teba
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 6th of October, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 6th of October, Egypt
| | - Heba M El Sorogy
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 6th of October, Egypt
| |
Collapse
|
18
|
Zhang J, Jiao J, Niu M, Gao X, Zhang G, Yu H, Yang X, Liu L. Ten Years of Knowledge of Nano-Carrier Based Drug Delivery Systems in Ophthalmology: Current Evidence, Challenges, and Future Prospective. Int J Nanomedicine 2021; 16:6497-6530. [PMID: 34588777 PMCID: PMC8473849 DOI: 10.2147/ijn.s329831] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
The complex drug delivery barrier in the eye reduces the bioavailability of many drugs, resulting in poor therapeutic effects. It is necessary to investigate new drugs through appropriate delivery routes and vehicles. Nanotechnology has utilized various nano-carriers to develop potential ocular drug delivery techniques that interact with the ocular mucosa, prolong the retention time of drugs in the eye, and increase permeability. Additionally, nano-carriers such as liposomes, nanoparticles, nano-suspensions, nano-micelles, and nano-emulsions have grown in popularity as an effective theranostic application to combat different microbial superbugs. In this review, we summarize the nano-carrier based drug delivery system developments over the last decade, particularly review the biology, methodology, approaches, and clinical applications of nano-carrier based drug delivery system in the field of ocular therapeutics. Furthermore, this review addresses upcoming challenges, and provides an outlook on potential future trends of nano-carrier-based drug delivery approaches in ophthalmology, and hopes to eventually provide successful applications for treating ocular diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, 261041, People's Republic of China
| | - Jinghua Jiao
- Department of Anesthesiology, Central Hospital, Shenyang Medical College, Shenyang, 110024, People's Republic of China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xiaotong Gao
- Department of Endocrinology and Metabolism and the Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Guisen Zhang
- Department of Retina, Inner Mongolia Chaoju Eye Hospital, Hohhot, 010050, People's Republic of China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China
| | - Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; School of Medicine, South China University of Technology, Guangzhou, 510120, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
19
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
20
|
Zhai Z, Cheng Y, Hong J. Nanomedicines for the treatment of glaucoma: Current status and future perspectives. Acta Biomater 2021; 125:41-56. [PMID: 33601065 DOI: 10.1016/j.actbio.2021.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Glaucoma is the global leading cause of irreversible blindness. It is a chronic progressive disorder and, therefore, often requires long-term management with drugs on patients' discretion. However, there is a shortage of antiglaucoma drugs in the current market due to their low bioavailability. This is because there are multiple biological barriers of the human eyes, thereby leading to increased demands for frequent dosage regimen per day of these drugs, which could result in concomitant side effects and eventually reduced patient compliance. Recently, nanomedicines have become optimized alternatives to conventional ophthalmic formulations due to advantages of improved barrier permeability, sustained drug release, tissue targeting, and lowered systemic absorption of instilled medications. These merits provide the active ingredients in these nanomedicines an effective manner to reach the ideal concentrations at sites of damaged nerves, offering a promising platform for neuroprotective treatment of these conditions. In this study, nanomedicines and nanomedicine-based novel strategies for pharmacotherapy of glaucoma were reviewed, including liposomes, niosomes, nanoparticles, and dendrimers. This article intends to offer a comprehensive review of frontier progresses as well as hotspots and issues that appeared in the field of nanomedicines, which may enable a practical flourish in the future. STATEMENT OF SIGNIFICANCE: Recent novel pharmaceutical strategies toward glaucoma, a chronic blinding ocular disease that currently requires frequent daily dosage regimen, based on nanomedicines and nanomaterials have been comprehensively reviewed in this manuscript. The collection of field hotspots and issues in the late years should offer a quick grasp of the general concept and up-to-date threads upon the refinement of existing treatment patterns for glaucoma. Meanwhile, the Conclusion and Future Perspective section given at the end of the text brings out the possible shortages and opinions in terms of ideal research direction, which hopefully could facilitate a future practical flourish in the area.
Collapse
Affiliation(s)
- Zimeng Zhai
- Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China.
| | - Jiaxu Hong
- Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, China; Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; Key Laboratory of Myopia, Ministry of Health, Shanghai, China.
| |
Collapse
|
21
|
Understanding Physico-chemical Interactions of Dendrimers with Guest Molecules for Efficient Drug and Gene Delivery. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci 2021; 288:102342. [PMID: 33444845 DOI: 10.1016/j.cis.2020.102342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Ocular diseases may be treated via different routes of administration, such as topical, intracameral, intravitreal, oral and parenteral. Among them the topical route is most accepted by patients, although it provides in many cases the lowest bioavailability. Indeed, when a topical formulation reaches the precorneal area, i.e., the drug absorption and/or action site, it is rapidly eliminated due to eye protection mechanisms such as blinking, basal and reflex tearing, and naso-lacrimal draining. To avoid this and to reduce the frequency of dosing, various strategies have been developed to prolong drug residence time after topical administration. These strategies include the use of viscosity increasing and mucoadhesive excipients as well as combinations thereof. From the drug delivery system point of view, liquid and semisolid formulations are preferred over solid formulations such as ocular inserts and contact lenses. Furthermore, liquid and semisolid formulations can contain nano- and microcarrier systems that contribute to a prolonged residence time. Within this review an overview about the different types of excipients and formulations as well as their performance in valid animal models and clinical trials is provided.
Collapse
Affiliation(s)
- Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa 56100, Italy
| | - Andreas Bernkop-Schnürch
- Institute of Pharmacy/Dep. of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
23
|
Rahić O, Tucak A, Omerović N, Sirbubalo M, Hindija L, Hadžiabdić J, Vranić E. Novel Drug Delivery Systems Fighting Glaucoma: Formulation Obstacles and Solutions. Pharmaceutics 2020; 13:E28. [PMID: 33375224 PMCID: PMC7824381 DOI: 10.3390/pharmaceutics13010028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is considered to be one of the biggest health problems in the world. It is the main cause of preventable blindness due to its asymptomatic nature in the early stages on the one hand and patients' non-adherence on the other. There are several approaches in glaucoma treatment, whereby this has to be individually designed for each patient. The first-line treatment is medication therapy. However, taking into account numerous disadvantages of conventional ophthalmic dosage forms, intensive work has been carried out on the development of novel drug delivery systems for glaucoma. This review aims to provide an overview of formulation solutions and strategies in the development of in situ gel systems, nanosystems, ocular inserts, contact lenses, collagen corneal shields, ocular implants, microneedles, and iontophoretic devices. The results of studies confirming the effectiveness of the aforementioned drug delivery systems were also briefly presented.
Collapse
Affiliation(s)
- Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Naida Omerović
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| |
Collapse
|
24
|
|
25
|
Kesavan K, Mohan P, Gautam N, Sheffield VC. Topical Ocular Delivery of Nanocarriers: A Feasible Choice for Glaucoma Management. Curr Pharm Des 2020; 26:5518-5532. [PMID: 32938345 DOI: 10.2174/1381612826666200916145609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Topical ocular delivery is an acceptable and familiar approach for the treatment of common ocular diseases. Novel strategies for the treatment of inherited eye diseases include new pharmacologic agents, gene therapy and genome editing, which lead to the expansion of new management options for eye disorders. The topical ocular delivery of nanocarriers is a technique, which has the potential to facilitate novel treatments. Nanocarrier- based strategies have proven effective for site-targeted delivery. This review summarizes recent development in the area of topical delivery of different nanocarriers (Polymer, Vesicular and dispersed systems) for the management of glaucoma, a group of ocular disorders characterized by progressive and accelerated degeneration of the axons of retinal ganglion cells, which make up the optic nerve. Unique cellular targets for glaucoma treatment, primarily the trabecular meshwork of the anterior segment of the eye, make glaucoma facilitated by the use of nanocarriers an ideal disorder for novel molecular therapies.
Collapse
Affiliation(s)
- Karthikeyan Kesavan
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. 495009, India
| | - Parasuraman Mohan
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. 495009, India
| | - Nivedita Gautam
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. 495009, India
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics and Genomics, Carver College of Medicine, University of Iowa, IA, 52242, United States
| |
Collapse
|
26
|
Kwon S, Kim SH, Khang D, Lee JY. Potential Therapeutic Usage of Nanomedicine for Glaucoma Treatment. Int J Nanomedicine 2020; 15:5745-5765. [PMID: 32821099 PMCID: PMC7418176 DOI: 10.2147/ijn.s254792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is a group of diseases characterized by progressive degeneration of retinal ganglion cells, leading to irreversible blindness. Currently, intraocular pressure reduction is the only established treatment available for glaucoma. With this treatment, the progression of the disease can only be delayed and there is no recovery. In addition, the commercially available eye drops have the disadvantage of low compliance and short therapeutic time, while glaucoma surgery always has the risk of failure due to wound fibrosis. Nanotechnology can overcome the limitations of the current treatment through the encapsulation and conjugation of drugs used for lowering intraocular pressure and antifibrotic agents using biodegradable or biocompatible nanoparticles for the sustained release of the drugs to protect the damaged ocular cells. Furthermore, using nanotechnology, treatment can be administered in various forms, including eye drops, contact lens, and ocular inserts, according to the convenience of the patients. Despite the promising results of delaying the progression of glaucoma, the regeneration of damaged ocular cells, including trabecular meshwork and retinal ganglion cells, is another critical hurdle to overcome. Bone marrow-derived mesenchymal stem cells and Müller glia cells can secrete neurogenic factors that trigger the regeneration of associated cells, including trabecular meshwork and retinal ganglion cells. In conclusion, this review highlights the potential therapeutic applications of nanotechnology- and stem cell-based methods that can be employed for the protection and regeneration of ocular cells.
Collapse
Affiliation(s)
- Song Kwon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Sung Hyun Kim
- Department of Ophthalmology, Gil Medical Center, Gachon University, College of Medicine, Incheon 21565, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.,Department of Gachon Advanced Institute for Health Science & Technology (GAIHST), Gachon University, Incheon 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon 21999, South Korea
| | - Jong Yeon Lee
- Department of Ophthalmology, Gil Medical Center, Gachon University, College of Medicine, Incheon 21565, South Korea
| |
Collapse
|
27
|
Koppa Raghu P, Bansal KK, Thakor P, Bhavana V, Madan J, Rosenholm JM, Mehra NK. Evolution of Nanotechnology in Delivering Drugs to Eyes, Skin and Wounds via Topical Route. Pharmaceuticals (Basel) 2020; 13:E167. [PMID: 32726897 PMCID: PMC7463474 DOI: 10.3390/ph13080167] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
The topical route is the most preferred one for administering drugs to eyes, skin and wounds for reaching enhanced efficacy and to improve patient compliance. Topical administration of drugs via conventional dosage forms such as solutions, creams and so forth to the eyes is associated with very low bioavailability (less than 5%) and hence, we cannot rely on these for delivering drugs to eyes more efficiently. An intravitreal injection is another popular drug delivery regime but is associated with complications like intravitreal hemorrhage, retinal detachment, endophthalmitis, and cataracts. The skin has a complex structure that serves as numerous physiological barriers to the entry of exogenous substances. Drug localization is an important aspect of some dermal diseases and requires directed delivery of the active substance to the diseased cells, which is challenging with current approaches. Existing therapies used for wound healing are costly, and they involve long-lasting treatments with 70% chance of recurrence of ulcers. Nanotechnology is a novel and highly potential technology for designing formulations that would improve the efficiency of delivering drugs via the topical route. This review involves a discussion about how nanotechnology-driven drug delivery systems have evolved, and their potential in overcoming the natural barriers for delivering drugs to eyes, skin and wounds.
Collapse
Affiliation(s)
- Pratheeksha Koppa Raghu
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India; (P.K.R.); (P.T.); (V.B.); (J.M.)
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India; (P.K.R.); (P.T.); (V.B.); (J.M.)
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India; (P.K.R.); (P.T.); (V.B.); (J.M.)
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India; (P.K.R.); (P.T.); (V.B.); (J.M.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India; (P.K.R.); (P.T.); (V.B.); (J.M.)
| |
Collapse
|
28
|
|
29
|
Esteban-Pérez S, Andrés-Guerrero V, López-Cano JJ, Molina-Martínez I, Herrero-Vanrell R, Bravo-Osuna I. Gelatin Nanoparticles-HPMC Hybrid System for Effective Ocular Topical Administration of Antihypertensive Agents. Pharmaceutics 2020; 12:E306. [PMID: 32231033 PMCID: PMC7238113 DOI: 10.3390/pharmaceutics12040306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
The increment in ocular drug bioavailability after topical administration is one of the main challenges in pharmaceutical technology. For several years, different strategies based on nanotechnology, hydrogels or implants have been evaluated. Nowadays, the tolerance of ophthalmic preparations has become a critical issue and it is essential to the use of well tolerated excipients. In the present work, we have explored the potential of gelatin nanoparticles (GNPs) loaded with timolol maleate (TM), a beta-adrenergic blocker widely used in the clinic for glaucoma treatment and a hybrid system of TM-GNPs included in a hydroxypropyl methylcellulose (HPMC) viscous solution. The TM- loaded nanoparticles (mean particle size of 193 ± 20 nm and drug loading of 0.291 ± 0.019 mg TM/mg GNPs) were well tolerated both in vitro (human corneal cells) and in vivo. The in vivo efficacy studies performed in normotensive rabbits demonstrated that these gelatin nanoparticles were able to achieve the same hypotensive effect as a marketed formulation (0.5% TM) containing a 5-fold lower concentration of the drug. When comparing commercial and TM-GNPs formulations with the same TM dose, nanoparticles generated an increased efficacy with a significant (p < 0.05) reduction of intraocular pressure (IOP) (from 21% to 30%) and an augmentation of 1.7-fold in the area under the curve (AUC)(0-12h). On the other hand, the combination of timolol-loaded nanoparticles (TM 0.1%) and the viscous polymer HPMC 0.3%, statistically improved the IOP reduction up to 30% (4.65 mmHg) accompanied by a faster time of maximum effect (tmax = 1 h). Furthermore, the hypotensive effect was extended for four additional hours, reaching a pharmacological activity that lasted 12 h after a single instillation of this combination, and leading to an AUC(0-12h) 2.5-fold higher than the one observed for the marketed formulation. According to the data presented in this work, the use of hybrid systems that combine well tolerated gelatin nanoparticles and a viscous agent could be a promising alternative in the management of high intraocular pressure in glaucoma.
Collapse
Affiliation(s)
- Sergio Esteban-Pérez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Irene Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| |
Collapse
|
30
|
Abstract
Glaucoma is the second leading cause of blindness worldwide. Even though significant advances have been made in its management, currently available antiglaucoma therapies suffer from considerable drawbacks. Typically, the success and efficacy of glaucoma medications are undermined by their limited bioavailability to target tissues and the inadequate adherence demonstrated by patients with glaucoma. The latter is due to a gradual decrease in tolerability of lifelong topical therapies and the significant burden to patients of prescribed stepwise antiglaucoma regimens with frequent dosing which impact quality of life. On the other hand, glaucoma surgery is restricted by the inability of antifibrotic agents to efficiently control the wound healing process without causing severe collateral damage and long-term complications. Evolution of the treatment paradigm for patients with glaucoma will ideally include prevention of retinal ganglion cell degeneration by the successful delivery of neurotrophic factors, anti-inflammatory drugs, and gene therapies. Nanotechnology-based treatments may surpass the limitations of currently available glaucoma therapies through optimized targeted drug delivery, increased bioavailability, and controlled release. This review addresses the recent advances in glaucoma treatment strategies employing nanotechnology, including medical and surgical management, neuroregeneration, and neuroprotection.
Collapse
|
31
|
González-García E, Sánchez-Nieves J, de la Mata FJ, Marina ML, García MC. Feasibility of cationic carbosilane dendrimers for sustainable protein sample preparation. Colloids Surf B Biointerfaces 2019; 186:110746. [PMID: 31877444 DOI: 10.1016/j.colsurfb.2019.110746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022]
Abstract
Protein sample preparation is the bottleneck in the analysis of proteins. The aim of this work is to evaluate the feasibility of carbosilane dendrimers functionalized with cationic groups to make easier this step. Anionic carbosilane dendrimers (sulphonate- and carboxylate-terminated) have already demonstrated their interaction with proteins and their potential in protein sample preparation. In this work, interactions between positively charged carbosilane dendrimers and different model proteins were studied when working under different pH conditions, dendrimer concentrations, and dendrimer generations. Amino- and trimethylammonium-terminated carbosilane dendrimers presented, in some cases, weak interactions with proteins. Unlike them, carbosilane dendrimers with terminal dimethylamino groups could interact, in many cases, with proteins and these interactions were affected by the pH, the dendrimer concentration, and the dendrimer generation. Moreover, dendrimer precipitation was observed at all pHs, although just second and fourth generation (2 G and 4 G) dendrimers resulted in the formation of complexes with proteins. Under experimental conditions promoting dendrimer-protein interactions, 2 G dimethylamino-terminated dendrimers were proposed as an alternative to other methods used in analytical chemistry or analysis in which an organic solvent or a resin are required to enrich/purify proteins in a complex sample.
Collapse
Affiliation(s)
- Estefanía González-García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Javier Sánchez-Nieves
- Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Spain
| | - Francisco Javier de la Mata
- Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - María Concepción García
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
32
|
Gómez-Ballesteros M, Andrés-Guerrero V, Parra FJ, Marinich J, de-Las-Heras B, Molina-Martínez IT, Vázquez-Lasa B, San Román J, Herrero-Vanrell R. Amphiphilic Acrylic Nanoparticles Containing the Poloxamer Star Bayfit® 10WF15 as Ophthalmic Drug Carriers. Polymers (Basel) 2019; 11:E1213. [PMID: 31331090 PMCID: PMC6680529 DOI: 10.3390/polym11071213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Topical application of drops containing ocular drugs is the preferred non-invasive route to treat diseases that affect the anterior segment of the eye. However, the formulation of eye drops is a major challenge for pharmacists since the access of drugs to ocular tissues is restricted by several barriers. Acetazolamide (ACZ) is a carbonic anhydrase inhibitor used orally for the treatment of ocular hypertension in glaucoma. However, large ACZ doses are needed which results in systemic side effects. Recently, we synthesized copolymers based on 2-hydroxyethyl methacrylate (HEMA) and a functionalized three-arm poloxamer star (Bayfit-MA). The new material (HEMA/Bayfit-MA) was engineered to be transformed into nanoparticles without the use of surfactants, which represents a significant step forward in developing new ophthalmic drug delivery platforms. Acetazolamide-loaded nanocarriers (ACZ-NPs) were prepared via dialysis (224 ± 19 nm, -17.2 ± 0.4 mV). The in vitro release rate of ACZ was constant over 24 h (cumulative delivery of ACZ: 83.3 ± 8.4%). Following standard specifications, ACZ-NPs were not cytotoxic in vitro in cornea, conjunctiva, and macrophages. In normotensive rabbits, ACZ-NPs generated a significant intraocular pressure reduction compared to a conventional solution of ACZ (16.4% versus 9.6%) with the same dose of the hypotensive drug (20 µg). In comparison to previously reported studies, this formulation reduced intraocular pressure with a lower dose of ACZ. In summary, HEMA:Bayfit-MA nanoparticles may be a promising system for ocular topical treatments, showing an enhanced ocular bioavailability of ACZ after a single instillation on the ocular surface.
Collapse
Affiliation(s)
- Miguel Gómez-Ballesteros
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
| | - Francisco Jesús Parra
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain
| | - Jorge Marinich
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Beatriz de-Las-Heras
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Pharmacology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Irene Teresa Molina-Martínez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain.
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
33
|
Gómez-Ballesteros M, López-Cano JJ, Bravo-Osuna I, Herrero-Vanrell R, Molina-Martínez IT. Osmoprotectants in Hybrid Liposome/HPMC Systems as Potential Glaucoma Treatment. Polymers (Basel) 2019; 11:polym11060929. [PMID: 31141875 PMCID: PMC6631938 DOI: 10.3390/polym11060929] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/11/2023] Open
Abstract
The combination of acetazolamide-loaded nano-liposomes and Hydroxypropyl methylcellulose (HPMC) with similar components to the preocular tear film in an osmoprotectant media (trehalose and erythritol) is proposed as a novel strategy to increase the ocular bioavailability of poorly soluble drugs. Ophthalmic formulations based on acetazolamide-loaded liposomes, dispersed in the osmoprotectant solution (ACZ-LP) or in combination with HPMC (ACZ-LP-P) were characterized and in vivo evaluated. The pH and tonicity of both formulations resulted in physiological ranges. The inclusion of HPMC produced an increment in viscosity (from 0.9 to 4.7 mPa·s. 64.9 ± 2.6% of acetazolamide initially included in the formulation was retained in vesicles. In both formulations, a similar onset time (1 h) and effective time periods were observed (7 h) after a single instillation (25 μL) in normotensive rabbits' eyes. The AUC0-8h of the ACZ-LP-P was 1.5-fold higher than of ACZ-LP (p < 0.001) and the maximum hypotensive effect resulted in 1.4-fold higher (p < 0.001). In addition, the formulation of ACZ in the hybrid liposome/HPMC system produced a 30.25-folds total increment in ocular bioavailability, compared with the drug solution. Excellent tolerance in rabbits' eyes was confirmed during the study.
Collapse
Affiliation(s)
- Miguel Gómez-Ballesteros
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
| | - José Javier López-Cano
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
| | - Irene Bravo-Osuna
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid 28040, Spain.
| | - Rocío Herrero-Vanrell
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid 28040, Spain.
| | - Irene Teresa Molina-Martínez
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid 28040, Spain.
| |
Collapse
|
34
|
Wang Y, Xu X, Gu Y, Cheng Y, Cao F. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv 2018; 15:687-701. [PMID: 29985660 DOI: 10.1080/17425247.2018.1496080] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Considering that the number of patients afflicted by posterior eye diseases is increasing, effective drug delivery is currently in high clinical demand. Topical administration has been identified as the preferred option, while sufferingfrom multiple barriers. The development of nanoparticle-based drug delivery system provides an option, which would enhance the drug permeability across the barriers and achieve the desired drug level in the targeted tissue. AREAS COVERED This review highlights the barrier to the posterior segment of the eye via topical administration. The up-to-date development of lipid nanoparticles, liposomes, emulsions, spanlastics, micelles, polymeric nanoparticles, layered double hydroxides (LDH), dendrimers, cyclodextrins(CDs), and prodrugs are summarized. Moreover, nanocarriers currently in clinical trials for posterior segment diseases have been discussed. EXPERT OPINION Topical nanoparticle-based drug delivery systems have demonstrated significant progress. An ideal formulation should prolong retention time on the surface, enhance drug permeability through the ocular tissues, and efficiently deliver drugs to the targeted site. To design the rational targeting nanoparticle-based drug delivery system, a better understanding of the distribution of transporters and receptors on the eye is required. Ultimately, there is an urgent need to develop targeting hybrid drug delivery systems with the combination of the advantages of several nanocarriers.
Collapse
Affiliation(s)
- Yanyan Wang
- a Department of Pharmaceutical, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Xiaoyue Xu
- a Department of Pharmaceutical, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Yan Gu
- a Department of Pharmaceutical, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Yanju Cheng
- b Department of Biologics R&D Center , Chia Tai Tianqing Pharmaceutical Group Co. Ltd , Nanjing , China
| | - Feng Cao
- a Department of Pharmaceutical, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
35
|
Lozano-Cruz T, Gómez R, de la Mata FJ, Ortega P. New bow-tie cationic carbosilane dendritic system with a curcumin core as an anti-breast cancer agent. NEW J CHEM 2018. [DOI: 10.1039/c8nj01713a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A water soluble “bow-tie” cationic carbosilane dendrimer with curcumin in the core displays antioxidant and antitumoral activities against breast cancer cells.
Collapse
Affiliation(s)
- Tania Lozano-Cruz
- Departamento de Química Orgánica y Química Inorgánica. Instituto de Investigación Química “Andrés M. del Río” (IQAR)
- Universidad de Alcalá
- Campus Universitario
- E-28871 Alcalá de Henares
- Spain
| | - Rafael Gómez
- Departamento de Química Orgánica y Química Inorgánica. Instituto de Investigación Química “Andrés M. del Río” (IQAR)
- Universidad de Alcalá
- Campus Universitario
- E-28871 Alcalá de Henares
- Spain
| | - F. Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica. Instituto de Investigación Química “Andrés M. del Río” (IQAR)
- Universidad de Alcalá
- Campus Universitario
- E-28871 Alcalá de Henares
- Spain
| | - Paula Ortega
- Departamento de Química Orgánica y Química Inorgánica. Instituto de Investigación Química “Andrés M. del Río” (IQAR)
- Universidad de Alcalá
- Campus Universitario
- E-28871 Alcalá de Henares
- Spain
| |
Collapse
|
36
|
Wang J, Williamson GS, Lancina MG, Yang H. Mildly Cross-Linked Dendrimer Hydrogel Prepared via Aza-Michael Addition Reaction for Topical Brimonidine Delivery. J Biomed Nanotechnol 2017; 13:1089-1096. [PMID: 29479294 PMCID: PMC5819351 DOI: 10.1166/jbn.2017.2436] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, we developed a mildly cross-linked dendrimer hydrogel (mcDH) via aza-Michael addition of polyamidoamine (PAMAM) dendrimer G5 and polyethylene glycol diacrylate (PEG-DA, Mn=575 g/mol). We chose the antiglaucoma drug brimonidine tartrate as a model drug and developed a new antiglaucoma drug formulation on the basis of mcDH. Cytotoxicity of the mcDH formulation to NIH3T3 fibroblasts, in vitro drug release kinetics and ex vivo drug permeability across the rabbit cornea were examined. We also studied interactions between PAMAM dendrimer and the drug using 1H NMR spectroscopy for a mechanistic understanding of brimonidine release from the mcDH. mcDH was found to be efficient unionizing brimonidine tartrate to form and encapsulate brimonidine free base for sustained release and enhanced corneal permeation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Geoffrey S. Williamson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Michael G. Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
37
|
Andrés-Guerrero V, Bravo-Osuna I, Pastoriza P, Molina-Martinez IT, Herrero-Vanrell R. Novel technologies for the delivery of ocular therapeutics in glaucoma. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Abstract
Existing methods of administering ocular drugs are limited in either their safety or efficiency. Nanomedicine therapies have the potential to address this deficiency by creating vehicles that can control drug biodistribution. Dendrimers are synthetic polymeric nanoparticles with a unique highly organized branching structure. In recent years, promising results using dendrimer vehicles to deliver ocular drugs through different routes of administration have been reported. In this review, we briefly summarize these results with emphasis on the dendrimer modifications used to target different ocular structures.
Collapse
Affiliation(s)
- Michael G. Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Hu Yang
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| |
Collapse
|
39
|
Liu D, Li J, Cheng B, Wu Q, Pan H. Ex Vivo and in Vivo Evaluation of the Effect of Coating a Coumarin-6-Labeled Nanostructured Lipid Carrier with Chitosan-N-acetylcysteine on Rabbit Ocular Distribution. Mol Pharm 2017; 14:2639-2648. [DOI: 10.1021/acs.molpharmaceut.7b00069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dandan Liu
- School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, P. R. China
| | - Jinyu Li
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bingchao Cheng
- School
of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Qingyin Wu
- School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, P. R. China
| | - Hao Pan
- College
of Pharmacy, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
40
|
Sulfonate-terminated carbosilane dendron-coated nanotubes: a greener point of view in protein sample preparation. Anal Bioanal Chem 2017; 409:5337-5348. [DOI: 10.1007/s00216-017-0479-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
41
|
Factors affecting interactions between sulphonate-terminated dendrimers and proteins: A three case study. Colloids Surf B Biointerfaces 2017; 149:196-205. [DOI: 10.1016/j.colsurfb.2016.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 11/23/2022]
|
42
|
Rodríguez Villanueva J, Navarro MG, Rodríguez Villanueva L. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives. Int J Pharm 2016; 511:359-366. [PMID: 27436708 DOI: 10.1016/j.ijpharm.2016.07.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022]
Abstract
Dendrimers have called the attention of scientists in the area of drug and gene delivery over the last two decades for their versatility, complexity and multibranching properties. Some strategies for optimizing drug pharmacokinetics and site-specific targeting using dendrimers have been proposed. Among them, those related to treating and managing ocular diseases are of special interest. Ocular therapies suffer from significant disadvantages, including frequent administration, poor penetration and/or rapid elimination. This review provides an overview of the recent and promising progress in the dendrimers field, focusing on both the anterior and posterior segments of the eye ocular targets, the use of dendrimers as a strategy for overcoming obstacles to the traditional treatment of ocular diseases and an outlook on future directions. Finally, a first approach to ocular safety with dendrimers is intended that accounts for the state-of-the-art science to date.
Collapse
Affiliation(s)
- Javier Rodríguez Villanueva
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Faculty of Pharmacy, Ctra. Madrid-Barcelona (Autovía A-II) Km. 33,600, 28805, Alcalá de Henares, Madrid, Spain; Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Madrid, Spain.
| | - Manuel Guzmán Navarro
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Faculty of Pharmacy, Ctra. Madrid-Barcelona (Autovía A-II) Km. 33,600, 28805, Alcalá de Henares, Madrid, Spain; Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|