1
|
Jain KMH, Duggal I, Hou HH, Siegel RA. Artificial gut Simulator. A scheme to predict intestinal and plasma concentration-time profiles of a weakly basic BCS-II drug, dipyridamole. Eur J Pharm Biopharm 2025; 210:114688. [PMID: 40089075 DOI: 10.1016/j.ejpb.2025.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
The objective of this study was to develop a scheme to predict intestinal and plasma concentration-time profiles of the weakly basic BCS-II drug, dipyridamole (DPD), using an Artificial Gut Simulator (AGS) integrated with a compartment-based disposition model. In vivo data for this study was obtained from previously published literature. A 3-compartment disposition model was developed using the plasma concentration-time profile of DPD following an intravenous bolus dose. The AGS, consisting of a donor cell and a hollow fiber-based absorption module, was tuned to absorb DPD saturated solution at a physiological rate constant, 0.0402 min-1, based on the measured Caco-2 cell monolayer permeability coefficient. The dose dumping technique commonly used during dissolution testing can generate excessively high initial supersaturation and precipitation which is not physiologically relevant. In this study, fractions of DPD dose were added incrementally every 15 min to the AGS donor to simulate an overall first-order gastric emptying process. The concentration absorbed by the hollow fiber receiver media was input into the central compartment of the disposition model. The predicted plasma concentration-time profile matched the human in vivo profile of DPD obtained after oral administration of a 50 mg dose. For 30 and 90 mg oral doses, time profiles of concentration and fraction precipitated in the AGS donor agreed well with human duodenal measurements. This study demonstrates the significance of simulating physiological rate of absorption in vitro to accurately predict the bioavailability of a BCS-II compound.
Collapse
Affiliation(s)
| | - Ishaan Duggal
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Ueda K, Takemoto S, Higashi K, Moribe K. Impact of colloidal drug-rich droplet size and amorphous solubility on drug membrane permeability: A comprehensive analysis. J Pharm Sci 2025; 114:136-144. [PMID: 38942292 DOI: 10.1016/j.xphs.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This study aimed to investigate the impact of amorphous solubility and colloidal drug-rich droplets on drug absorption. The amorphous solubility of cilnidipine (CND) in AS-HF grade of hypromellose acetate succinate (HPMC-AS) solution was significantly reduced compared to that in non-polymer solution due to AS-HF partitioning into the CND-rich phase. In contrast, AS-LF grade of HPMC-AS has minimal effect on the amorphous solubility. The size of colloidal CND-rich droplets formed in the CND-supersaturated solution was less than 100 nm in the presence of AS-HF, while 200-450 nm in the presence of AS-LF. When the CND concentrations were near the amorphous solubility, CND membrane flux was reduced in the presence of AS-HF due to the decrease in the amorphous solubility of CND. However, the CND flux increased with the increase in CND-rich droplets, especially in the AS-HF solution. The size reduction of the CND-rich droplets led to their effective diffusion into the unstirred water layer, enhancing CND flux. In higher CND concentration regions, the CND flux became higher in the AS-HF solution than in the AS-LF solution. Thus, it is essential to elucidate the drug concentration-dependent impact of the colloidal drug-rich droplets on the drug absorption performance to optimize supersaturating formulations.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Shiryu Takemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
3
|
Ueda K, Moseson DE, Taylor LS. Amorphous solubility advantage: Theoretical considerations, experimental methods, and contemporary relevance. J Pharm Sci 2025; 114:18-39. [PMID: 39222748 DOI: 10.1016/j.xphs.2024.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Twenty-five years ago, Hancock and Parks asked a provocative question: "what is the true solubility advantage for amorphous pharmaceuticals?" Difficulties in determining the amorphous solubility have since been overcome due to significant advances in theoretical understanding and experimental methods. The amorphous solubility is now understood to be the concentration after the drug undergoes liquid-liquid or liquid-glass phase separation, forming a water-saturated drug-rich phase in metastable equilibrium with an aqueous phase containing molecularly dissolved drug. While crystalline solubility is an essential parameter impacting the absorption of crystalline drug formulations, amorphous solubility is a vital factor for considering absorption from supersaturating formulations. However, the amorphous solubility of drugs is complex, especially in the presence of formulation additives and gastrointestinal components, and concentration-based measurements may not indicate the maximum drug thermodynamic activity. This review discusses the concept of the amorphous solubility advantage, including a historical perspective, theoretical considerations, experimental methods for amorphous solubility measurement, and the contribution of supersaturation and amorphous solubility to drug absorption. Leveraging amorphous solubility and understanding the associated physicochemical principles can lead to more effective development strategies for poorly water-soluble drugs, ultimately benefiting therapeutic outcomes.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Dana E Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, CT 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
4
|
Yang DH, Najafian S, Chaudhuri B, Li N. The Particle Drifting Effect: A Combined Function of Colloidal and Drug Properties. Mol Pharm 2024; 21:5510-5528. [PMID: 39332024 DOI: 10.1021/acs.molpharmaceut.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The particle drifting effect, where nanosized colloidal drug particles overcome the diffusional resistance of the aqueous boundary layer adjacent to the intestinal wall and increase drug absorption rates, is drawing increasing attention in pharmaceutical research. However, mechanistic understanding and accurate prediction of the particle drifting effect remain lacking. In this study, we systematically evaluated the extent of the particle drifting effect affected by drug and colloidal properties, including the size, number, and type of the moving species using biphasic diffusion experiments combined with computational fluid dynamics simulations and mass transport analyses. The results showed that the particle drifting effect is a sequential reaction of particle dissolution/dissociation in the diffusional boundary layer, followed by absorption of the free drug. Therefore, factors affecting the rate-limiting step, which can be either process or both under different circumstances, alter the particle drifting effect. Experimental results also agree with the theory that the particle dissolution rate is dependent on particle size, concentration, and drug solubility. In addition, rapid bile micelle dissociation and bile salt absorption facilitated drug absorption by the particle drifting effect. Our findings explain the highly dynamic nature of the particle drifting effect and will contribute to rational formulation development and better bioavailability prediction for formulations containing colloidal particles.
Collapse
Affiliation(s)
- Da Hye Yang
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| | - Saeed Najafian
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269, United States
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269, United States
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
- Department of Chemical & Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Pepin X, Arora S, Borges L, Cano-Vega M, Carducci T, Chatterjee P, Chen G, Cristofoletti R, Dallmann A, Delvadia P, Dressman J, Fotaki N, Gray E, Heimbach T, Holte Ø, Kijima S, Kotzagiorgis E, Lennernäs H, Lindahl A, Loebenberg R, Mackie C, Malamatari M, McAllister M, Mitra A, Moody R, Mudie D, Musuamba Tshinanu F, Polli JE, Rege B, Ren X, Rullo G, Scherholz M, Song I, Stillhart C, Suarez-Sharp S, Tannergren C, Tsakalozou E, Veerasingham S, Wagner C, Seo P. Parameterization of Physiologically Based Biopharmaceutics Models: Workshop Summary Report. Mol Pharm 2024; 21:3697-3731. [PMID: 38946085 PMCID: PMC11304397 DOI: 10.1021/acs.molpharmaceut.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.
Collapse
Affiliation(s)
- Xavier Pepin
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Sumit Arora
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Luiza Borges
- ANVISA, SIA Trecho 5́, Guara, Brasília, Federal District 71205-050, Brazil
| | - Mario Cano-Vega
- Drug
Product Technologies, Amgen Inc., Thousand Oaks, California 91320-1799, United
States
| | - Tessa Carducci
- Analytical
Commercialization Technology, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Parnali Chatterjee
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Grace Chen
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Rodrigo Cristofoletti
- College
of Pharmacy, University of Florida, 6550 Sanger Rd., Orlando, Florida 32827, United States
| | - André Dallmann
- Bayer
HealthCare SAS, 59000 Lille, France, on behalf of Bayer
AG, Pharmacometrics/Modeling and Simulation, Systems Pharmacology
& Medicine, PBPK, Leverkusen, Germany
| | - Poonam Delvadia
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Nikoletta Fotaki
- University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Elizabeth Gray
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Tycho Heimbach
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Øyvind Holte
- Norwegian Medical Products Agency, Oslo 0213, Norway
| | - Shinichi Kijima
- Office
of New Drug V, Pharmaceuticals and Medical
Devices Agency (PMDA), Tokyo 100-0013, Japan
| | - Evangelos Kotzagiorgis
- European Medicines Agency (EMA), Domenico Scarlattilaan 6, Amsterdam 1083 HS, The Netherlands
| | - Hans Lennernäs
- Translational
Drug Discovery and Development, Department of Pharmaceutical Bioscience, Uppsala University, Uppsala 751 05, Sweden
| | | | - Raimar Loebenberg
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmontonton T6G 2E1, Canada
| | - Claire Mackie
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Maria Malamatari
- Medicines & Healthcare Products Regulatory Agency, 10 S Colonnade, London SW1W 9SZ, United Kingdom
| | - Mark McAllister
- Global
Biopharmaceutics, Drug Product Design, Pfizer, Sandwich CT13 9NJ, United Kingdom
| | - Amitava Mitra
- Clinical
Pharmacology, Kura Oncology Inc., Boston, Massachusetts 02210, United States
| | - Rebecca Moody
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Deanna Mudie
- Global
Research and Development, Small Molecules, Lonza, 63045 NE Corporate
Pl., Bend, Oregon 97701, United States
| | - Flora Musuamba Tshinanu
- Belgian Federal Agency for Medicines and Health Products, Galileelaan 5/03, Brussel 1210, Belgium
| | - James E. Polli
- School
of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhagwant Rege
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Xiaojun Ren
- PK
Sciences/Translational Medicine, BioMedical Research, Novartis, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Gregory Rullo
- Regulatory
CMC, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Megerle Scherholz
- Pharmaceutical
Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Ivy Song
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Cordula Stillhart
- Pharmaceutical
R&D, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Sandra Suarez-Sharp
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Christer Tannergren
- Biopharmaceutics
Science, New Modalities & Parenteral Product Development, Pharmaceutical
Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - Eleftheria Tsakalozou
- Division
of Quantitative Methods and Modeling, Office of Research and Standards,
Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20903-1058, United
States
| | - Shereeni Veerasingham
- Pharmaceutical
Drugs Directorate (PDD), Health Canada, 1600 Scott St., Ottawa K1A 0K9, Canada
| | - Christian Wagner
- Global
Drug Product Development, Global CMC Development, the Healthcare Business of Merck KGaA, Darmstadt D-64293, Germany
| | - Paul Seo
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| |
Collapse
|
6
|
Singh N, Chakravarti R, Das A, Gupta S, Ghosh D, Datta P. A Lipophilic Salt Form to Enhance the Lipid Solubility and Certain Biopharmaceutical Properties of Lapatinib. Mol Pharm 2024; 21:3921-3935. [PMID: 38935681 DOI: 10.1021/acs.molpharmaceut.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Lapatinib (LTP) commercially available as lapatinib ditosylate (LTP-DTS) salt is the only drug approved for the treatment of HER-positive metastatic breast cancer. A low and pH-dependent solubility results in poor and variable oral bioavailability, thus driving significant interest in molecular modification and formulation strategies of the drug. Furthermore, due to very high crystallinity, LTP and LTP-DTS have low solubility in lipid excipients, making it difficult to be delivered by lipid-based carrier systems. Thus, the present work reports a new salt form of LTP with a docusate counterion to enhance the pharmaceutical properties of the drug (LTP-DOC). NMR spectra showed a downfield shift of the methylene singlet proton from 3.83 and 4.41 ppm, indicating a lowering of electron density on the adjacent nitrogen atom and confirming the formation of amine-sulfonyl salt through the specified basic nitrogen center located adjacent to the furan ring. PXRD diffractograms of LTP-DOC indicated a reduced crystallinity of the prepared salt. The dissolution, equilibrium solubility, lipid excipient solubility, partitioning coefficient, distribution coefficient, tabletability, and in vitro cytotoxicity of the lipophilic salt of LTP were investigated. The equilibrium solubility data showed that LTP-DOC possesses a pH-independent solubility profile in the pH range of 3.5 to 7.4 with a 3.14 times higher permeability coefficient than commercial ditosylate salt. Furthermore, the prepared LTP-DOC salts showed twice higher log P than the free base and 8 times higher than LTP-DTS. The prepared LTP-DOC was found to have 4- to 9-fold higher solubility in lipid excipients like Capmul MCM C8 and Maisine CC compared to the ditosylate salt. The LTP-DOC salt was tabletable and showed approximately 1.2 times lower dissolution than commercial ditosylate salt, indicating extended-release behavior. A cytotoxicity study of LTP-DOC salt showed an approximately 2.5 times lower IC50 value than the LTP-free base and 1.7 times lower than commercial ditosylate salt with an approximately 3 times higher selectivity index. The investigations strongly indicate a high translational potential of the prepared salt form in maintaining solubility-lipophilicity interplay, enhancing the drug's bioavailability, and developing lipidic formulations.
Collapse
Affiliation(s)
- Nidhi Singh
- Polymer-based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| | - Arka Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Sreya Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| | - Pallab Datta
- Polymer-based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Kolkata, Jadavpur 700032, India
| |
Collapse
|
7
|
Jain KMH, Hou HH, Siegel RA. An Artificial Gut/Absorption Simulator: Understanding the Impact of Absorption on In Vitro Dissolution, Speciation, and Precipitation of Amorphous Solid Dispersions. Mol Pharm 2024; 21:1884-1899. [PMID: 38512389 DOI: 10.1021/acs.molpharmaceut.3c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Upon dissolution, amorphous solid dispersions (ASDs) of poorly water-soluble compounds can generate supersaturated solutions consisting of bound and free drug species that are in dynamic equilibrium with each other. Only free drug is available for absorption. Drug species bound to bile micelles, polymer excipients, and amorphous and crystalline precipitate can reduce the drug solute's activity to permeate, but they can also serve as reservoirs to replenish free drug in solution lost to absorption. However, with multiple processes of dissolution, absorption, and speciation occurring simultaneously, it may become challenging to understand which processes lead to an increase or decrease in drug solution concentration. Closed, nonsink dissolution testing methods used routinely, in the absence of drug removal, allow only for static equilibrium to exist and obscure the impact of each drug species on absorption. An artificial gut simulator (AGS) introduced recently consists of a hollow fiber-based absorption module and allows mass transfer of the drug from the dissolution media at a physiological rate after tuning the operating parameters. In the present work, ASDs of varying drug loadings were prepared with a BCS-II model compound, ketoconazole (KTZ), and hypromellose acetate succinate (HPMCAS) polymer. Simultaneous dissolution and absorption testing of the ASDs was conducted with the AGS, and simple analytical techniques were utilized to elucidate the impact of bound drug species on absorption. In all cases, a lower amount of crystalline precipitate was formed in the presence of absorption relative to the nonsink dissolution "control". However, formation of HPMCAS-bound drug species and crystalline precipitate significantly reduced KTZ absorption. Moreover, at high drug loading, inclusion of an absorption module was shown to enhance ASD dissolution. The rank ordering of the ASDs with respect to dissolution was significantly different when nonsink dissolution versus AGS was used, and this discrepancy could be mechanistically elucidated by understanding drug dissolution and speciation in the presence of absorption.
Collapse
Affiliation(s)
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, California 94080, United States
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Yoshikawa E, Ueda K, Hakata R, Higashi K, Moribe K. Quantitative Investigation of Intestinal Drug Absorption Enhancement by Drug-Rich Nanodroplets Generated via Liquid-Liquid Phase Separation. Mol Pharm 2024; 21:1745-1755. [PMID: 38501717 DOI: 10.1021/acs.molpharmaceut.3c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Drug-rich droplets formed through liquid-liquid phase separation (LLPS) have the potential to enhance the oral absorption of drugs. This can be attributed to the diffusion of these droplets into the unstirred water layer (UWL) of the gastrointestinal tract and their reservoir effects on maintaining drug supersaturation. However, a quantitative understanding of the effect of drug-rich droplets on intestinal drug absorption is still lacking. In this study, the enhancement of intestinal drug absorption through the formation of drug-rich droplets was quantitatively evaluated on a mechanistic basis. To obtain fenofibrate (FFB)-rich droplets, an amorphous solid dispersion (ASD) of FFB/hypromellose (HPMC) was dispersed in an aqueous medium. Physicochemical characterization confirmed the presence of nanosized FFB-rich droplets in the supercooled liquid state within the FFB/HPMC ASD dispersion. An in situ single-pass intestinal perfusion (SPIP) assay in rats demonstrated that increased quantities of FFB-rich nanodroplets enhanced the intestinal absorption of FFB. The effective diffusion of FFB-rich nanodroplets through UWL would partially contribute to the improved FFB absorption. Additionally, confocal laser scanning microscopy (CLSM) of cross sections of the rat intestine after the administration of fluorescently labeled FFB-rich nanodroplets showed that these nanodroplets were directly taken up by small intestinal epithelial cells. Therefore, the direct uptake of drug-rich nanodroplets by the small intestine is a potential mechanism for improving FFB absorption in the intestine. To quantitatively evaluate the impact of FFB-rich droplets on the FFB absorption enhancement, we determined the apparent permeabilities of the FFB-rich nanodroplets and dissolved FFB based on the SPIP results. The apparent permeability of the FFB-rich nanodroplets was 110-130 times lower than that of dissolved FFB. However, when the FFB-rich nanodroplet concentration was several hundred times higher than that of dissolved FFB, the FFB-rich nanodroplets contributed significantly to FFB absorption improvement. The present study highlights that drug-rich nanodroplets play a direct role in enhancing drug absorption in the gastrointestinal tract, indicating their potential for further improvement of oral absorption from ASD formulations.
Collapse
Affiliation(s)
- Etsushi Yoshikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Rei Hakata
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
9
|
Okada K, Ono T, Hayashi Y, Kumada S, Onuki Y. Use of Time-Domain NMR for 1H T 1 Relaxation Measurement and Fitting Analysis in Homogeneity Evaluation of Amorphous Solid Dispersion. J Pharm Sci 2024; 113:680-687. [PMID: 37659719 DOI: 10.1016/j.xphs.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
This study examined the usefulness of 1H T1 relaxation measurements for evaluating the homogeneity of amorphous solid dispersion (ASD). Indomethacin and polyvinylpyrrolidone were used to prepare two kinds of ASDs. One was inhomogeneous ASD (ASDmelt) prepared by a melt-quenching method, and the other was homogeneous ASD (ASDsolvent) prepared by a solvent evaporation method. The T1 relaxation was measured by the time-domain NMR (TD-NMR) technique using a low-field NMR system. Curve-fitting analysis of T1 relaxation plots was conducted using the Akaike information criterion. This fitting analysis revealed that the T1 relaxation of ASDmelt and ASDsolvent was biphasic and monophasic, respectively. ASDmelt and ASDsolvent were inhomogeneous and homogeneous on a nanometer scale, respectively, considering the spin diffusion of 1H nuclei. These T1 results were consistent with the Raman mapping of ASDs. From the fitting analysis of 1H T1 relaxation, we conclude that TD-NMR is a promising technique for evaluating ASD homogeneity.
Collapse
Affiliation(s)
- Kotaro Okada
- Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Takashi Ono
- Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan; Formulation Development Department, Development & Planning Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1 Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan
| | - Yoshihiro Hayashi
- Formulation Development Department, Development & Planning Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1 Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan
| | - Shungo Kumada
- Formulation Development Department, Development & Planning Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1 Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan
| | - Yoshinori Onuki
- Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| |
Collapse
|
10
|
Schlauersbach J, Werthmüller D, Harlacher C, Galli B, Hanio S, Lenz B, Endres S, Pöppler AC, Scherf-Clavel O, Meinel L. Harnessing Bile for Drug Absorption through Rational Excipient Selection. Mol Pharm 2023; 20:3864-3875. [PMID: 37406305 DOI: 10.1021/acs.molpharmaceut.2c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bile solubilization and apparent solubility at resorption sites critically affect the bioavailability of orally administered and poorly water-soluble drugs. Therefore, identification of drug-bile interaction may critically determine the overall formulation success. For the case of the drug candidate naporafenib, drug in solution at phase separation onset significantly improved with polyethylene glycol-40 hydrogenated castor oil (RH40) and amino methacrylate copolymer (Eudragit E) but not with hydroxypropyl cellulose (HPC) in both phosphate-buffered saline (PBS) and PBS supplemented with bile components. Naporafenib interacted with bile as determined by 1H and 2D 1H-1H nuclear magnetic resonance spectroscopy and so did Eudragit E and RH40 but not HPC. Flux across artificial membranes was reduced in the presence of Eudragit E. RH40 reduced the naporafenib supersaturation duration. HPC on the other side stabilized naporafenib's supersaturation and did not substantially impact flux. These insights on bile interaction correlated with pharmacokinetics (PK) in beagle dogs. HPC preserved naporafenib bile solubilization in contrast to Eudragit E and RH40, resulting in favorable PK.
Collapse
Affiliation(s)
- Jonas Schlauersbach
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | | | | | - Bruno Galli
- Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland
| | - Simon Hanio
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Bettina Lenz
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Sebastian Endres
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Oliver Scherf-Clavel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Biology (HIRI), Josef-Schneider-Strasse 2/D15, DE-97080 Wuerzburg, Germany
| |
Collapse
|
11
|
Wang Z, Lou H, Dening TJ, Hageman MJ. Biorelevant Dissolution Method Considerations for the Appropriate Evaluation of Amorphous Solid Dispersions: are Two Stages Necessary? J Pharm Sci 2023; 112:1089-1107. [PMID: 36529266 DOI: 10.1016/j.xphs.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Biorelevant dissolution testing has been widely used to better understand a drug or formulation's behavior in the human gastrointestinal (GI) tract. The successful evaluation of biorelevant dissolution behavior requires recognizing the importance of utilizing suitable biorelevant media in conjunction with an appropriate dissolution method, especially for supersaturating drug delivery systems, such as amorphous solid dispersions (ASDs). However, most conventional biorelevant dissolution testing methods are not able to accurately reflect the dissolution, supersaturation, and precipitation tendencies of a drug or formulation, which could misinform ASD formulation screening and optimization. In this study, we developed a single compartment 2-stage pH-shift dissolution testing method to simulate the changes in pH, media composition, and transit time in the GI tract, and results were compared against the conventional single compartment 1-stage dissolution method. Nine model drugs were selected based on their ionization properties (i.e. acid, base or neutral) and precipitation tendency (i.e. moderate or slow crystallizer). The dissolution results confirmed that 2-stage pH-shift dissolution is the preferred biorelevant dissolution method to assess non-ionized weak base (nifedipine) and neutral (griseofulvin) compounds exhibiting a moderate precipitation rate from solution when formulated as ASDs. Finally, we designed a flowchart guidance for the appropriate biorelevant dissolution performance characterization of different categories of ASD formulations.
Collapse
Affiliation(s)
- Zhaoxian Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Hao Lou
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, McCollum Laboratories, The University of Kansas. Lawrence, Kansas 66047, USA
| | - Tahnee J Dening
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, McCollum Laboratories, The University of Kansas. Lawrence, Kansas 66047, USA.
| |
Collapse
|
12
|
Andrews GP, Qian K, Jacobs E, Jones DS, Tian Y. High drug loading nanosized amorphous solid dispersion (NASD) with enhanced in vitro solubility and permeability: Benchmarking conventional ASD. Int J Pharm 2023; 632:122551. [PMID: 36581107 DOI: 10.1016/j.ijpharm.2022.122551] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Through liquid-liquid phase separation (LLPS), it is possible to generate drug-rich nanoparticles during the dissolution of conventional amorphous solid dispersions (ASDs). These self-generated nanoparticles may improve the oral absorption of poorly water-soluble drugs by enhancing the drug's apparent solubility and effective membrane permeability. However, due to the high concentration threshold required for LLPS, conventional ASDs that can consistently generate drug-rich nanoparticles during dissolution are rare. More importantly, the quality of these meta-stable drug-rich nanoparticles is hard to control during dissolution, leading to inconsistency in formulation performances. This work has described a continuous twin-screw extrusion process capable of producing nanosized ASD (NASD) formulations that can offer better solubility and permeability enhancements over conventional ASD formulations. Two polymeric carriers, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), with a model hydrophobic drug celecoxib (BCS II), were formulated into both ASD and NASD formulations. Compared to the conventional ASD formulation, the prefabricated NASD (sizes ranging between 40 and 200 nm) embedded within a polyol matrix can be rapidly dispersed into a nanoparticle suspension in the presence of aqueous media. The resulting NASDs achieved drug loadings up to 80 % w/w and a maximum of 98 % encapsulation efficiency. Because of the TSE platform's high drug-loading capacity and high scalability, the developed method may be useful for continuously producing personalized nanomedicines.
Collapse
Affiliation(s)
- Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Kaijie Qian
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Esther Jacobs
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - David S Jones
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Yiwei Tian
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom.
| |
Collapse
|
13
|
Zhao P, Han W, Shu Y, Li M, Sun Y, Sui X, Liu B, Tian B, Liu Y, Fu Q. Liquid-liquid phase separation drug aggregate: Merit for oral delivery of amorphous solid dispersions. J Control Release 2023; 353:42-50. [PMID: 36414193 DOI: 10.1016/j.jconrel.2022.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
As a promising strategy, amorphous solid dispersion has been extensively employed in improving the oral bioavailability of insoluble drugs. Despite the numerous advantages, the problems associated with supersaturation stability limit its further application. Recently, the formation and stability of the liquid-liquid phase separation drug aggregate (LLPS-DA) have been found to be vital for supersaturation maintenance. An in-depth review of LLPS-DA was required to further explore the supersaturation maintenance mechanism in vivo. Hence, this study aimed to present a short review to introduce the LLPS-DA, highlight the in vivo advantages for oral administration, and discuss the prospects to help understand the in vivo behavior of LLPS-DA.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wen Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yecheng Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yichi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- Department of Pharmaceutics, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
14
|
Fukiage M, Suzuki K, Matsuda M, Nishida Y, Oikawa M, Fujita T, Kawakami K. Inhibition of Liquid-Liquid Phase Separation for Breaking the Solubility Barrier of Amorphous Solid Dispersions to Improve Oral Absorption of Naftopidil. Pharmaceutics 2022; 14:pharmaceutics14122664. [PMID: 36559158 PMCID: PMC9782492 DOI: 10.3390/pharmaceutics14122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most promising technologies for improving the oral absorption of poorly soluble compounds. In this study, naftopidil (NFT) ASDs were prepared using vinylpyrrolidone-vinyl acetate copolymer (PVPVA), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and poly(methacrylic acid-co-methyl methacrylate) L100-55 (Eudragit) to improve the dissolution and oral absorption behaviors of NFT. During the dissolution process of ASD, liquid-liquid phase separation (LLPS) may occur when certain requirements are met for providing a maximum quasi-stable concentration achievable by amorphization. The occurrence of LLPS was confirmed in the presence of PVPVA and HPMCAS; however, Eudragit inhibited LLPS owing to its molecular interaction with NFT. Although the dissolution behavior of the Eudragit ASD was found to be markedly poorer than that of other ASDs, it offered the best oral absorption in rats. The findings of the current study highlight the possibility for improving the oral absorption of poorly soluble drugs by this ASD, which should be eliminated from candidate formulations based on the conventional in vitro tests.
Collapse
Affiliation(s)
- Masafumi Fukiage
- Pharmaceutical R&D, Ono Pharmaceutical Co., Ltd., 3-3-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Osaka, Japan
- Correspondence: (M.F.); (K.K.); Tel.: +81-75-961-1151 (M.F.); Tel.: +81-29-860-4424 (K.K.)
| | - Kyosuke Suzuki
- Pharmaceutical and ADMET Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Maki Matsuda
- Research & Development Division, Towa Pharmaceutical Co., Ltd., 134, Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Kyoto, Japan
| | - Yohei Nishida
- Technology Research & Development, Sumitomo Pharma Co., Ltd., 33-94, Enoki-cho, Suita, Osaka 564-0053, Osaka, Japan
| | - Michinori Oikawa
- Pharmaceutical Development Department, Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Osaka, Japan
| | - Takuya Fujita
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Kyoto 525-8577, Shiga, Japan
| | - Kohsaku Kawakami
- Research Center for Functionals Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Correspondence: (M.F.); (K.K.); Tel.: +81-75-961-1151 (M.F.); Tel.: +81-29-860-4424 (K.K.)
| |
Collapse
|
15
|
An Artificial Gut/Absorption Simulator: Simultaneous Evaluation of Desupersaturation and Absorption from Ketoconazole Supersaturated Solutions. J Pharm Sci 2022:S0022-3549(22)00418-X. [PMID: 36162494 DOI: 10.1016/j.xphs.2022.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
For supersaturating formulations of BCS-II compounds, which by definition have high intestinal permeability, a closed USP apparatus does not provide the necessary absorptive conditions during dissolution. To address this, an artificial gut simulator (AGS) has been constructed consisting of a 2.5 mL donor compartment in which a hollow fiber-based absorption module is suspended. Drug from donor diffuses across the hollow fiber membrane to be absorbed by the continuously flowing intraluminal receiver fluid. The membrane surface area and intraluminal fluid flow rate are tuned to obtain the physiologically observed absorption rate constant for a weakly basic, poorly water-soluble model compound, ketoconazole (KTZ). Supersaturated solutions of KTZ were generated in the donor in pH 6.5 phosphate buffer by the pH-shift method in the absence (closed system, control) and presence (open system, biorelevant) of an optimally or suboptimally tuned absorption module. Drug concentrations in the donor and intraluminal fluids were determined by in-line UV spectroscopy. The presence of an absorptive sink reduced the supersaturated solution's crystallization propensity, more so in the case of the optimally tuned AGS. This study demonstrates the significance of simulating absorption of drug at a physiological rate during dissolution studies, especially to predict the performance of formulations of BCS-II drugs.
Collapse
|
16
|
Abstract
![]()
Formulations containing nanosized drug particles such
as nanocrystals
and nanosized amorphous drug aggregates recently came into light as
promising strategies to improve the bioavailability of poorly soluble
drugs. However, the increased solubility due to the reduction in particle
size cannot adequately explain the enhanced bioavailability. In this
study, the mechanisms and extent of enhanced passive permeation by
drug particles were investigated using atazanavir, lopinavir, and
clotrimazole as model drugs. Franz diffusion cells with lipid-infused
membranes were utilized to evaluate transmembrane flux. The impact
of stirring rate, receiver buffer condition, and particle size was
investigated, and mass transport analyses were conducted to calculate
transmembrane flux. Flux enhancement by particles was found to be
dependent on particle size as well as the partitioning behavior of
the drug between the receiver solution and the membrane, which is
determined by both the drug and buffer used. A flux plateau was observed
at high particle concentrations above amorphous solubility, confirming
that mass transfer of amorphous drug particles from the aqueous solution
to the membrane occurs only through the molecularly dissolved drug.
Mass transport models were used to calculate flux enhancement by particles
for various drugs at different conditions. Good agreements were obtained
between experimental and predicted values. These results should contribute
to improved bioavailability prediction of nanosized drug particles
and better design of formulations containing colloidal drug particles.
Collapse
Affiliation(s)
- Akshay Narula
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269, United States
| |
Collapse
|
17
|
Sabra R, Narula A, Taylor LS, Li N. Comparisons of in Vitro Models to Evaluate the Membrane Permeability of Amorphous Drug Nanoparticles. Mol Pharm 2022; 19:3412-3428. [PMID: 35972995 DOI: 10.1021/acs.molpharmaceut.2c00565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneous formation of amorphous drug nanoparticles following the release of a drug from a supersaturating formulation is gaining increasing attention due to their potential contribution to increased oral bioavailability. The formation of nanosized drug particles also has considerable implications for the interpretation of in vitro and in vivo data. However, the membrane transport properties of these drug particles remain less well understood. Herein, the membrane permeation of nanosized amorphous drug particles of a model drug atazanavir was evaluated using different artificial membrane-based, cell-based, and animal tissue-based models. Results showed that flux enhancement by particles was different for the various systems used. Generally, good agreement was obtained among experiments performed using the same apparatus with different model membranes, with the exception of the Madin-Darby canine kidney cell monolayer and the Long-Evans rat intestine tissue, which showed lower flux enhancements. Franz cell-based models showed slightly higher flux enhancements by particles compared to Transwell and intestinal tissue sac models. Mass transport analysis suggested that the extent of flux enhancement by particles is dependent on the geometry of the apparatus as well as the properties of the membrane and buffer used, whereas the flux plateau concentration is dependent on the unstirred water later (UWL) asymmetry. These results highlight the complexity in characterizing the permeability advantage of these nonmembrane permeable drug particles and suggest that caution should be used in selecting the appropriate in vitro model to evaluate the overall permeability of colloidal drug particles.
Collapse
Affiliation(s)
- Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| | - Akshay Narula
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269, United States
| |
Collapse
|
18
|
Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review. Eur J Pharm Sci 2021; 170:106098. [PMID: 34954051 DOI: 10.1016/j.ejps.2021.106098] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
The absorption of orally administered drug products is a complex, dynamic process, dependent on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but in vitro and ex vivo tools provide initial screening approaches are important tools for direct assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
Collapse
|
19
|
Lu X, Li M, Arce FA, Ling J, Setiawan N, Wang Y, Shi X, Campbell HR, Nethercott MJ, Xu W, Munson EJ, Marsac PJ, Su Y. Mechanistic Investigation of Drug Supersaturation in the Presence of Polysorbates as Solubilizing Additives by Solution Nuclear Magnetic Resonance Spectroscopy. Mol Pharm 2021; 18:4310-4321. [PMID: 34761934 DOI: 10.1021/acs.molpharmaceut.1c00477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of solubilizing additives has historically been an attractive approach to address the ever-growing proportion of poorly water-soluble drug (PWSD) compounds within the modern drug discovery pipeline. Lipid-formulations, and more specifically micelle formulations, have garnered particular interest because of their simplicity, size, scalability, and avoidance of solid-state limitations. Although micelle formulations have been widely utilized, the molecular mechanism of drug solubilization in surfactant micelles is still poorly understood. In this study, a series of modern nuclear magnetic resonance (NMR) methods are utilized to gain a molecular-level understanding of intermolecular interactions and kinetics in a model system. This approach enabled the understanding of how a PWSD, 17β-Estradiol (E2), solubilizes within a nonionic micelle system composed of polysorbate 80 (PS80). Based on one-dimensional (1D) 1H chemical shift differences of E2 in PS80 solutions, as well as intermolecular correlations established from 1D selective nuclear Overhauser effect (NOE) and two-dimensional NOE spectroscopy experiments, E2 was found to accumulate within the palisade layer of PS80 micelles. A potential hydrogen-bonding interaction between a hydroxyl group of E2 and a carbonyl group of PS80 alkane chains may allow for stabilizing E2-PS80 mixed micelles. Diffusion and relaxation NMR analysis and particle size measurements using dynamic light scattering indicate a slight increase in the micellar size with increasing degrees of supersaturation, resulting in slower mobility of the drug molecule. Based on these structural findings, a theoretical orientation model of E2 molecules with PS80 molecules was developed and validated by computational docking simulations.
Collapse
Affiliation(s)
- Xingyu Lu
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Mingyue Li
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States
| | - Freddy A Arce
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jing Ling
- Pharmaceutical Sciences, Merck & Co., South San Francisco, California 94080, United States
| | - Nico Setiawan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Xiaohuo Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Heather R Campbell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | - Wei Xu
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States
| | - Eric J Munson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Patrick J Marsac
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Rahway, New Jersey 07065, United States.,Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
El Sayed M, Alhalaweh A, Bergström CAS. Impact of Simulated Intestinal Fluids on Dissolution, Solution Chemistry, and Membrane Transport of Amorphous Multidrug Formulations. Mol Pharm 2021; 18:4079-4089. [PMID: 34613730 PMCID: PMC8564758 DOI: 10.1021/acs.molpharmaceut.1c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The solution behavior
and membrane transport of multidrug formulations
were herein investigated in a biorelevant medium simulating fasted
conditions. Amorphous multidrug formulations were prepared by the
solvent evaporation method. Combinations of atazanavir (ATV) and ritonavir
(RTV) and felodipine (FDN) and indapamide (IPM) were prepared and
stabilized by a polymer for studying their dissolution (under non-sink
conditions) and membrane transport in fasted state simulated intestinal
fluid (FaSSIF). The micellar solubilization by FaSSIF enhanced the
amorphous solubility of the drugs to different extents. Similar to
buffer, the maximum achievable concentration of drugs in combination
was reduced in FaSSIF, but the extent of reduction was affected by
the degree of FaSSIF solubilization. Dissolution studies of ATV and
IPM revealed that the amorphous solubility of these two drugs was
not affected by FaSSIF solubilization. In contrast, RTV was significantly
affected by FaSSIF solubilization with a 30% reduction in the maximum
achievable concentration upon combination to ATV, compared to 50%
reduction in buffer. This positive deviation by FaSSIF solubilization
was not reflected in the mass transport–time profiles. Interestingly,
FDN concentrations remain constant until the amount of IPM added was
over 1000 μg/mL. No decrease in the membrane transport of FDN
was observed for a 1:1 M ratio of FDN-IPM combination. This study
demonstrates the importance of studying amorphous multidrug formulations
under physiologically relevant conditions to obtain insights into
the performance of these formulations after oral administration.
Collapse
Affiliation(s)
- Mira El Sayed
- Department of Pharmacy, Biomedical Centre, Uppsala University, P.O. Box 580, Uppsala SE-751 23, Sweden.,Recipharm OT Chemistry AB, Uppsala SE-754 50, Sweden
| | | | - Christel A S Bergström
- Department of Pharmacy, Biomedical Centre, Uppsala University, P.O. Box 580, Uppsala SE-751 23, Sweden
| |
Collapse
|
21
|
Iyer R, Petrovska Jovanovska V, Berginc K, Jaklič M, Fabiani F, Harlacher C, Huzjak T, Sanchez-Felix MV. Amorphous Solid Dispersions (ASDs): The Influence of Material Properties, Manufacturing Processes and Analytical Technologies in Drug Product Development. Pharmaceutics 2021; 13:1682. [PMID: 34683975 PMCID: PMC8540358 DOI: 10.3390/pharmaceutics13101682] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Poorly water-soluble drugs pose a significant challenge to developability due to poor oral absorption leading to poor bioavailability. Several approaches exist that improve the oral absorption of such compounds by enhancing the aqueous solubility and/or dissolution rate of the drug. These include chemical modifications such as salts, co-crystals or prodrugs and physical modifications such as complexation, nanocrystals or conversion to amorphous form. Among these formulation strategies, the conversion to amorphous form has been successfully deployed across the pharmaceutical industry, accounting for approximately 30% of the marketed products that require solubility enhancement and making it the most frequently used technology from 2000 to 2020. This article discusses the underlying scientific theory and influence of the active compound, the material properties and manufacturing processes on the selection and design of amorphous solid dispersion (ASD) products as marketed products. Recent advances in the analytical tools to characterize ASDs stability and ability to be processed into suitable, patient-centric dosage forms are also described. The unmet need and regulatory path for the development of novel ASD polymers is finally discussed, including a description of the experimental data that can be used to establish if a new polymer offers sufficient differentiation from the established polymers to warrant advancement.
Collapse
Affiliation(s)
- Raman Iyer
- Technical Research and Development, c/o Global Drug Development, Novartis Pharmaceuticals Corp., One Health Plaza, East Hanover, NJ 07936, USA
| | - Vesna Petrovska Jovanovska
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Katja Berginc
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Miha Jaklič
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Flavio Fabiani
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Cornelius Harlacher
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Tilen Huzjak
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | | |
Collapse
|
22
|
Ramachandran G, Sudheesh MS. Role of Permeability on the Biopredictive Dissolution of Amorphous Solid Dispersions. AAPS PharmSciTech 2021; 22:243. [PMID: 34595565 DOI: 10.1208/s12249-021-02125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
An ideal dissolution test for amorphous solid dispersions (ASDs) should reflect physicochemical, physiological, and hydrodynamic conditions which accurately represent in vivo dissolution. However, this is confounded by the evolution of different molecular and colloidal species during dissolution, generating a supersaturated state of the drug. The supersaturated state of a drug is thermodynamically unstable which drives the process of precipitation resulting in a loss of solubility advantage. Maintaining a supersaturated state of the drug with the help of precipitation inhibiting excipients is a key component in the design of ASDs. Therefore, a biopredictive dissolution test is critical for proper risk assessment during the development of an optimal ASD formulation. One of the overlooked components of biopredictive dissolution is the role of drug permeability. The kinetic changes in the phase behavior of a drug during dissolution of ASDs are influenced by drug permeability across a membrane. Conventionally, drug dissolution and permeation are analyzed separately although they occur simultaneously in vivo. The kinetic phase changes occurring during dissolution of ASDs can influence the thermodynamic activity and membrane flux of a drug. The present review evaluates the feasibility, predictability, and practicability of permeability/dissolution for the optimal development and risk assessment of ASD formulations.
Collapse
|
23
|
Yen CW, Kuhn R, Hu C, Zhang W, Chiang PC, Chen JZ, Hau J, Estevez A, Nagapudi K, Leung DH. Impact of surfactant selection and incorporation on in situ nanoparticle formation from amorphous solid dispersions. Int J Pharm 2021; 607:120980. [PMID: 34371147 DOI: 10.1016/j.ijpharm.2021.120980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 01/26/2023]
Abstract
Spray dried amorphous solid dispersions (ASDs) stand as one of the most effective formulation strategies to address issues of low aqueous solubility when developing new chemical entities.An emerging research topic focusing on the formation of amorphous nanoparticles or nanodroplets from ASD formulations has attracted attention recently. These ASD nanoparticlescan be highly beneficial and able to further increase oral bioavailability. The incorporation of surfactants in ASD formulations has been shown to facilitate the formation of these nanoparticles. Therefore, understanding the mechanism of surfactant-promoted nanoparticle formation becomes critical for the rational design of ASD formulations. This work demonstrated the importance of inclusion of the surfactant within the ASD composition for nanoparticle formation. In contrast, when a surfactant is added externally (e.g., by inclusion in the dosing vehicle), only a limited degree of nanoparticle formation was observed even at the optimized surfactant-to-drug ratios. A variety of different surfactants were also assessed for understanding their impact on ASD nanoparticle formation. The spray drying systems containing nonionic surfactants, Tween 80 and Vitamin E TPGS, produced higher amounts of in situ ASD nanoparticles when compared to an anionic surfactant, sodium lauryl sulfate (SLS). The ASD nanoparticles produced by the Genentech developmental compound, GDC-0334, were highly stable and retained their original particle size and amorphous feature for at least 18 h under biorelevant conditions. The high degree of nanoparticle formation from spray dried GDC-0334 containing Tween 80 combined with the superior physical stability of the nanoparticles also translated to enhanced in vivo performance in a rat pharmacokinetics study.
Collapse
Affiliation(s)
- Chun-Wan Yen
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert Kuhn
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Chloe Hu
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei Zhang
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Po-Chang Chiang
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jacob Z Chen
- Drug Metabolism and Pharmacokinetics, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jonathan Hau
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alberto Estevez
- Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dennis H Leung
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
24
|
Hate SS, Mosquera-Giraldo LI, Taylor LS. A Mechanistic Study of Drug Mass Transport from Supersaturated Solutions Across PAMPA Membranes. J Pharm Sci 2021; 111:102-115. [PMID: 34237298 DOI: 10.1016/j.xphs.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
There is an increasing shift from dissolution testing to dissolution-permeation testing of formulations during formulation development and this has led increasing application of permeability measurements using parallel artificial membrane permeability assay (PAMPA) membranes. However, there is a lack of thorough analysis of the impact of variabilities in the PAMPA setup on the mass flow rate outcomes, particularly for complex solubility-enabling formulations. In this study, we investigated the impact of amorphous drug-rich nanodroplets, formed in supersaturated solutions by liquid-liquid phase separation, on membrane transport by measuring mass flow rate across PAMPA membranes. In addition, we explored the impact of PAMPA variants such as lipid composition, hydrophobicity and pore size of the filter support, as well as receiver sink properties on membrane mass flow rates of solutions containing amorphous nanodroplets. Filter properties and lipid composition did not show a notable influence on the mass flow rates for lipophilic molecules, while a marked impact was observed for hydrophilic molecules. High sink conditions in the receiver compartment, arising from addition of micellar surfactant, altered the membrane integrity for lipid-impregnated hydrophilic membranes. In contrast, no such effect was observed for a hydrophobic filter support. Membrane integrity tests also suggested that monitoring water transport may be an improved approach over using Lucifer yellow. Furthermore, high sink conditions in the receiver compartment resulted in an increase in the overall mass flow rate. This was due to the effect of asymmetric conditions, generated across the membrane, on mass transport kinetics. Linearity between mass flow rate and donor concentration was observed until the donor concentration reached the amorphous solubility. Above the amorphous solubility, a gradual increase in mass flow rate was observed i.e., with an increasing number of nanodroplets in the solution. This was attributed to decrease in the permeability barrier across unstirred water layer due to reduction of the concentration gradient as nanodroplets dissolved to replenish absorbed drug. Observations made in this study provide insights into the mechanisms associated with mass transport of supersaturated solutions across PAMPA membranes, which are critical for improved evaluation of enabling formulations.
Collapse
Affiliation(s)
- Siddhi S Hate
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Laura I Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
25
|
Qian K, Stella L, Jones DS, Andrews GP, Du H, Tian Y. Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary or Intentional Goal in Oral Drug Delivery? Pharmaceutics 2021; 13:889. [PMID: 34203969 PMCID: PMC8232734 DOI: 10.3390/pharmaceutics13060889] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Among many methods to mitigate the solubility limitations of drug compounds, amorphous solid dispersion (ASD) is considered to be one of the most promising strategies to enhance the dissolution and bioavailability of poorly water-soluble drugs. The enhancement of ASD in the oral absorption of drugs has been mainly attributed to the high apparent drug solubility during the dissolution. In the last decade, with the implementations of new knowledge and advanced analytical techniques, a drug-rich transient metastable phase was frequently highlighted within the supersaturation stage of the ASD dissolution. The extended drug absorption and bioavailability enhancement may be attributed to the metastability of such drug-rich phases. In this paper, we have reviewed (i) the possible theory behind the formation and stabilization of such metastable drug-rich phases, with a focus on non-classical nucleation; (ii) the additional benefits of the ASD-induced drug-rich phases for bioavailability enhancements. It is envisaged that a greater understanding of the non-classical nucleation theory and its application on the ASD design might accelerate the drug product development process in the future.
Collapse
Affiliation(s)
- Kaijie Qian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Lorenzo Stella
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, 7–9 College Park E, Belfast BT7 1PS, UK;
- David Keir Building, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - David S. Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Gavin P. Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Huachuan Du
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL 60611, USA
| | - Yiwei Tian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| |
Collapse
|
26
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
27
|
Thakral NK, Meister E, Jankovsky C, Li L, Schwabe R, Luo L, Chen S. Prediction of in vivo supersaturation and precipitation of poorly water-soluble drugs: Achievements and aspirations. Int J Pharm 2021; 600:120505. [PMID: 33753162 DOI: 10.1016/j.ijpharm.2021.120505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
This review focuses on options available to a pharmaceutical scientist to predict in vivo supersaturation and precipitation of poorly water-soluble drugs. As no single device or system can simulate the complex gastrointestinal environment, a combination of appropriate in vitro tools may be utilized to get optimal predictive information. To address the empirical issues encountered during small-scale and full-scale in vitro predictive testing, theoretical background and relevant case studies are discussed. The practical considerations for selection of appropriate tools at various stages of drug development are recommended. Upcoming technologies that have potential to further reduce in vivo studies and expedite the drug development process are also discussed.
Collapse
Affiliation(s)
- Naveen K Thakral
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.
| | - Eva Meister
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States
| | - Corinne Jankovsky
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States
| | - Li Li
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4849 Calhoun Road, Houston, TX 77204, United States
| | - Robert Schwabe
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States
| | - Laibin Luo
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States
| | - Shirlynn Chen
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States
| |
Collapse
|
28
|
Ashwathy P, Anto AT, Sudheesh MS. A mechanistic review on the dissolution phase behavior and supersaturation stabilization of amorphous solid dispersions. Drug Dev Ind Pharm 2021; 47:1-11. [PMID: 33494623 DOI: 10.1080/03639045.2021.1879843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amorphous solid dispersion (ASD) technology is an attractive formulation approach for poorly soluble drugs because of the supersaturated state acquired during its dissolution. The high thermodynamic activity of the supersaturated state of the drug is also a driver for the enhanced absorptive flux across a membrane. However, this advantage can easily be lost due to the inherent instability of supersaturation, causing drug precipitation. Stabilizing the supersaturated state during the dissolution of ASD for the relevant absorption time frame is a challenging area in formulation research. Stabilizing the supersaturated state by using polymeric excipients and understanding the phase behavior of drugs during dissolution are required for the optimal performance of ASD formulations. A number of confounding kinetic, formulation and physiological factors can influence the evolution of supersaturation and phase changes during dissolution of ASDs. The review highlights the complex nature of dissolution of ASDs and the need of biorelevant dissolution for proper risk assessment and optimizing formulation development.
Collapse
Affiliation(s)
- P Ashwathy
- Department of Pharmaceutics, Amrita School of Pharmacy, Kochi, India
| | - Akshaya T Anto
- Department of Pharmaceutics, Amrita School of Pharmacy, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Kochi, India
| |
Collapse
|
29
|
The effects of spray drying, HPMCAS grade, and compression speed on the compaction properties of itraconazole-HPMCAS spray dried dispersions. Eur J Pharm Sci 2020; 155:105556. [PMID: 32946956 DOI: 10.1016/j.ejps.2020.105556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/12/2020] [Accepted: 09/13/2020] [Indexed: 11/20/2022]
Abstract
Spray dried dispersions (SDDs) have the potential to dramatically improve the oral bioavailability of drugs with poor water solubility. However, SDDs tend to have material attributes, such as small particle size, low bulk density, and poor flowability, which are undesirable for downstream processing such as tableting. The objective was to perform a comprehensive compaction characterization of both physical mixtures and SDDs consisting of itraconazole (ITZ) and hypromellose acetate succinate (HPMCAS) to elucidate process and material influences on compressibility and compactibility. We fabricated SDDs with 20% ITZ as a model BCS Class 2 drug and 80% HPMCAS as a polymer carrier. Results indicate that SDDs, as well physical mixtures of ITZ and HPMCAS, were easily deformable with similar compressibility profiles across all compression speeds. Analysis of Heckel plots revealed that yield pressures were fairly low for both physical mixtures and SDDs (43.97-59.75 MPa), indicative of ductile materials. SDDs had a much greater propensity to laminate, especially at higher compression speeds, compared to physical mixtures. This difference is likely due to the higher elastic recovery of SDDs. However, for intact tablets, the mechanical strength of compacts from SDDs tended to be higher than those produced from physical mixtures, likely due to the much smaller particle size of the SDDs. Importantly, examination of the compacts with differential scanning calorimetry did not detect any drug crystallization as a result of compaction. In conclusion, while spray drying did not significantly alter the compressibility of binary mixtures ITZ and HPMCAS, it dramatically impacted compactibility and tabletability, increasing elastic recovery, and making the mixtures more prone to lamination. However, at low compression speeds, SDDs produced tablets with higher tensile strength than physical mixtures.
Collapse
|
30
|
Arce FA, Setiawan N, Campbell HR, Lu X, Nethercott MJ, Bummer P, Su Y, Marsac PJ. Toward Developing Discriminating Dissolution Methods for Formulations Containing Nanoparticulates in Solution: The Impact of Particle Drift and Drug Activity in Solution. Mol Pharm 2020; 17:4125-4140. [PMID: 32965123 DOI: 10.1021/acs.molpharmaceut.0c00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enabling formulations are an attractive approach to increase the dissolution rate, solubility, and oral bioavailability of poorly soluble compounds. With the growing prevalence of poorly soluble drug compounds in the pharmaceutical pipeline, supersaturating drug delivery systems (SDDS), a subset of enabling formulations, have grown in popularity due to their properties allowing for drug concentrations greater than the corresponding crystalline solubility. However, the extent of supersaturation generated as the enabling formulation traverses the gastrointestinal (GI) tract is dynamic and poorly understood. The dynamic nature of supersaturation is a result of several competing kinetic processes such as dissolution, solubilization by formulation and endogenous surfactants, crystallization, and absorption. Ultimately, the free drug concentration, which is equivalent to the drug's inherent thermodynamic activity amid these kinetic processes, defines the true driving force for drug absorption. However, in cases where solubilizing agents are present (i.e., surfactants and bile salts), drug molecules may associate with colloidal nanoscale species, complicating drug activity determination. These nanoscale species can drift into the aqueous boundary layer (ABL), increasing the local API activity at the membrane surface, resulting in increased bioavailability. Herein, a novel approach was developed to accurately measure thermodynamic drug activity in complex media containing drug distributed in nanoparticulate species. This approach captures the influence of the ABL on the observed flux and, ultimately, the predicted unbound drug concentration. The results demonstrate that this approach can help to (1) measure the true extent of local supersaturation in complex systems containing solubilizing excipients and (2) elucidate the mechanisms by which colloidal aggregates can modulate the drug activity in solution and potentially enhance the flux observed across a membrane. The utilization of these techniques may provide development scientists with a strategy to evaluate formulation sensitivity to nanospeciation and allow formulators to maximize the driving force for absorption in a complex environment, perhaps enabling the development of dissolution methods with greater discrimination and correlation to pre-clinical and clinical data sets.
Collapse
Affiliation(s)
- Freddy A Arce
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Nico Setiawan
- Albany Molecular Research Inc., West Lafayette, Indiana 47906, United States
| | - Heather R Campbell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Kenilworth, New Jersey 07033, United States.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | | | - Paul Bummer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Kenilworth, New Jersey 07033, United States.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States.,Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Patrick J Marsac
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
31
|
Adhikari A, Polli JE. Characterization of Grades of HPMCAS Spray Dried Dispersions of Itraconazole Based on Supersaturation Kinetics and Molecular Interactions Impacting Formulation Performance. Pharm Res 2020; 37:192. [PMID: 32914239 DOI: 10.1007/s11095-020-02909-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The objective was to characterize hydroxypropyl methylcellulose acetate succinate (HMPCAS) grades L, M, and H to enhance itraconazole (ITZ) release and permeation from spray dried dispersions (SDDs), and to investigate underpinning molecular ITZ-HPMCAS interactions that differentiated grade performance. METHODS ITZ or its SDDs were subjected to solution stabilization assessment, one-dimensional proton nuclear magnetic resonance (NMR) spectroscopy, saturation transfer difference NMR studies, small volume dissolution, solid state transformation studies, and in vitro dissolution/permeation flux studies. RESULTS HPMCAS-L was the best performing grade overall and exhibited greatest ITZ supersaturation concentration, small volume dissolution, and in vitro dissolution/permeation flux. Meanwhile, H grade retarded ITZ precipitation to the greatest extent in solution stabilization studies and exhibited greater hydrophobic interaction with ITZ in NMR studies. However, this apparent advantage of H grade through hydrophobic interactions between drug-polymer appeared to limit overall dissolution/permeation performance of SDD. CONCLUSIONS In vitro SDD studies and drug-polymer interaction studies provided insight into the performance of HPMCAS grades, as well as the relative contributions of various mechanisms that polymer can promote ITZ absorption from SDD.
Collapse
Affiliation(s)
- Asmita Adhikari
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, HSF2 room 623, Baltimore, Maryland, 21201, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, HSF2 room 623, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
32
|
Trasi NS, Bhujbal SV, Zemlyanov DY, Zhou QT, Taylor LS. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100052. [PMID: 32760909 PMCID: PMC7390794 DOI: 10.1016/j.ijpx.2020.100052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 11/26/2022]
Abstract
Amorphous solid dispersions (ASDs) of lumefantrine, which has low aqueous solubility, have been shown to improve bioavailability relative to crystalline formulations. Herein, the crystallization tendency and release properties of a variety of lumefantrine ASD granules, formed on a blend of microcrystalline cellulose and anhydrous lactose, prepared using a simple solvent evaporation method, were evaluated. Several polymers, a majority of which contained acidic moieties, and different drug loadings were assessed. Crystallinity as a function of time following exposure to stress storage conditions of 40 °C and 75% relative humidity was monitored for the various dispersions. Release testing was performed and ASD characteristics were further evaluated using infrared and X-ray photoelectron spectroscopy (XPS). A large difference in stability to crystallization was observed between the various ASDs, most notably depending on polymer chemistry. This could be largely rationalized based on the extent of drug-polymer interactions, specifically the degree of lumefantrine-polymer salt formation, which could be readily assessed with XPS spectroscopy. Lumefantrine release from the ASDs also varied considerably, whereby the best polymer for promoting physical stability did not lead to the highest extent of drug release. Several formulations led to concentrations above the amorphous solubility of lumefantrine, with the formation of nano-sized drug-rich aggregates. A balance between the ability of a given polymer to promote physical stability and drug release may need to be sought.
Collapse
Affiliation(s)
- Niraj S Trasi
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sonal V Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
33
|
Jermain SV, Lowinger MB, Ellenberger DJ, Miller DA, Su Y, Williams RO. In Vitro and In Vivo Behaviors of KinetiSol and Spray-Dried Amorphous Solid Dispersions of a Weakly Basic Drug and Ionic Polymer. Mol Pharm 2020; 17:2789-2808. [DOI: 10.1021/acs.molpharmaceut.0c00108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Scott V. Jermain
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Michael B. Lowinger
- Merck Research Laboratories (MRL), Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Daniel J. Ellenberger
- DisperSol Technologies, LLC, 111 West Cooperative Way, Building 2, Suite 200, Georgetown, Texas 78626, United States
| | - Dave A. Miller
- DisperSol Technologies, LLC, 111 West Cooperative Way, Building 2, Suite 200, Georgetown, Texas 78626, United States
| | - Yongchao Su
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
- Merck Research Laboratories (MRL), Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Robert O. Williams
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Saboo S, Kestur US, Flaherty DP, Taylor LS. Congruent Release of Drug and Polymer from Amorphous Solid Dispersions: Insights into the Role of Drug-Polymer Hydrogen Bonding, Surface Crystallization, and Glass Transition. Mol Pharm 2020; 17:1261-1275. [DOI: 10.1021/acs.molpharmaceut.9b01272] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sugandha Saboo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Umesh S. Kestur
- Drug Product Science and Technology, Bristol-Myers Squibb Company, One Squib Drive, New Brunswick, New Jersey 08903, United States
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
35
|
Matsumura N, Hayashi S, Akiyama Y, Ono A, Funaki S, Tamura N, Kimoto T, Jiko M, Haruna Y, Sarashina A, Ishida M, Nishiyama K, Fushimi M, Kojima Y, Yoneda K, Nakanishi M, Kim S, Fujita T, Sugano K. Prediction Characteristics of Oral Absorption Simulation Software Evaluated Using Structurally Diverse Low-Solubility Drugs. J Pharm Sci 2019; 109:1403-1416. [PMID: 31863733 DOI: 10.1016/j.xphs.2019.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
The purpose of the present study was to characterize current biopharmaceutics modeling and simulation software regarding the prediction of the fraction of a dose absorbed (Fa) in humans. As commercial software products, GastroPlus™ and Simcyp® were used. In addition, the gastrointestinal unified theoretical framework, a simple and publicly accessible model, was used as a benchmark. The Fa prediction characteristics for a total of 96 clinical Fa data of 27 model drugs were systematically evaluated using the default settings of each software product. The molecular weight, dissociation constant, octanol-water partition coefficient, solubility in biorelevant media, dose, and particle size of model drugs were used as input data. Although the same input parameters were used, GastroPlus™, Simcyp®, and the gastrointestinal unified theoretical framework showed different Fa prediction characteristics depending on the rate-limiting steps of oral drug absorption. The results of the present study would be of great help for the overall progression of physiologically based absorption models.
Collapse
Affiliation(s)
- Naoya Matsumura
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan.
| | - Shun Hayashi
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022, Japan
| | - Yoshiyuki Akiyama
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Asami Ono
- Laboratory for Chemistry, Manufacturing and Control Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Satoko Funaki
- Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Naomi Tamura
- Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takahiro Kimoto
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Maiko Jiko
- Medical Analysis Research Department, Towa Pharmaceutical Co., Ltd., 134 Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Yuka Haruna
- Medical Analysis Research Department, Towa Pharmaceutical Co., Ltd., 134 Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Akiko Sarashina
- Clinical PK/PD Department, Nippon Boehringer Ingelheim Co., Ltd., 6-7-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiro Ishida
- Clinical PK/PD Department, Nippon Boehringer Ingelheim Co., Ltd., 6-7-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kotaro Nishiyama
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., 6-7-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiro Fushimi
- Biological Research Department, Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Yukiko Kojima
- Biological Research Department, Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Kazuhiro Yoneda
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Misato Nakanishi
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Soonih Kim
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
36
|
The elucidation of key factors for oral absorption enhancement of nanocrystal formulations: In vitro-in vivo correlation of nanocrystals. Eur J Pharm Biopharm 2019; 146:84-92. [PMID: 31816392 DOI: 10.1016/j.ejpb.2019.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/28/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023]
Abstract
Nanocrystal formulation is a well-established approach for improving oral absorption of poorly water-soluble drugs. However, it is difficult to predict the in vivo performance of nanocrystal formulations from in vitro dissolution studies. The object of the present study was to investigate the in vitro-in vivo correlation of nanocrystal formulations of different particle sizes. A microsuspension and three nanosuspensions with different particle sizes for model drugs, fenofibrate and megestrol acetate, were prepared. In the comparison between the microsuspension and the nanosuspension having the smallest particle sizes, drug permeation rates from the nanosuspension were about 3-fold higher in the dissolution-permeation study. On the other hand, the solubility enhancement effect due to nanocrystal formation was only up by 1.4-fold, suggesting that nanocrystal formulations dramatically improved not the solubility but the apparent permeability. The oral absorption rate in rats increased with particle size reduction. There were positive and very strong correlations (R2 > 0.95) between the in vitro permeation rate and in vivo maximum absorption rate. We concluded that the enhanced permeability rate due to nanocrystal formation is the main factor for improving oral absorption, and the in vitro dissolution-permeation study could be useful for predicting oral absorption enhancement of nanocrystal formulations.
Collapse
|
37
|
Stewart AM, Grass ME. Practical Approach to Modeling the Impact of Amorphous Drug Nanoparticles on the Oral Absorption of Poorly Soluble Drugs. Mol Pharm 2019; 17:180-189. [PMID: 31743032 DOI: 10.1021/acs.molpharmaceut.9b00889] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recently published studies have proposed that amorphous drug nanoparticles in gastrointestinal fluids may be beneficial for the absorption of poorly soluble compounds. Nanosized drug particles are known to provide rapid dissolution rates and, in some instances, a slight increase in solubility. However, in recent studies, the differences observed in vivo could not be explained solely by these attributes. Given the high dose and very low aqueous solubility of the study compounds, rapid equilibration to the drug-saturated solubility in gastrointestinal fluid would occur independent of the presence of nanoparticles. Alternatively, it has been proposed that drug nanoparticles (ca. ≤ 200 to 300 nm) may provide a "shuttle" for drug across the unstirred water layer (UWL) adjacent to the intestinal epithelium, particularly for low solubility/lipophilic compounds where absorption may be largely UWL-limited. This transport mechanism would result in a higher unbound drug concentration at the surface of the epithelium for absorption. This study evaluates this mechanism using a simple modification of the effective permeability to account for the effect of drug nanoparticles diffusing across the UWL. The modification can be made using inputs for solubility and nanoparticle size. The permeability modification was evaluated using three published case studies for amorphous formulations of itraconazole, anacetrapib, and enzalutamide, where the formation of amorphous drug nanoparticles upon dissolution resulted in improved drug absorption. Absorption modeling was performed using GastroPlus to assess the impact of the nanomodified permeability method on the accuracy of model prediction compared to in vivo data. Simulation results were compared to those for baseline simulations using an unmodified effective permeability. The results show good agreement using the nanomodified permeability, which described the data better than the standard baseline predictions. The nanomodified permeability method can be a suitable, fit-for-purpose in silico approach for evaluating or predicting oral absorption of poorly soluble, UWL-limited drugs from formulations that produce a significant number of amorphous drug nanoparticles.
Collapse
|
38
|
Elkhabaz A, Moseson DE, Brouwers J, Augustijns P, Taylor LS. Interplay of Supersaturation and Solubilization: Lack of Correlation between Concentration-Based Supersaturation Measurements and Membrane Transport Rates in Simulated and Aspirated Human Fluids. Mol Pharm 2019; 16:5042-5053. [PMID: 31638397 DOI: 10.1021/acs.molpharmaceut.9b00956] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supersaturating formulations are increasingly being used to improve the absorption of orally administered poorly water-soluble drugs. To better predict outcomes in vivo, we must be able to accurately determine the degree of supersaturation in complex media designed to provide a surrogate for the gastrointestinal environment. Herein, we demonstrate that relying on measurements based on consideration of the total dissolved concentration leads to underestimation of supersaturation and consequently membrane transport rates. Crystalline and amorphous solubilities of two compounds, atazanavir and posaconazole, were evaluated in six different media. Concurrently, diffusive flux measurements were performed in a side-by-side diffusion cell to determine the activity-based supersaturation by evaluating membrane transport rates at the crystalline and amorphous solubilities. Solubility values were found to vary in each medium because of different solubilization capacities. Concentration-based supersaturation ratios were also found to vary for the different media. Activity-based measurements, however, were largely independent of the medium, leading to relatively constant values for the estimated supersaturation. These findings have important consequences for modeling and prediction of supersaturation impact on the absorption rate as well as for better defining the thermodynamic driving force for crystallization in complex media.
Collapse
Affiliation(s)
- Ahmed Elkhabaz
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joachim Brouwers
- Drug Delivery and Disposition , KU Leuven , Leuven 3000 , Belgium
| | | | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
39
|
Honick M, Sarpal K, Alayoubi A, Zidan A, Hoag SW, Hollenbeck RG, Munson EJ, Polli JE. Utility of Films to Anticipate Effect of Drug Load and Polymer on Dissolution Performance from Tablets of Amorphous Itraconazole Spray-Dried Dispersions. AAPS PharmSciTech 2019; 20:331. [PMID: 31677012 DOI: 10.1208/s12249-019-1541-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022] Open
Abstract
Because spray-dried dispersion (SDD) performance depends on polymer selection and drug load, time- and resource-sparing methods to screen drug/polymer combinations before spray drying are desirable. The primary objective was to assess the utility of films to anticipate the effects of drug load and polymer grade on dissolution performance of tablets containing SDDs of itraconazole (ITZ). A secondary objective was to characterize the solid-state attributes of films and SDDs to explain drug load and polymer effects on dissolution performance. SDDs employed three different grades of hypromellose acetate succinate (i.e., either HPMCAS-L, HPMCAS-M, or HPMCAS-H). Solid-state characterization employed differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. Results indicate that films correctly anticipated the effects of drug load and polymer on dissolution performance. The best dissolution profiles were observed under the following conditions: 20% drug loading performed better than 30% for both films and SDDs, and the polymer grade rank order was HPMCAS-L > HPMCAS-M > HPMCAS-H for both films and SDDs. No dissolution was detected from films or SDDs containing HPMCAS-H. Solid-state characterization revealed percent crystallinity and phase miscibility as contributing factors to dissolution, but were not the sole factors. Amorphous content in films varied with drug load (10% > 20% > 30%) and polymer grades (HPMCAS-L > HPMCAS-M > HPMCAS-H), in agreement with dissolution. In conclusion, films anticipated the rank-order effects of drug load and polymer grade on dissolution performance from SDDs of ITZ, in part through percent crystallinity and phase miscibility influences.
Collapse
|
40
|
Alexander NP, Phillips RJ, Dungan SR. Multicomponent Diffusion in Aqueous Solutions of Nonionic Micelles and Decane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13595-13606. [PMID: 31553616 DOI: 10.1021/acs.langmuir.9b01823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Taylor dispersion and dynamic light scattering techniques were used to measure the ternary diffusivity matrix [D] and the micelle gradient diffusion coefficient, respectively, in crowded aqueous solutions of decaethylene glycol monododecyl ether (C12E10) and decane. The results indicate that C12E10 diffused down its own gradient with the micelle gradient diffusivity while decane diffused down a decane gradient at a much slower rate. Furthermore, strong diffusion coupling, comprising decane diffusion down a surfactant gradient and surfactant diffusion up a decane gradient, was also observed with cross diffusivities that were on the order of or larger than the main diffusivities. Measurements of the micelle aggregation number, hydration index, and the hydrodynamic radius, obtained using both static and dynamic light scattering methods, indicate that decane-containing micelles interacted as hard spheres and had radii and aggregation numbers that increased linearly with the molar ratio of solute to surfactant. A theoretical model, developed using Batchelor's theory for gradient diffusion in a polydisperse system of interacting hard spheres, was effectively used to predict [D] with no adjustable parameters. A comparison with the theory indicates that decane diffused down its own gradient by micelle self-diffusion while surfactant diffused down a surfactant gradient by micelle gradient diffusion. It is also shown that intermicellar interactions drove decane diffusion down a C12E10 gradient by a volume exclusion effect while an increase in the micelle aggregation number and hydrodynamic radius with decane was necessary to drive surfactant diffusion up a decane gradient.
Collapse
|
41
|
Borbás E, Kádár S, Tsinman K, Tsinman O, Csicsák D, Takács-Novák K, Völgyi G, Sinkó B, Pataki H. Prediction of Bioequivalence and Food Effect Using Flux- and Solubility-Based Methods. Mol Pharm 2019; 16:4121-4130. [DOI: 10.1021/acs.molpharmaceut.9b00406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Enikő Borbás
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Szabina Kádár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | | | - Oksana Tsinman
- Pion Inc, Billerica, Massachuesetts 01821, United States
| | - Dóra Csicsák
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest H-1092, Hungary
| | | | - Gergely Völgyi
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest H-1092, Hungary
| | - Bálint Sinkó
- Pion Inc, Billerica, Massachuesetts 01821, United States
| | - Hajnalka Pataki
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| |
Collapse
|
42
|
Ricarte RG, Van Zee NJ, Li Z, Johnson LM, Lodge TP, Hillmyer MA. Recent Advances in Understanding the Micro- and Nanoscale Phenomena of Amorphous Solid Dispersions. Mol Pharm 2019; 16:4089-4103. [PMID: 31487183 DOI: 10.1021/acs.molpharmaceut.9b00601] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many pharmaceutical drugs in the marketplace and discovery pipeline suffer from poor aqueous solubility, thereby limiting their effectiveness for oral delivery. The use of an amorphous solid dispersion (ASD), a mixture of an active pharmaceutical ingredient and a polymer excipient, greatly enhances the aqueous dissolution performance of a drug without the need for chemical modification. Although this method is versatile and scalable, deficient understanding of the interactions between drugs and polymers inhibits ASD rational design. This current Review details recent progress in understanding the mechanisms that control ASD performance. In the solid-state, the use of high-resolution theoretical, computational, and experimental tools resolved the influence of drug/polymer phase behavior and dynamics on stability during storage. During dissolution in aqueous media, novel characterization methods revealed that ASDs can form complex nanostructures, which maintain and improve supersaturation of the drug. The studies discussed here illustrate that nanoscale phenomena, which have been directly observed and quantified, strongly affect the stability and bioavailability of ASD systems, and provide a promising direction for optimizing drug/polymer formulations.
Collapse
Affiliation(s)
- Ralm G Ricarte
- Molecular, Macromolecular Chemistry, and Materials Laboratory, CNRS, ESPCI-Paris , PSL Research University , 10 Rue Vauquelin , 75005 Paris , France
| | | | | | | | | | | |
Collapse
|
43
|
Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci 2019; 137:104967. [PMID: 31252052 DOI: 10.1016/j.ejps.2019.104967] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Poorly water-soluble drugs continue to be a problematic, yet important class of pharmaceutical compounds for treatment of a wide range of diseases. Their prevalence in discovery is still high, and their development is usually limited by our lack of a complete understanding of how the complex chemical, physiological and biochemical processes that occur between administration and absorption individually and together impact on bioavailability. This review defines the challenge presented by these drugs, outlines contemporary strategies to solve this challenge, and consequent in silico and in vitro evaluation of the delivery technologies for poorly water-soluble drugs. The next steps and unmet needs are proposed to present a roadmap for future studies for the field to consider enabling progress in delivery of poorly water-soluble compounds.
Collapse
|
44
|
di Cagno MP, Stein PC. Studying the effect of solubilizing agents on drug diffusion through the unstirred water layer (UWL) by localized spectroscopy. Eur J Pharm Biopharm 2019; 139:205-212. [DOI: 10.1016/j.ejpb.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 01/17/2023]
|
45
|
Akiyama Y, Kimoto T, Mukumoto H, Miyake S, Ito S, Taniguchi T, Nomura Y, Matsumura N, Fujita T, Sugano K. Prediction Accuracy of Mechanism-Based Oral Absorption Model for Dogs. J Pharm Sci 2019; 108:2728-2736. [PMID: 30905705 DOI: 10.1016/j.xphs.2019.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
The purpose of the present study was to evaluate the prediction accuracy of a mechanism-based oral absorption model for the fraction of a dose absorbed (Fa) in dogs, focusing on poorly soluble drugs. As an open mechanism-based model, the gastrointestinal unified theoretical framework was used in this study. The prediction accuracy of the gastrointestinal unified theoretical framework was evaluated using Fa data in dogs (63 data sets for marketed drugs and proprietary compounds). For neutral compounds, Fa was accurately predicted, suggesting that the physiological parameters of dogs were appropriate except for gastrointestinal pH. An extensive literature survey on the small intestinal pH of dogs was then conducted. The result suggested that the pH value ranged between 6.5 and 7.5, with the midst value of 7.0, but there was a great variation among the literature. To confirm the appropriateness of this pH value, the Fa of free acid compounds was predicted by setting the small intestinal pH to 6.5, 7.0, and 7.5. The proportions of compounds with <2-fold error were 57%, 90%, and 76%, respectively. The results of the present study would enable an appropriate use of a mechanism-based model for drug discovery and development.
Collapse
Affiliation(s)
- Yoshiyuki Akiyama
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | - Takahiro Kimoto
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Hanae Mukumoto
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shuji Miyake
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Soichiro Ito
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Toshio Taniguchi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yukihiro Nomura
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Naoya Matsumura
- Early Stage Oral Formulation Research & Development, Pharmaceutical Research & Development, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
46
|
Saboo S, Mugheirbi NA, Zemlyanov DY, Kestur US, Taylor LS. Congruent release of drug and polymer: A “sweet spot” in the dissolution of amorphous solid dispersions. J Control Release 2019; 298:68-82. [DOI: 10.1016/j.jconrel.2019.01.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/29/2022]
|
47
|
Tsume Y, Patel S, Fotaki N, Bergstrӧm C, Amidon GL, Brasseur JG, Mudie DM, Sun D, Bermejo M, Gao P, Zhu W, Sperry DC, Vertzoni M, Parrott N, Lionberger R, Kambayashi A, Hermans A, Lu X, Amidon GE. In Vivo Predictive Dissolution and Simulation Workshop Report: Facilitating the Development of Oral Drug Formulation and the Prediction of Oral Bioperformance. AAPS JOURNAL 2018; 20:100. [PMID: 30191341 DOI: 10.1208/s12248-018-0260-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yasuhiro Tsume
- College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA. .,Merck & Co., Inc., 126 E Lincoln Ave, Rahway, New Jersey, 07065, USA.
| | - Sanjaykumar Patel
- Merck & Co., Inc., 126 E Lincoln Ave, Rahway, New Jersey, 07065, USA
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | - Gordon L Amidon
- College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| | - James G Brasseur
- Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA
| | | | - Duxin Sun
- College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| | | | - Ping Gao
- Abbvie, Inc., Chicago, Illinois, USA
| | - Wei Zhu
- Merck & Co., Inc., West Point, Pennsylvania, 19486, USA
| | - David C Sperry
- Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Neil Parrott
- F. Hoffmann-La Roche, Ltd., Roche Innovation Center, Basel, Switzerland
| | | | | | - Andre Hermans
- Merck & Co., Inc., West Point, Pennsylvania, 19486, USA
| | - Xujin Lu
- Bristol-Myers Squibb Company, New Brunswick, New Jersey, 08903, USA
| | - Gregory E Amidon
- College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
48
|
Matsumura N, Yamaura Y, Katagi J, Ono S, Kim S, Yamashita S, Sugano K. Evaluation of Using Dogs to Predict Fraction of Oral Dose Absorbed in Humans for Poorly Water-Soluble Drugs. J Pharm Sci 2018; 107:2489-2496. [DOI: 10.1016/j.xphs.2018.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
|
49
|
Enhancement of ketoconazole dissolution rate by the liquisolid technique. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:325-336. [PMID: 31259692 DOI: 10.2478/acph-2018-0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 11/20/2022]
Abstract
The study was conducted to enhance the dissolution rate of ketoconazole (KCZ) (a poorly water-soluble drug) using the liquisolid technique. Microcrystalline cellulose, colloidal silica, PEG400 and polyvinyl pyrrolidone (PVP) were employed as a carrier, coating substance, nonvolatile solvent and additive in the KCZ liquisolid compact formulation, respectively. The drug-to-PEG400 and carrier-to-coating ratio variations, PVP concentration and aging effects on the in vitro release behavior were assessed. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) data revealed no alterations in the crystalline form of the drug and the KCZ-excipient interactions within the process. The load factor and the drug release rate were significantly enhanced compared to directly compressed tablets in the presence of the additive. Increasing the PEG400-to-drug ratio in liquid medications enhanced the dissolution rate remarkably. The dissolution profile and hardness of liquisolid compacts were not significantly altered by keeping the tablets at 40 °C and relative humidity of 75 % for 6 months. With the proposed modification of the liquisolid process, it is possible to obtain flowable, compactible liquisolid powders of high-dose poorly-water soluble drugs with an enhanced dissolution rate.
Collapse
|
50
|
Sou T, Bergström CAS. Automated assays for thermodynamic (equilibrium) solubility determination. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:11-19. [PMID: 30103859 DOI: 10.1016/j.ddtec.2018.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Solubility is a crucial physicochemical property for drug candidates and is important in both drug discovery and development. Poor solubility is detrimental to absorption after oral administration and can mask compound activity in bioassays in various ways. Hence, solubility liabilities should ideally be identified as early as possible in the drug development process. With the increasing number of compounds as potential drug candidates, automated thermodynamic solubility assays for high throughput screening enabling rapid evaluation of a large number of compounds are becoming increasingly important. This review discusses the current status of the most widely used automated assays for thermodynamic solubility, followed by recent high throughput measurements of properties related to solubility (e.g. dissolution rate and supersaturation) and a brief overview of predictive computational methods for thermodynamic solubility reported in the literature.
Collapse
Affiliation(s)
- Tomás Sou
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|