1
|
Barbosa-Méndez S, Matus-Ortega M, Hernandez-Miramontes R, Salazar-Juarez A. COT-TT vaccine attenuates cocaine-seeking and cocaine-conditioned place preference in rats. Hum Vaccin Immunother 2024; 20:2299068. [PMID: 38228468 PMCID: PMC10793666 DOI: 10.1080/21645515.2023.2299068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Vaccination active, promising alternative immunological strategy to treat of CUD. Various models of cocaine vaccines have been evaluated in animals and humans with relative success. In this sense, it is necessary to improve or optimize the cocaine vaccines already evaluated. Our laboratory previously reported the efficacy of the tetanus toxoid-conjugated morphine vaccine (M6-TT). The M6-TT vaccine can generate high titers of antibodies and reduce heroin-induced behavioral effects in rodents. So, it would be plausible to assume that if we modify the M6-TT vaccine by changing the hapten and maintaining the rest of the structural elements of the vaccine, we will maintain the properties of the M6-TT vaccine (high antibody titers). The objective of this study was to determine whether the antibodies generated by a tetanus toxoid-conjugated cocaine vaccine (COC-TT) can recognize and capture cocaine and decrease the cocaine-induced reinforcing effects. Male Wistar rats were immunized with the COC-TT. A solid-phase antibody-capture ELISA was used to monitor antibody titer responses after each booster dose in vaccinated animals. The study used cocaine self-administration and place-preference testing to evaluate the cocaine-reinforcing effects. The COC-TT vaccine could generate high levels of anti-cocaine antibodies. The antibodies reduced the cocaine self-administration and cocaine place preference. In addition, they decreased the cocaine-induced Fos protein expression. These findings suggest that the COC-TT vaccine generates a robust immunogenic response capable of reducing the reinforcing effects of cocaine, which supports its possible future use in clinical trials in patients with CUD.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría, Ciudad de México, México
| | - Maura Matus-Ortega
- Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría, Ciudad de México, México
| | - Ricardo Hernandez-Miramontes
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría, Ciudad de México, México
| | - Alberto Salazar-Juarez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría, Ciudad de México, México
| |
Collapse
|
2
|
Abstract
Substance use disorders (SUD) present a worldwide challenge with few effective therapies except for the relative efficacy of opioid pharmacotherapies, despite limited treatment access. However, the proliferation of illicit fentanyl use initiated a dramatic and cascading epidemic of lethal overdoses. This rise in fentanyl overdoses regenerated an interest in vaccine immunotherapy, which, despite an optimistic start in animal models over the past 50 years, yielded disappointing results in human clinical trials of vaccines against nicotine, stimulants (cocaine and methamphetamine), and opioids. After a brief review of clinical and selected preclinical vaccine studies, the "lessons learned" from the previous vaccine clinical trials are summarized, and then the newest challenge of a vaccine against fentanyl and its analogs is explored. Animal studies have made significant advances in vaccine technology for SUD treatment over the past 50 years, and the resulting anti-fentanyl vaccines show remarkable promise for ending this epidemic of fentanyl deaths.
Collapse
Affiliation(s)
- Thomas R Kosten
- Waggoner Professor of Psychiatry, Pharmacology, Neuroscience, Immunology, Baylor College of Medicine, Houston
| |
Collapse
|
3
|
Madge HYR, Alexander S, Azuar A, Zhang J, Koirala P, Burne TH, Toth I, Stephenson RJ. Synthetic Anti-Cocaine Nanoaccine Successfully Prevents Cocaine-Induced Hyperlocomotion. J Med Chem 2023; 66:12407-12419. [PMID: 37646732 DOI: 10.1021/acs.jmedchem.3c00889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cocaine is one of the most widely used and increasingly popular illicit psychoactive drugs. Unlike other commonly used substances of abuse, cocaine has no pharmacological therapies to treat addiction or aid in rehabilitation. Immunopharmacology has long been touted as a possible avenue to develop effective anticocaine therapies; however, lack of efficacy and designs which are not consistent with simple large-scale production have hindered vaccine translation. We have designed and synthesized a peptide-based anti-cocaine immunogen which we have shown is capable of inducing physiologically relevant immune responses in mice as part of a self-adjuvanting delivery system or in combination with the human-approved commercial adjuvant MF59. We have demonstrated that immunization with the reported vaccine elicits high titers of anti-cocaine IgG and prevents cocaine-induced hyperlocomotion in an in vivo murine model. This peptide-hapten immunogen along with self-adjuvanting liposomal-based delivery system provides a platform for the development of effective anti-drug vaccines.
Collapse
Affiliation(s)
- Harrison Y R Madge
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
- Queensland Centre for Mental Health Research, Wacol, Queensland, 4076, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Thomas H Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
- Queensland Centre for Mental Health Research, Wacol, Queensland, 4076, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane 4072, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
4
|
Jimenez Ruiz F, Warner NS, Acampora G, Coleman JR, Kohan L. Substance Use Disorders: Basic Overview for the Anesthesiologist. Anesth Analg 2023; 137:508-520. [PMID: 37590795 DOI: 10.1213/ane.0000000000006281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Substance use disorders (SUDs) represent a current major public health concern in the United States and around the world. Social and economic stressors secondary to the coronavirus disease 2019 (COVID-19) pandemic have likely led to an increase in SUDs around the world. This chronic, debilitating disease is a prevalent health problem, and yet many clinicians do not have adequate training or clinical experience diagnosing and treating SUDs. Anesthesiologists and other perioperative medical staff frequently encounter patients with co-occurring SUDs. By such, through increased awareness and education, physicians and other health care providers have a unique opportunity to positively impact the lives and improve the perioperative outcomes of patients with SUDs. Understanding commonly used terms, potentially effective perioperative screening tools, diagnostic criteria, basics of treatment, and the perioperative implications of SUDs is essential to providing adequate care to patients experiencing this illness.
Collapse
Affiliation(s)
- Federico Jimenez Ruiz
- From the Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nafisseh S Warner
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gregory Acampora
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - John R Coleman
- From the Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lynn Kohan
- From the Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
5
|
Bozkurt M. Neuroscientific Basis of Treatment for Substance Use Disorders. Noro Psikiyatr Ars 2022; 59:S75-S80. [PMID: 36578985 PMCID: PMC9767124 DOI: 10.29399/npa.28172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/07/2022] [Indexed: 12/31/2022] Open
Abstract
Substance use disorder is a chronic and relapsing disease that burdens both the individual and the society. In addition to psychosocial treatment approaches, currently there are approved pharmacological treatment options for opioid, alcohol and tobacco use disorders, but only symptomatic treatment can be offered to patients with other substance use disorders. Advances in neuroscience and a better understanding of the addiction process offer an opportunity to create new treatment options. There is a wide range of studies, ranging from the use of drugs with different indications to the development of new pharmacological treatments, and from vaccine studies to neuromodulation techniques. Establishing novel treatment goals in addition to complete abstinence and individualizing treatment by focusing on endophenotypes may increase the treatment alternatives and the efficacy of these treatments for SUD.
Collapse
Affiliation(s)
- Müge Bozkurt
- İstanbul University, İstanbul Faculty of Medicine, Department of Psychiatry, İstanbul, Turkey
| |
Collapse
|
6
|
Kosten TR, Domingo CB, Haile CN, Nielsen DA. A Clinical Trial of Entolimod a TLR-5 Adjuvant for Vaccines Using Diphtheria or Tetanus as Carrier Proteins. Vaccines (Basel) 2022; 10:1592. [PMID: 36298456 PMCID: PMC9611255 DOI: 10.3390/vaccines10101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Anti-drug vaccines previously failed clinical trials because they did not provide a sufficient titer or duration of antibodies (AB), but new adjuvants enhance both AB titers and efficacy duration. This clinical trial assessed AB titers after a single booster of commercial tetanus-diphtheria (Td) vaccine in 40 males randomized as 15 to Td alone and 25 to Td combined with the TLR5 adjuvant, Entolimod (Ent). Ent significantly increased ABs against diphtheria (DPT) (0.46 vs. 0.29 IU/mL increase; n = 40, p < 0.05), but against tetanus (TT) only if baseline TT AB was below 3 IU/mL (3.1 vs. 2.1 IU/mL; n = 20; p < 0.05). These 20 participants also showed a two-fold increase in anti-TT AB titer more often when given Ent than non-Ent (33% vs. 82%) (p < 0.03). Anti-Ent AB was low and appeared unlikely to reduce Ent efficacy after repeated Ent administration. Medical safety was excellent, and a TLR5 missense polymorphism reduced anti-DPT AB production, but Ent increased anti-DPT AB titers to levels induced in subjects with genetically “normal” TRL5 functioning. Further clinical testing of TLR5 adjuvants like Ent seems warranted for anti-drug vaccines.
Collapse
Affiliation(s)
- Thomas R. Kosten
- Department of Psychiatry and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Coreen B. Domingo
- Department of Psychiatry and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colin N. Haile
- Department of Psychology, University of Houston, Houston, TX 77004, USA
| | - David A. Nielsen
- Department of Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
DiMaggio D, Brockett AT, Shuster M, Murkli S, Zhai C, King D, O'Dowd B, Cheng M, Brady K, Briken V, Roesch MR, Isaacs L. Anthracene-Walled Acyclic CB[n] Receptors: in vitro and in vivo Binding Properties toward Drugs of Abuse. ChemMedChem 2022; 17:e202200046. [PMID: 35238177 PMCID: PMC9119912 DOI: 10.1002/cmdc.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Indexed: 11/07/2022]
Abstract
We report studies of the interaction of six acyclic CB[n]-type receptors toward a panel of drugs of abuse by a combination of isothermal titration calorimetry and 1 H NMR spectroscopy. Anthracene walled acyclic CB[n] host (M3) displays highest binding affinity toward methamphetamine (Kd =15 nM) and fentanyl (Kd =4 nM). Host M3 is well tolerated by Hep G2 and HEK 293 cells up to 100 μM according to MTS metabolic and adenylate kinase release assays. An in vivo maximum tolerated dose study with Swiss Webster mice showed no adverse effects at the highest dose studied (44.7 mg kg-1 ). Host M3 is not mutagenic based on the Ames fluctuation test and does not inhibit the hERG ion channel. In vivo efficacy studies showed that pretreatment of mice with M3 significantly reduces the hyperlocomotion after treatment with methamphetamine, but M3 does not function similarly when administered 30 seconds after methamphetamine.
Collapse
Affiliation(s)
- Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Brona O'Dowd
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Kimberly Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
8
|
Brockett AT, Deng C, Shuster M, Perera S, DiMaggio D, Cheng M, Murkli S, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Methamphetamine by a Sulfated Acyclic CB[n]-Type Receptor. Chemistry 2021; 27:17476-17486. [PMID: 34613641 PMCID: PMC8665056 DOI: 10.1002/chem.202102919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/26/2023]
Abstract
We report the synthesis of two new acyclic sulfated acyclic CB[n]-type receptors (TriM0 and Me4 TetM0) and investigations of their binding properties toward a panel of drugs of abuse (1-13) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry. TetM0 is the most potent receptor with Ka ≥106 M-1 toward methamphetamine, fentanyl, MDMA and mephedrone. TetM0 is not cytotoxic toward HepG2 and HEK 293 cells below 100 μM according to MTS metabolic and adenylate kinase release assays and is well tolerated in vivo when dosed at 46 mg kg-1 . TetM0 does not inhibit the hERG ion channel and is not mutagenic based on the Ames fluctuation test. Finally, in vivo efficacy studies show that the hyperlocomotion of mice treated with methamphetamine can be greatly reduced by treatment with TetM0 up to 5 minutes later. TetM0 has potential as a broad spectrum in vivo sequestrant for drugs of abuse.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Chunlin Deng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| |
Collapse
|
9
|
Murkli S, Klemm J, Brockett AT, Shuster M, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Phencyclidine by Me 4 Cucurbit[8]uril*. Chemistry 2021; 27:3098-3105. [PMID: 33206421 PMCID: PMC7902406 DOI: 10.1002/chem.202004380] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/19/2022]
Abstract
We report investigations of the use of cucurbit[8]uril (CB[8]) macrocycles as an antidote to counteract the in vivo biological effects of phencyclidine. We investigate the binding of CB[8] and its derivative Me4 CB[8] toward ten drugs of abuse (3-9, 12-14) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry in phosphate buffered water. We find that the cavity of CB[8] and Me4 CB[8] are able to encapsulate the 1-amino-1-aryl-cyclohexane ring system of phencyclidine (PCP) and ketamine as well as the morphinan skeleton of morphine and hydromorphone with Kd values ≤50 nm. In vitro cytotoxicity (MTS metabolic and adenylate kinase cell death assays in HEK293 and HEPG2 cells) and in vivo maximum tolerated dose studies (Swiss Webster mice) which were performed for Me4 CB[8] indicated good tolerability. The tightest host⋅guest pair (Me4 CB[8]⋅PCP; Kd =2 nm) was advanced to in vivo efficacy studies. The results of open field tests demonstrate that pretreatment of mice with Me4 CB[8] prevents subsequent hyperlocomotion induction by PCP and also that treatment of animals previously dosed with PCP with Me4 CB[8] significantly reduces the locomotion levels.
Collapse
Affiliation(s)
- Steven Murkli
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Jared Klemm
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Adam T. Brockett
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Department of Psychology, University of Maryland, College Park, MD 20742, United States
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Michael Shuster
- Mr. Michael Shuster, Prof. Dr. Volker Briken, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Volker Briken
- Mr. Michael Shuster, Prof. Dr. Volker Briken, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Matthew R. Roesch
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Department of Psychology, University of Maryland, College Park, MD 20742, United States
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Lyle Isaacs
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
10
|
Lowell JA, Dikici E, Joshi PM, Landgraf R, Lemmon VP, Daunert S, Izenwasser S, Daftarian P. Vaccination against cocaine using a modifiable dendrimer nanoparticle platform. Vaccine 2020; 38:7989-7997. [PMID: 33158592 DOI: 10.1016/j.vaccine.2020.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Pharmacological therapies for the treatment of cocaine addiction have had disappointing efficacy, and the lack of recent developments in the clinical care of cocaine-addicted patients indicates a need for novel treatment strategies. Recent studies have shown that vaccination against cocaine to elicit production of antibodies that reduce concentrations of free drug in the blood is a promising method to protect against the effects of cocaine and reduce rates of relapse. However, the poorly immunogenic nature of cocaine remains a major hurdle to active immunization. Therefore, we hypothesized that strategies to increase targeted exposure of cocaine to the immune system may produce a more effective vaccine. To specifically direct an immune response against cocaine, in the present study we have conjugated a cocaine analog to a dendrimer-based nanoparticle carrier with MHC II-binding moieties that previously has been shown to activate antigen-presenting cells necessary for antibody production. This strategy produced a rapid, prolonged, and high affinity anti-cocaine antibody response without the need for an adjuvant. Surprisingly, additional evaluation using multiple adjuvant formulations in two strains of inbred mice found adjuvants were either functionally redundant or deleterious in the vaccination against cocaine using this platform. The use of conditioned place preference in rats after administration of this vaccine provided proof of concept for the ability of this vaccine to diminish cocaine reward. Together these data demonstrate the intrinsic efficacy of an immune-targeting dendrimer-based cocaine vaccine, with a vast potential for design of future vaccines against other poorly immunogenic antigens by substitution of the conjugated cargo.
Collapse
Affiliation(s)
- Jeffrey A Lowell
- Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States
| | - Pratibha M Joshi
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States
| | - Ralf Landgraf
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, United States; Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States; Miami Clinical and Translational Science Institute, University of Miami, Clinical Research Building, 1120 NW 14th St., Miami, FL 33136, United States
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, University of Miami, 1600 NW 10(th) Avenue, Miami, FL 33136, United States.
| | - Pirouz Daftarian
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States.
| |
Collapse
|
11
|
Natori Y, Janda KD. Synthesis of Drug Vaccine against Heroin Contaminated with Fentanyl and Their Biological Evaluation. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshihiro Natori
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Kim D. Janda
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute
| |
Collapse
|
12
|
Xu A, Kosten TR. Current status of immunotherapies for addiction. Ann N Y Acad Sci 2020; 1489:3-16. [PMID: 32147860 DOI: 10.1111/nyas.14329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
The treatment of substance use disorders has always been challenging because multiple neurotransmitters mediate addiction. However, with smoking being the leading cause of preventable death and the recent opioid epidemic in the United States, the search for novel solutions becomes more imperative. In this review, we discuss the use of antibodies to treat addictions and highlight areas of success and areas that require improvement, using examples from cocaine, nicotine, and opioid vaccines. Through each example, we examine creative problem-solving strategies for developing future vaccines, such as using an adenovirus vector as a carrier, designing bivalent vaccines, stimulating Toll-like receptors for adjuvant effects, and altering the route of administration. Our review also covers passive immunization alone to override or prevent drug toxicity as well as in combination with vaccines for more rapid and potentially greater efficacy.
Collapse
Affiliation(s)
- Ashley Xu
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas
| | - Thomas R Kosten
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Park K, Otte A. Prevention of Opioid Abuse and Treatment of Opioid Addiction: Current Status and Future Possibilities. Annu Rev Biomed Eng 2019; 21:61-84. [PMID: 30786212 DOI: 10.1146/annurev-bioeng-060418-052155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prescription opioid medications have seen a dramatic rise in misuse and abuse, leading regulators and scientists to develop policies and abuse-deterrent technologies to combat the current opioid epidemic. These abuse-deterrent formulations (ADFs) are intended to deter physical and chemical tampering of opioid-based products, while still providing safe and effective delivery for therapeutic purposes. Even though formulations with varying abuse-deterrent technologies have been approved, questions remain about their effectiveness. While these formulations provide a single means to combat the epidemic, a greater emphasis should be placed on formulations for treatment of addiction and overdose to help those struggling with opioid dependence. This article analyzes various ADFs currently in clinical use and explores potential novel systems for treatment of addiction and prevention of overdose.
Collapse
Affiliation(s)
- Kinam Park
- Weldon School of Biomedical Engineering and College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Andrew Otte
- Weldon School of Biomedical Engineering and College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
14
|
Wang S, Wang Y, Cai Y, Kelly CP, Sun X. Novel Chimeric Protein Vaccines Against Clostridium difficile Infection. Front Immunol 2018; 9:2440. [PMID: 30405630 PMCID: PMC6204379 DOI: 10.3389/fimmu.2018.02440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of world-wide nosocomial acquired diarrhea in adults. Active vaccination is generally accepted as a logical and cost-effective approach to prevent CDI. In this paper, we have generated two novel chimeric proteins; one designated Tcd169, comprised of the glucosyltransferase domain (GT), the cysteine proteinase domain (CPD), and receptor binding domain (RBD) of TcdB, and the RBD of TcdA; the other designated Tcd169FI, which contains Salmonella typhimurium flagellin (sFliC) and Tcd169. Both proteins were expressed in and purified from Bacillus megaterium. Point mutations were made in the GT (W102A, D288N) and CPD (C698) of TcdB to ensure that Tcd169 and Tcd169FI were atoxic. Immunization with Tcd169 or Tcd169Fl induced protective immunity against TcdA/TcdB challenge through intraperitoneal injection, also provided mice full protection against infection with a hyper-virulent C. difficile strain (BI/NAP1/027). In addition, inclusion of sFlic in the fusion protein (Tcd169Fl) enhanced its protective immunity against toxin challenge, reduced C. difficile numbers in feces from Tcd169Fl-immunized mice infected C. difficile. Our data show that Tcd169 and Tcd169FI fusion proteins may represent alternative vaccine candidates against CDI.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yuanguo Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ying Cai
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ciaran P. Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
15
|
Baruffaldi F, Kelcher AH, Laudenbach M, Gradinati V, Limkar A, Roslawski M, Birnbaum A, Lees A, Hassler C, Runyon S, Pravetoni M. Preclinical Efficacy and Characterization of Candidate Vaccines for Treatment of Opioid Use Disorders Using Clinically Viable Carrier Proteins. Mol Pharm 2018; 15:4947-4962. [PMID: 30240216 DOI: 10.1021/acs.molpharmaceut.8b00592] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vaccines may offer a new treatment strategy for opioid use disorders and opioid-related overdoses. To speed translation, this study evaluates opioid conjugate vaccines containing components suitable for pharmaceutical manufacturing and compares analytical assays for conjugate characterization. Three oxycodone-based haptens (OXY) containing either PEGylated or tetraglycine [(Gly)4] linkers were conjugated to a keyhole limpet hemocyanin (KLH) carrier protein via carbodiimide (EDAC) or maleimide chemistry. The EDAC-conjugated OXY(Gly)4-KLH was most effective in reducing oxycodone distribution to the brain in mice. Vaccine efficacy was T cell-dependent. The lead OXY hapten was conjugated to the KLH, tetanus toxoid, diphtheria cross-reactive material (CRM), as well as the E. coli-expressed CRM (EcoCRM) and nontoxic tetanus toxin heavy chain fragment C (rTTHc) carrier proteins. All vaccines induced early hapten-specific B cell expansion and showed equivalent efficacy against oxycodone in mice. However, some hapten-protein conjugates were easier to characterize for molecular weight and size. Finally, heroin vaccines formulated with either EcoCRM or KLH were equally effective in reducing heroin-induced antinociception and distribution to the brain of heroin and its metabolites in mice. This study identifies vaccine candidates and vaccine components for further development.
Collapse
Affiliation(s)
- Federico Baruffaldi
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - April Huseby Kelcher
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - Megan Laudenbach
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - Valeria Gradinati
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States.,Dipartimento di Chimica e Tecnologie Farmaceutiche, Socrates Program , Universitá degli Studi di Milano , Milan 20122 , Italy
| | - Ajinkya Limkar
- University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | | | - Angela Birnbaum
- University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Andrew Lees
- Fina Biosolutions, LLC , Rockville , Maryland 20850 , United States
| | - Carla Hassler
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Scott Runyon
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Marco Pravetoni
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States.,Departments of Medicine and Pharmacology, Center for Immunology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
16
|
Hwang C, Smith LC, Natori Y, Ellis B, Zhou B, Janda KD. Improved Admixture Vaccine of Fentanyl and Heroin Hapten Immunoconjugates: Antinociceptive Evaluation of Fentanyl-Contaminated Heroin. ACS OMEGA 2018; 3:11537-11543. [PMID: 30288464 PMCID: PMC6166218 DOI: 10.1021/acsomega.8b01478] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/07/2018] [Indexed: 05/25/2023]
Abstract
Fentanyl and its derivatives have become pervasive contaminants in the U.S. heroin supply. Previously, we reported a proof-of-concept vaccine designed to combat against heroin contaminated with fentanyl. Herein, we optimized the admixture vaccine and found that it surpassed the individual vaccines in every antinociceptive test, including a 10% fentanyl to heroin formulation. It is anticipated that other co-occurring drug abuse disorders may also be examined with admixture vaccines.
Collapse
Affiliation(s)
- Candy
S. Hwang
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Lauren C. Smith
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Yoshihiro Natori
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Beverly Ellis
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Bin Zhou
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| | - Kim D. Janda
- Departments
of Chemistry, Immunology and Microbial Science, Skaggs
Institute for Chemical Biology, and Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, California 92037 United States
| |
Collapse
|
17
|
Kimishima A, Olson ME, Janda KD. Investigations into the efficacy of multi-component cocaine vaccines. Bioorg Med Chem Lett 2018; 28:2779-2783. [PMID: 29317163 DOI: 10.1016/j.bmcl.2017.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
Although cocaine addiction remains a serious health and societal problem in the United States, no FDA-approved treatment has been developed. Vaccines offer an exciting strategy for the treatment of cocaine addiction; however, vaccine formulations need to be optimized to improve efficacy. Herein, we examine the effectiveness of a tricomponent cocaine vaccine, defined as having its hapten (GNE) and adjuvant (cytosine-guanine oligodeoxynucleotide 1826, CpG ODN 1826) covalently linked via the immunogenic protein ovalbumin (OVA). The tricomponent vaccine (GNE-OVA-CpG 1826) and a vaccine of analogous, individual components (GNE-OVA+CpG ODN 1826) were found to similarly induce highly specific anticocaine antibody production in mice and block cocaine's stimulant effects in hyperlocomotor testing.
Collapse
Affiliation(s)
- Atsushi Kimishima
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology and the Worm Institute of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Margaret E Olson
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology and the Worm Institute of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology and the Worm Institute of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
18
|
Hwang CS, Smith LC, Natori Y, Ellis B, Zhou B, Janda KD. Efficacious Vaccine against Heroin Contaminated with Fentanyl. ACS Chem Neurosci 2018; 9:1269-1275. [PMID: 29558798 DOI: 10.1021/acschemneuro.8b00079] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The sharp increase in overdose deaths involving illicit opioid use has been declared a national crisis in the United States. This growing number of overdose deaths can in part be attributed to the increased frequency of fentanyl contamination in the United States heroin supply. To combat this growing trend, we designed a vaccine containing a mixture of heroin and fentanyl hapten-conjugates as a proof-of-concept immunotherapy targeting a combination of these drugs. Rodents immunized with the admixture vaccine showed drug retention in serum and reduced distribution in the brain after administration of an intravenous bolus of heroin coadministered with fentanyl (10% w/w). Moreover, the admixture vaccine performed as well as or better than individual immunoconjugate vaccines in antinociception behavioral models and recognized six other fentanyl analogues with nanomolar affinity. Taken together, these data highlight the potential of an admixture vaccine against heroin contaminated with fentanyl.
Collapse
Affiliation(s)
- Candy S. Hwang
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lauren C. Smith
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yoshihiro Natori
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Beverly Ellis
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Bin Zhou
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
19
|
Kimishima A, Olson ME, Natori Y, Janda KD. Efficient Syntheses of Cocaine Vaccines and Their in Vivo Evaluation. ACS Med Chem Lett 2018; 9:411-416. [PMID: 29795751 PMCID: PMC5949726 DOI: 10.1021/acsmedchemlett.8b00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/16/2018] [Indexed: 01/03/2023] Open
Abstract
![]()
Though cocaine abuse
and addiction continue to have serious implications
for health and society, no FDA-approved interventions have been developed.
Anticocaine conjugate vaccines offer an attractive opportunity for
addiction treatment; however, vaccines have thus far failed in clinical
trials. As a result, anticocaine vaccines must be further optimized
to achieve clinical translation. Herein, we report a study on the
relationship between vaccine efficacy and hapten stability toward
hydrolysis. Two haptens developed by our laboratory, GND and GNE,
were conjugated to tetanus toxoid (TT) and formulated with alum and
cytosine-guanine oligodeoxynucleotide 1826 (CpG ODN 1826) adjuvants,
the optimal formulation in anticocaine vaccine design. GND, a diamide,
is more hydrolytically stable than GNE, a monoamide, toward butyrylcholinesterases.
Ultimately, both vaccines induced antibodies with high affinity for
cocaine. In hyperlocomotion testing, GND-TT and GNE-TT vaccinated
mice exhibited a robust blockade of cocaine’s stimulatory effects
at all tested doses. Overall, antibodies raised against both haptens
were highly effective in protecting mice from cocaine-induced psychostimulation.
Collapse
Affiliation(s)
- Atsushi Kimishima
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Margaret E. Olson
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yoshihiro Natori
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
20
|
Jacob NIT, Anraku K, Kimishima A, Zhou B, Collins KC, Lockner JW, Ellis BA, Janda KD. A bioconjugate leveraging xenoreactive antibodies to alleviate cocaine-induced behavior. Chem Commun (Camb) 2018; 53:8156-8159. [PMID: 28677711 DOI: 10.1039/c7cc04055e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A method for potentiating the response to an anti-cocaine vaccine by leveraging xenoreactive antibodies against the carbohydrate epitope Galα1,3-Gal (GAL) was found to result in a highly specific anti-cocaine response that was able to significantly attenuate cocaine-induced locomotion at 20 mg kg-1 with superior efficacy compared to a standard conjugate.
Collapse
Affiliation(s)
- NIcholas T Jacob
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Peng CJ, Chen HL, Chiu CH, Fang JM. Site-Selective Functionalization of Flagellin by Steric Self-Protection: A Strategy To Facilitate Flagellin as a Self-Adjuvanting Carrier in Conjugate Vaccine. Chembiochem 2018; 19:805-814. [PMID: 29377518 DOI: 10.1002/cbic.201700634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/18/2023]
Abstract
Flagellin (FliC) can act as a carrier protein in the preparation of conjugate vaccines to elicit a T-cell-dependent immune response and as an intrinsic adjuvant to activate the toll-like receptor 5 (TLR5) to enhance vaccine potency. To enable the use of FliC as a self-adjuvanting carrier, an effective method for site-selective modification (SSM) of pertinent amino-acid residues in the D2 and D3 domains of FliC is explored without excessive modification of the D0 and D1 domains, which are responsible for activating and binding with TLR5. In highly concentrated Na2 SO4 solution, FliC monomers form flagellar filaments, in which the D0 and D1 domains are situated inside the tubular structure. Thus, the lysine residues (K219, K224, K324, and K331) in the D2 and D3 domains of flagellin are selectively modified by a diazo-transfer reaction with imidazole-1-sulfonyl azide. The sites with azido modification are confirmed by MALDI-TOF-MS, ESI-TOF-MS, and LC-MS/MS analyses along with label-free quantitation. The azido-modified filament dissolves to give FliC monomers, which can conjugate with alkyne-hinged saccharides by the click reaction. Transmission electron microscopy imaging, dynamic light scattering measurements, and the secreted embryonic alkaline phosphatase reporter assay indicate that the modified FliC monomers retain the ability either to bind with TLR5 or to reassemble into filaments. Overall, this study establishes a feasible method for the SSM of FliC by steric self-protection of the D0 and D1 domains.
Collapse
Affiliation(s)
- Chi-Jiun Peng
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
- Department of Pediatrics, Chang Gung Children's Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Guishan District, Taoyuan, 33302, Taiwan
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- The Genomics Research Center, Academia Sinica, 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan
| |
Collapse
|
22
|
Hwang CS, Bremer PT, Wenthur CJ, Ho SO, Chiang S, Ellis B, Zhou B, Fujii G, Janda KD. Enhancing Efficacy and Stability of an Antiheroin Vaccine: Examination of Antinociception, Opioid Binding Profile, and Lethality. Mol Pharm 2018; 15:1062-1072. [PMID: 29420901 DOI: 10.1021/acs.molpharmaceut.7b00933] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, drug conjugate vaccines have shown promise as therapeutics for substance use disorder. As a means to improve the efficacy of a heroin conjugate vaccine, we systematically explored 20 vaccine formulations with varying combinations of carrier proteins and adjuvants. In regard to adjuvants, we explored a Toll-like receptor 9 (TLR9) agonist and a TLR3 agonist in the presence of alum. The TLR9 agonist was cytosine-guanine oligodeoxynucleotide 1826 (CpG ODN 1826), while the TLR3 agonist was virus-derived genomic doubled-stranded RNA (dsRNA). The vaccine formulations containing TLR3 or TLR9 agonist alone elicited strong antiheroin antibody titers and blockade of heroin-induced antinociception when formulated with alum; however, a combination of TLR3 and TLR9 adjuvants did not result in improved efficacy. Investigation of month-long stability of the two lead formulations revealed that the TLR9 but not the TLR3 formulation was stable when stored as a lyophilized solid or as a liquid over 30 days. Furthermore, mice immunized with the TLR9 + alum heroin vaccine gained significant protection from lethal heroin doses, suggesting that this vaccine formulation is suitable for mitigating the harmful effects of heroin, even following month-long storage at room temperature.
Collapse
Affiliation(s)
- Candy S Hwang
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Paul T Bremer
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Cody J Wenthur
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Sam On Ho
- Molecular Express, Inc., Rancho Dominguez , California 90220 , United States
| | - SuMing Chiang
- Molecular Express, Inc., Rancho Dominguez , California 90220 , United States
| | - Beverly Ellis
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Bin Zhou
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Gary Fujii
- Molecular Express, Inc., Rancho Dominguez , California 90220 , United States
| | - Kim D Janda
- Departments of Chemistry, Immunology, and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
23
|
Jesus S, Soares E, Borchard G, Borges O. Adjuvant Activity of Poly-ε-caprolactone/Chitosan Nanoparticles Characterized by Mast Cell Activation and IFN-γ and IL-17 Production. Mol Pharm 2017; 15:72-82. [PMID: 29160080 DOI: 10.1021/acs.molpharmaceut.7b00730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polymeric nanoparticles (NPs) are extremely attractive vaccine adjuvants, able to promote antigen delivery and in some instances, exert intrinsic immunostimulatory properties that enhance antigen specific humoral and cellular immune responses. The poly-ε-caprolactone (PCL)/chitosan NPs were designed with the aim of being able to combine the properties of the 2 polymers in the preparation of an adjuvant for the hepatitis B surface antigen (HBsAg). This article reports important results of an in vitro mechanistic study and immunization studies with HBsAg associated with different concentrations of the nanoparticles. The results revealed that PCL/chitosan NPs promoted mast cell (MC) activation (β-hexosaminidase release) and that its adjuvant effect is not mediated by the TNF-α secretion. Moreover, we demonstrated that HBsAg loaded PCL/chitosan NPs, administered through the subcutaneous (SC) route, were able to induce higher specific antibody titers without increasing IgE when compared to a commercial vaccine, and that the IgG titers are nanoparticle-dose dependent. The results also revealed the NPs' capability to promote a cellular immune response against HBsAg, characterized by the production of IFN-γ and IL-17. These results demonstrated that PCL/chitosan NPs are a good hepatitis B antigen adjuvant, with direct influence on the intensity and type of the immune response generated.
Collapse
Affiliation(s)
- Sandra Jesus
- Faculty of Pharmacy, University of Coimbra , 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra , 3000-548 Coimbra, Portugal
| | - Edna Soares
- Faculty of Pharmacy, University of Coimbra , 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra , 3000-548 Coimbra, Portugal
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Unssssiversity of Lausanne , 1211 Geneva, Switzerland
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra , 3000-548 Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra , 3000-548 Coimbra, Portugal
| |
Collapse
|
24
|
Zhao Z, Harris B, Hu Y, Harmon T, Pentel PR, Ehrich M, Zhang C. Rational incorporation of molecular adjuvants into a hybrid nanoparticle-based nicotine vaccine for immunotherapy against nicotine addiction. Biomaterials 2017; 155:165-175. [PMID: 29179132 DOI: 10.1016/j.biomaterials.2017.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/25/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022]
Abstract
Current clinically-tested nicotine vaccines have yet shown enhanced smoking cessation efficacy due to their low immunogenicity. Achieving a sufficiently high immunogenicity is a necessity for establishing a clinically-viable nicotine vaccine. This study aims to facilitate the immunogenicity of a hybrid nanoparticle-based nicotine vaccine by rationally incorporating toll-like receptor (TLR)-based adjuvants, including monophosphoryl lipid A (MPLA), Resiquimod (R848), CpG oligodeoxynucleotide 1826 (CpG ODN 1826), and their combinations. The nanoparticle-delivered model adjuvant was found to be taken up more efficiently by dendritic cells than the free counterpart. Nanovaccine particles were transported to endosomal compartments upon cellular internalization. The incorporation of single or dual TLR adjuvants not only considerably increased total anti-nicotine IgG titers but also significantly affected IgG subtype distribution in mice. Particularly, the nanovaccines carrying MPLA+R848 or MPLA+ODN 1826 generated a much higher anti-nicotine antibody titer than those carrying none or one adjuvant. Meanwhile, the anti-nicotine antibody elicited by the nanovaccine adjuvanted with MPLA+R848 had a significantly higher affinity than that elicited by the nanovaccine carrying MPLA+ODN 1826. Moreover, the incorporation of all the selected TLR adjuvants (except MPLA) reduced the brain nicotine levels in mice after nicotine challenge. Particularly, the nanovaccine with MPLA+R848 exhibited the best ability to reduce the level of nicotine entering the brain. Collectively, rational incorporation of TLR adjuvants could enhance the immunological efficacy of the hybrid nanoparticle-based nicotine vaccine, making it a promising next-generation immunotherapeutic candidate for treating nicotine addiction.
Collapse
Affiliation(s)
- Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Brian Harris
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yun Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Theresa Harmon
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
| | - Paul R Pentel
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
25
|
|
26
|
María RR, Arturo CJ, Alicia JA, Paulina MG, Gerardo AO. The Impact of Bioinformatics on Vaccine Design and Development. Vaccines (Basel) 2017. [DOI: 10.5772/intechopen.69273] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Ganapati S, Grabitz SD, Murkli S, Scheffenbichler F, Rudolph MI, Zavalij PY, Eikermann M, Isaacs L. Molecular Containers Bind Drugs of Abuse in Vitro and Reverse the Hyperlocomotive Effect of Methamphetamine in Rats. Chembiochem 2017; 18:1583-1588. [PMID: 28586110 PMCID: PMC5570556 DOI: 10.1002/cbic.201700289] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 01/20/2023]
Abstract
We measured the affinity of five molecular container compounds (calabadions 1 and 2, CB[7], sulfocalix[4]arene, and HP-β-CD) toward seven drugs of abuse in homogenous aqueous solution at physiological pH by various methods (1 H NMR, UV/Vis, isothermal titration calorimetry [ITC]) and found binding constants (Ka values) spanning from <102 to >108 m-1 . We also report X-ray crystal structures of CB[7]⋅methamphetamine and 1⋅methamphetamine. We found that 2, but not CB[7], was able to ameliorate the hyperlocomotive activity of rats treated with methamphetamine. The bioavailability of the calabadions and their convergent building block synthesis suggest potential for further structural optimization as reversal agents for intoxication with nonopioid drugs of abuse for which no treatments are currently available.
Collapse
Affiliation(s)
- Shweta Ganapati
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Stephanie D Grabitz
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Flora Scheffenbichler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Maíra I Rudolph
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Matthias Eikermann
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
28
|
Guo F, Liu Y, Zhang C, Wang Q, Wang L, Gao Y, Bi J, Wang H, Su Z. Prompt and Robust Humoral Immunity Elicited by a Conjugated Chimeric Malaria Antigen with a Truncated Flagellin. Bioconjug Chem 2017; 29:761-770. [DOI: 10.1021/acs.bioconjchem.7b00320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fangxia Guo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lianyan Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuhui Gao
- Molecular Parasitology Laboratory, Peking Union Medical College, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing 100005, PR China
| | - Jingxiu Bi
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Heng Wang
- Molecular Parasitology Laboratory, Peking Union Medical College, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing 100005, PR China
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
29
|
Augmenting the efficacy of anti-cocaine catalytic antibodies through chimeric hapten design and combinatorial vaccination. Bioorg Med Chem Lett 2017; 27:3666-3668. [PMID: 28709828 DOI: 10.1016/j.bmcl.2017.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/04/2017] [Indexed: 01/25/2023]
Abstract
Given the need for further improvements in anti-cocaine vaccination strategies, a chimeric hapten (GNET) was developed that combines chemically-stable structural features from steady-state haptens with the hydrolytic functionality present in transition-state mimetic haptens. Additionally, as a further investigation into the generation of an improved bifunctional antibody pool, sequential vaccination with steady-state and transition-state mimetic haptens was undertaken. While GNET induced the formation of catalytically-active antibodies, it did not improve overall behavioral efficacy. In contrast, the resulting pool of antibodies from GNE/GNT co-administration demonstrated intermediate efficacy as compared to antibodies developed from either hapten alone. Overall, improved antibody catalytic efficiency appears necessary to achieve the synergistic benefits of combining cocaine hydrolysis with peripheral sequestration.
Collapse
|
30
|
Abstract
Substance use disorder, especially in relation to opioids such as heroin and fentanyl, is a significant public health issue and has intensified in recent years. As a result, substantial interest exists in developing therapeutics to counteract the effects of abused drugs. A promising universal strategy for antagonizing the pharmacology of virtually any drug involves the development of a conjugate vaccine, wherein a hapten structurally similar to the target drug is conjugated to an immunogenic carrier protein. When formulated with adjuvants and immunized, the immunoconjugate should elicit serum IgG antibodies with the ability to sequester the target drug to prevent its entry to the brain, thereby acting as an immunoantagonist. Despite the failures of first-generation conjugate vaccines against cocaine and nicotine in clinical trials, second-generation vaccines have shown dramatically improved performance in preclinical models, thus renewing the potential clinical utility of conjugate vaccines in curbing substance use disorder. This review explores the critical design elements of drug conjugate vaccines such as hapten structure, adjuvant formulation, bioconjugate chemistry, and carrier protein selection. Methods for evaluating these vaccines are discussed, and recent progress in vaccine development for each drug is summarized.
Collapse
Affiliation(s)
- Paul T Bremer
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, California
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
31
|
Kimishima A, Wenthur CJ, Zhou B, Janda KD. An Advance in Prescription Opioid Vaccines: Overdose Mortality Reduction and Extraordinary Alteration of Drug Half-Life. ACS Chem Biol 2017; 12:36-40. [PMID: 28103678 PMCID: PMC6434689 DOI: 10.1021/acschembio.6b00977] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prescription opioids (POs) such as oxycodone and hydrocodone are highly effective medications for pain management, yet they also present a substantial risk for abuse and addiction. The consumption of POs has been escalating worldwide, resulting in tens of thousands of deaths due to overdose each year. Pharmacokinetic strategies based upon vaccination present an attractive avenue to suppress PO abuse. Herein, the preparation of two active PO vaccines is described that were found to elicit high-affinity antiopioid antibodies through a structurally congruent drug-hapten design. Administration of these vaccines resulted in a significant blockade of opioid analgesic activity, along with an unprecedented increase in drug serum half-life and protection against lethal overdose.
Collapse
Affiliation(s)
- Atsushi Kimishima
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, 92037
| | - Cody J Wenthur
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, 92037
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, 92037
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, 92037
| |
Collapse
|