1
|
Dang M, Slaughter KV, Cui H, Jiang C, Zhou L, Matthew DJ, Sivak JM, Shoichet MS. Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419306. [PMID: 39763100 PMCID: PMC11854861 DOI: 10.1002/adma.202419306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 02/26/2025]
Abstract
Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug. A series of timolol prodrugs are synthesized and self-assembled into CDAs. Of four prodrugs, timolol palmitate CDAs have a critical aggregate concentration of 2.72 µM and sustained in vitro release over 28 d. Timolol palmitate CDAs are dispersed throughout in situ gelling hyaluronan-oxime hydrogel and injected into the subconjunctival space of rat eyes. The intraocular pressure is significantly reduced for at least 49 d with a single subconjunctival injection of timolol-palmitate CDAs compared to 6 h for conventional timolol maleate. The systemic blood concentrations of timolol are significantly lower, even after 6 h, for timolol palmitate CDA-loaded hydrogel versus free timolol maleate, thereby potentially reducing the risk of systemic side effects. This innovative approach redefines the role of CDAs and provides a framework for long-acting ocular therapeutics, shifting their perception from a drug screening challenge to a powerful tool for sustained local drug delivery.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Kai V. Slaughter
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| | - Hong Cui
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Christopher Jiang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - Lisa Zhou
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - David J. Matthew
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
| | - Jeremy M. Sivak
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto1 King's College CircleTorontoONM5S 1A8Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
2
|
Slaughter KV, Donders EN, Jones MS, Sabbah SG, Elliott MJ, Shoichet BK, Cescon DW, Shoichet MS. Ionizable Drugs Enable Intracellular Delivery of Co-Formulated siRNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403701. [PMID: 39148215 DOI: 10.1002/adma.202403701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Indexed: 08/17/2024]
Abstract
Targeting complementary pathways in diseases such as cancer can be achieved with co-delivery of small interfering ribonucleic acid (siRNA) and small molecule drugs; however, current formulation strategies are typically limited to one, but not both. Here, ionizable small molecule drugs and siRNA are co-formulated in drug-rich nanoparticles. Ionizable analogs of the selective estrogen receptor degrader fulvestrant self-assemble into colloidal drug aggregates and cause endosomal disruption, allowing co-delivery of siRNA against a non-druggable target. siRNA is encapsulated in lipid-stabilized, drug-rich colloidal nanoparticles where the ionizable lipid used in conventional lipid nanoparticles is replaced with an ionizable fulvestrant analog. The selection of an appropriate phospholipid and formulation buffer enables endocytosis and potent reporter gene knockdown in cancer cells. Importantly, siRNA targeting cyclin E1 is effectively delivered to drug-resistant breast cancer cells, demonstrating the utility of this approach. This strategy opens the possibility of using ionizable drugs to co-deliver RNA and ultimately improve therapeutic outcomes.
Collapse
Affiliation(s)
- Kai V Slaughter
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eric N Donders
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Michael S Jones
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Sami G Sabbah
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Mitchell J Elliott
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 Fourth Street, Mail Box 2550, San Francisco, CA, 94143, USA
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
3
|
Ahn MJ, Kim EH, Choi Y, Chae CH, Kim P, Kim SH. Novel hematopoietic progenitor kinase 1 inhibitor KHK-6 enhances T-cell activation. PLoS One 2024; 19:e0305261. [PMID: 38923962 PMCID: PMC11207149 DOI: 10.1371/journal.pone.0305261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Inhibiting the functional role of negative regulators in immune cells is an effective approach for developing immunotherapies. The serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1) involved in the T-cell receptor signaling pathway attenuates T-cell activation by inducing the degradation of SLP-76 through its phosphorylation at Ser-376, reducing the immune response. Interestingly, several studies have shown that the genetic ablation or pharmacological inhibition of HPK1 kinase activity improves the immune response to cancers by enhancing T-cell activation and cytokine production; therefore, HPK1 could be a promising druggable target for T-cell-based cancer immunotherapy. To increase the immune response against cancer cells, we designed and synthesized KHK-6 and evaluated its cellular activity to inhibit HPK1 and enhance T-cell activation. KHK-6 inhibited HPK1 kinase activity with an IC50 value of 20 nM and CD3/CD28-induced phosphorylation of SLP-76 at Ser-376 Moreover, KHK-6 significantly enhanced CD3/CD28-induced production of cytokines; proportion of CD4+ and CD8+ T cells that expressed CD69, CD25, and HLA-DR markers; and T-cell-mediated killing activity of SKOV3 and A549 cells. In conclusion, KHK-6 is a novel ATP-competitive HPK1 inhibitor that blocks the phosphorylation of HPK1 downstream of SLP-76, enhancing the functional activation of T cells. In summary, our study showed the usefulness of KHK-6 in the drug discovery for the HPK1-inhibiting immunotherapy.
Collapse
Affiliation(s)
- Min Jeong Ahn
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Hye Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yunha Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry & Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| | - Chong Hak Chae
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Pilho Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry & Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seong Hwan Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Shireen Z, Curk T, Brandl C, B Babu S. Rigidity-Induced Controlled Aggregation of Binary Colloids. ACS OMEGA 2023; 8:37225-37232. [PMID: 37841185 PMCID: PMC10568703 DOI: 10.1021/acsomega.3c04909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Here, we report the proof-of-concept for controlled aggregation in a binary colloidal system. The binary systems are studied by varying bond flexibility of only one species, while the other species' bonds remain fully flexible. By establishing the underlying relation between gelation and bond rigidity, we demonstrate how the interplay among bond flexibility, critical concentration, and packing volume fraction influenced the aggregation kinetics. Our result shows that rigidity in bonds increases the critical concentration for gels to be formed in the binary mixture. Furthermore, the average number of bonded neighbor analyses reveal the influence of bond rigidity both above and below critical concentrations and show that variation in bond flexibility in only one species alters the kinetics of aggregation of both species. This finding improves our understanding of colloidal aggregation in soft and biological systems.
Collapse
Affiliation(s)
- Zakiya Shireen
- Department
of Mechanical Engineering, Faculty of Engineering and Information
Technology, University of Melbourne, 3010 Parkville, Victoria Australia
| | - Tine Curk
- Department
of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christian Brandl
- Department
of Mechanical Engineering, Faculty of Engineering and Information
Technology, University of Melbourne, 3010 Parkville, Victoria Australia
| | - Sujin B Babu
- Out
of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, 110016 New Delhi, India
| |
Collapse
|
5
|
Donders EN, Slaughter KV, Dank C, Ganesh AN, Shoichet BK, Lautens M, Shoichet MS. Synthetic Ionizable Colloidal Drug Aggregates Enable Endosomal Disruption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300311. [PMID: 36905240 PMCID: PMC10161099 DOI: 10.1002/advs.202300311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 05/06/2023]
Abstract
Colloidal drug aggregates enable the design of drug-rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo-lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated with phospholipidosis. It is hypothesized that tuning the pKa of the drug would enable endosomal disruption while avoiding phospholipidosis and minimizing toxicity. To test this idea, 12 analogs of the nonionizable colloidal drug fulvestrant are synthesized with ionizable groups to enable pH-dependent endosomal disruption while maintaining bioactivity. Lipid-stabilized fulvestrant analog colloids are endocytosed by cancer cells, and the pKa of these ionizable colloids influenced the mechanism of endosomal and lysosomal disruption. Four fulvestrant analogs-those with pKa values between 5.1 and 5.7-disrupted endo-lysosomes without measurable phospholipidosis. Thus, by manipulating the pKa of colloid-forming drugs, a tunable and generalizable strategy for endosomal disruption is established.
Collapse
Affiliation(s)
- Eric N. Donders
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Donnelly CentreUniversity of Toronto160 College StreetTorontoONM5S3E1Canada
| | - Kai V. Slaughter
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Donnelly CentreUniversity of Toronto160 College StreetTorontoONM5S3E1Canada
| | - Christian Dank
- Department of ChemistryUniversity of Toronto80 St. George StreetTorontoONM5S 3H6Canada
| | - Ahil N. Ganesh
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Donnelly CentreUniversity of Toronto160 College StreetTorontoONM5S3E1Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical ChemistryUniversity of California San Francisco1700 Fourth Street, Mail Box 2550San FranciscoCA94143USA
| | - Mark Lautens
- Department of ChemistryUniversity of Toronto80 St. George StreetTorontoONM5S 3H6Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Institute of Biomedical EngineeringUniversity of Toronto164 College StreetTorontoONM5S 3G9Canada
- Donnelly CentreUniversity of Toronto160 College StreetTorontoONM5S3E1Canada
| |
Collapse
|
6
|
Molina C, Ait-Ouarab L, Minoux H. Isometric Stratified Ensembles: A Partial and Incremental Adaptive Applicability Domain and Consensus-Based Classification Strategy for Highly Imbalanced Data Sets with Application to Colloidal Aggregation. J Chem Inf Model 2022; 62:1849-1862. [PMID: 35357194 DOI: 10.1021/acs.jcim.2c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Partial and incremental stratification analysis of a quantitative structure-interference relationship (QSIR) is a novel strategy intended to categorize classification provided by machine learning techniques. It is based on a 2D mapping of classification statistics onto two categorical axes: the degree of consensus and level of applicability domain. An internal cross-validation set allows to determine the statistical performance of the ensemble at every 2D map stratum and hence to define isometric local performance regions with the aim of better hit ranking and selection. During training, isometric stratified ensembles (ISE) applies a recursive decorrelated variable selection and considers the cardinal ratio of classes to balance training sets and thus avoid bias due to possible class imbalance. To exemplify the interest of this strategy, three different highly imbalanced PubChem pairs of AmpC β-lactamase and cruzain inhibition assay campaigns of colloidal aggregators and complementary aggregators data set available at the AGGREGATOR ADVISOR predictor web page were employed. Statistics obtained using this new strategy show outperforming results compared to former published tools, with and without a classical applicability domain. ISE performance on classifying colloidal aggregators shows from a global AUC of 0.82, when the whole test data set is considered, up to a maximum AUC of 0.88, when its highest confidence isometric stratum is retained.
Collapse
Affiliation(s)
- Christophe Molina
- PIKAÏROS S.A., B03 - 2 Allée de la Clairière, 31650 Saint Orens de Gameville, France
| | - Lilia Ait-Ouarab
- AMOA Ingénierie, INFOGENE S.A., 19, rue d'Orleans, 92200 Neuilly-sur-Seine, France
| | - Hervé Minoux
- Data and Data Science, SANOFI R&D, 91380 Chilly-Mazarin, France
| |
Collapse
|
7
|
Hirlak O, Dieluweit S, Merkel R, Wagner KG. Polymer-mediated drug supersaturation - A spotlight on the interplay between phase-separated amorphous drug colloids and dissolved molecules. J Colloid Interface Sci 2021; 603:370-379. [PMID: 34197986 DOI: 10.1016/j.jcis.2021.06.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/19/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
HYPOTHESIS Colloidal aggregation phenomena have been found responsible for the supersaturation of poorly water-soluble drugs, potentially leading to bioavailability enhancements. Unlike coarse precipitates, phase separation in the form of colloids, is expected to enhance drug supersaturation performance. Therefore, a high proportion of these colloids should correlate with the extent and the kinetics of supersaturation. The prime objective of the current study is to provide a mechanistic understanding on supersaturation for the model drug albendazole (ALB) in combination with twelve polymers. EXPERIMENTS Species separated after a pH-shift were characterized by dynamic light scattering (DLS), freeze-fracture electron microscopy (FF-EM) and transmission X-ray diffraction (XRD). Laser diffraction (LD) in a liquid cell was introduced for a relative quantification of the colloidally separated species, described as colloid fraction. The pH-dependent supersaturation was assessed online using a miniaturized dissolution assay. FINDINGS Here, a measure of the extent of amorphous colloidal phase separation was established, and its impact on supersaturation was evaluated. As a result, a correlation was found between the extent of supersaturation and the colloid fraction. This confirmed the dependence of polymer-mediated enabling and preservation of supersaturation on the ability of polymers to stabilize colloid fractions. Furthermore, a fixed ratio was suggested between the dissolved drug and colloidally separated drug as the kinetic profiles of both species showed similar trajectories. In conclusion, colloid fractions were identified to be responsible for dissolved and potentially bioavailable drug molecules.
Collapse
Affiliation(s)
- Ozan Hirlak
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Sabine Dieluweit
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
8
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
9
|
Lak P, O'Donnell H, Du X, Jacobson MP, Shoichet BK. A Crowding Barrier to Protein Inhibition in Colloidal Aggregates. J Med Chem 2021; 64:4109-4116. [PMID: 33761256 DOI: 10.1021/acs.jmedchem.0c02253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small molecule colloidal aggregates adsorb and partially denature proteins, inhibiting them artifactually. Oddly, this inhibition is typically time-dependent. Two mechanisms might explain this: low concentrations of the colloid and enzyme might mean low encounter rates, or colloid-based protein denaturation might impose a kinetic barrier. These two mechanisms should have different concentration dependencies. Perplexingly, when enzyme concentration was increased, incubation times actually lengthened, inconsistent with both models and with classical chemical kinetics of solution species. We therefore considered molecular crowding, where colloids with lower protein surface density demand a shorter incubation time than more crowded colloids. To test this, we grew and shrank colloid surface area. As the surface area shrank, the incubation time lengthened, while as it increased, the converse was true. These observations support a crowding effect on protein binding to colloidal aggregates. Implications for drug delivery and for detecting aggregation-based inhibition will be discussed.
Collapse
Affiliation(s)
- Parnian Lak
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2550, United States
| | - Henry O'Donnell
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2550, United States
| | - Xuewen Du
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2550, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2550, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94143-2550, United States
| |
Collapse
|
10
|
Zuo S, Sun B, Yang Y, Zhou S, Zhang Y, Guo M, Sun M, Luo C, He Z, Sun J. Probing the Superiority of Diselenium Bond on Docetaxel Dimeric Prodrug Nanoassemblies: Small Roles Taking Big Responsibilities. SMALL 2020; 16:e2005039. [PMID: 33078579 DOI: 10.1002/smll.202005039] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The current state of chemotherapy is far from satisfaction, restricted by the inefficient drug delivery and the off-target toxicity. Prodrug nanoassemblies are emerging as efficient platforms for chemotherapy. Herein, three docetaxel dimeric prodrugs are designed using diselenide bond, disulfide bond, or dicarbide bond as linkages. Interestingly, diselenide bond-bridged dimeric prodrug can self-assemble into stable nanoparticles with impressive high drug loading (≈70%, w/w). Compared with disulfide bond and dicarbide bond, diselenide bond greatly facilitates the self-assembly of dimeric prodrug, and then improves the colloidal stability, blood circulation time, and antitumor efficacy of prodrug nanoassemblies. Furthermore, the redox-sensitive diselenide bond can specifically respond to the overexpressed reactive oxygen species and glutathione in tumor cells, leading to tumor-specific drug release. Therefore, diselenide bond bridged prodrug nanoassemblies exhibit discriminating cytotoxicity between tumor cells and normal cells, significantly alleviating the systemic toxicity of docetaxel. The present work gains in-depth insight into the impact of diselenide bond on the dimeric prodrug nanoassemblies, and provides promising strategies for the rational design of the high efficiency-low toxicity chemotherapeutical nanomedicines.
Collapse
Affiliation(s)
- Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yinxian Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shuang Zhou
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Mengran Guo
- Department of Clinical Pharmacy, West China Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Mengchi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
11
|
Wilson CG, Arkin MR. Screening and biophysics in small molecule discovery. SMALL MOLECULE DRUG DISCOVERY 2020:127-161. [DOI: 10.1016/b978-0-12-818349-6.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Ayotte Y, Marando VM, Vaillancourt L, Bouchard P, Heffron G, Coote PW, Larda ST, LaPlante SR. Exposing Small-Molecule Nanoentities by a Nuclear Magnetic Resonance Relaxation Assay. J Med Chem 2019; 62:7885-7896. [PMID: 31422659 DOI: 10.1021/acs.jmedchem.9b00653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Small molecules can self-assemble in aqueous solution into a wide range of nanoentity types and sizes (dimers, n-mers, micelles, colloids, etc.), each having their own unique properties. This has important consequences in the context of drug discovery including issues related to nonspecific binding, off-target effects, and false positives and negatives. Here, we demonstrate the use of the spin-spin relaxation Carr-Purcell-Meiboom-Gill NMR experiment, which is sensitive to molecular tumbling rates and can expose larger aggregate species that have slower rotational correlations. The strategy easily distinguishes lone-tumbling molecules versus nanoentities of various sizes. The technique is highly sensitive to chemical exchange between single-molecule and aggregate states and can therefore be used as a reporter when direct measurement of aggregates is not possible by NMR. Interestingly, we found differences in solution behavior for compounds within structurally related series, demonstrating structure-nanoentity relationships. This practical experiment is a valuable tool to support drug discovery efforts.
Collapse
Affiliation(s)
- Yann Ayotte
- INRS-Centre Armand-Frappier Santé Biotechnologie , 531 Boulevard des Prairies , Laval , Québec H7V 1B7 , Canada
| | - Victoria M Marando
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Louis Vaillancourt
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Patricia Bouchard
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Gregory Heffron
- Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Paul W Coote
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada.,Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Sacha T Larda
- NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada
| | - Steven R LaPlante
- INRS-Centre Armand-Frappier Santé Biotechnologie , 531 Boulevard des Prairies , Laval , Québec H7V 1B7 , Canada.,NMX Research and Solutions, Inc. , 500 Boulevard Cartier Ouest , Laval , Québec , H7V 5B7 , Canada.,Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
13
|
Long-term anesthetic analgesic effects: Comparison of tetracaine loaded polymeric nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers in vitro and in vivo. Biomed Pharmacother 2019; 117:109057. [DOI: 10.1016/j.biopha.2019.109057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
|
14
|
Donders EN, Ganesh AN, Torosyan H, Lak P, Shoichet BK, Shoichet MS. Triggered Release Enhances the Cytotoxicity of Stable Colloidal Drug Aggregates. ACS Chem Biol 2019; 14:1507-1514. [PMID: 31243955 DOI: 10.1021/acschembio.9b00247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemotherapeutics that self-assemble into colloids have limited efficacy above their critical aggregation concentration due to their inability to penetrate intact plasma membranes. Even when colloid uptake is promoted, issues with colloid escape from the endolysosomal pathway persist. By stabilizing acid-responsive lapatinib colloids through coaggregation with fulvestrant, and inclusion of transferrin, we demonstrate colloid internalization by cancer cells, where subsequent lapatinib ionization leads to endosomal leakage and increased cytotoxicity. These results demonstrate a strategy for triggered drug release from stable colloidal aggregates.
Collapse
Affiliation(s)
- Eric N. Donders
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Ahil N. Ganesh
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Hayarpi Torosyan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, Mail Box 2550, San Francisco, California 94143, United States
| | - Parnian Lak
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, Mail Box 2550, San Francisco, California 94143, United States
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 1700 Fourth Street, Mail Box 2550, San Francisco, California 94143, United States
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
15
|
Ganesh AN, Aman A, Logie J, Barthel BL, Cogan P, Al-awar R, Koch TH, Shoichet BK, Shoichet MS. Colloidal Drug Aggregate Stability in High Serum Conditions and Pharmacokinetic Consequence. ACS Chem Biol 2019; 14:751-757. [PMID: 30840432 PMCID: PMC6474797 DOI: 10.1021/acschembio.9b00032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colloidal drug aggregates have been a nuisance in drug screening, yet, because they inherently comprise drug-rich particles, they may be useful in vivo if issues of stability can be addressed. As the first step toward answering this question, we optimized colloidal drug aggregate formulations using a fluorescence-based assay to study fulvestrant colloidal formation and stability in high (90%) serum conditions in vitro. We show, for the first time, that the critical aggregation concentration of fulvestrant depends on media composition and increases with serum concentration. Excipients, such as polysorbate 80, stabilize fulvestrant colloids in 90% serum in vitro for over 48 h. Using fulvestrant and an investigational pro-drug, pentyloxycarbonyl-( p-aminobenzyl) doxazolidinylcarbamate (PPD), as proof-of-concept colloidal formulations, we demonstrate that the in vivo plasma half-life for stabilized colloids is greater than their respective monomeric forms. These studies demonstrate the potential of turning the nuisance of colloidal drug aggregation into an opportunity for drug-rich formulations.
Collapse
Affiliation(s)
- Ahil N. Ganesh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Jennifer Logie
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Ben L. Barthel
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Peter Cogan
- School of Pharmacy, Regis University, 3333 Regis Boulevard, Denver, Colorado 80221-1099, United States
| | - Rima Al-awar
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Tad H. Koch
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, Mail Box 2550, San Francisco, California 94143, United States
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
16
|
Ganesh AN, Donders EN, Shoichet BK, Shoichet MS. Colloidal aggregation: from screening nuisance to formulation nuance. NANO TODAY 2018; 19:188-200. [PMID: 30250495 PMCID: PMC6150470 DOI: 10.1016/j.nantod.2018.02.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is well known that small molecule colloidal aggregation is a leading cause of false positives in early drug discovery. Colloid-formers are diverse and well represented among corporate and academic screening decks, and even among approved drugs. Less appreciated is how colloid formation by drug-like compounds fits into the wider understanding of colloid physical chemistry. Here we introduce the impact that colloidal aggregation has had on early drug discovery, and then turn to the physical and thermodynamic driving forces for small molecule colloidal aggregation, including the particulate nature of the colloids, their critical aggregation concentration-governed formation, their mechanism of protein adsorption and subsequent inhibition, and their sensitivity to detergent. We describe methods that have been used extensively to both identify aggregate-formers and to study and control their physical chemistry. While colloidal aggregation is widely recognized as a problem in early drug discovery, we highlight the opportunities for exploiting this phenomenon in biological milieus and for drug formulation.
Collapse
Affiliation(s)
- Ahil N. Ganesh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON,Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Eric N. Donders
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON,Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California – San Francisco, CA, USA
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON,Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
- Department of Chemistry, University of Toronto, ON, Canada
- To whom correspondence should be addressed: Molly S. Shoichet, University of Toronto, 160 College Street, Room 514, Toronto, ON, Canada M5S 3E1,
| |
Collapse
|