1
|
Mugnaini C, Brizzi A, Paolino M, Scarselli E, Castelli R, de Candia M, Gambacorta N, Nicolotti O, Kostrzewa M, Kumar P, Mahmoud AM, Borgonetti V, Iannotta M, Morace A, Galeotti N, Maione S, Altomare CD, Ligresti A, Corelli F. Novel Dual-Acting Hybrids Targeting Type-2 Cannabinoid Receptors and Cholinesterase Activity Show Neuroprotective Effects In Vitro and Amelioration of Cognitive Impairment In Vivo. ACS Chem Neurosci 2024; 15:955-971. [PMID: 38372253 DOI: 10.1021/acschemneuro.3c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative form of dementia characterized by the loss of synapses and a progressive decline in cognitive abilities. Among current treatments for AD, acetylcholinesterase (AChE) inhibitors have efficacy limited to symptom relief, with significant side effects and poor compliance. Pharmacological agents that modulate the activity of type-2 cannabinoid receptors (CB2R) of the endocannabinoid system by activating or blocking them have also been shown to be effective against neuroinflammation. Herein, we describe the design, synthesis, and pharmacological effects in vitro and in vivo of dual-acting compounds that inhibit AChE and butyrylcholinesterase (BChE) and target CB2R. Within the investigated series, compound 4g proved to be the most promising. It achieved IC50 values in the low micromolar to submicromolar range against both human cholinesterase isoforms while antagonizing CB2R with Ki of 31 nM. Interestingly, 4g showed neuroprotective effects on the SH-SY5Y cell line thanks to its ability to prevent oxidative stress-induced cell toxicity and reverse scopolamine-induced amnesia in the Y-maze forced alternation test in vivo.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Enrico Scarselli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Riccardo Castelli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Naples ,Italy
| | - Poulami Kumar
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Naples ,Italy
| | - Ali Mokhtar Mahmoud
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Naples ,Italy
| | - Vittoria Borgonetti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli″, 80138 Naples, Italy
| | - Andrea Morace
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli″, 80138 Naples, Italy
| | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli″, 80138 Naples, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Naples ,Italy
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Majumdar M, Badwaik H. Trends on Novel Targets and Nanotechnology-Based Drug Delivery System in the Treatment of Parkinson's disease: Recent Advancement in Drug Development. Curr Drug Targets 2024; 25:987-1011. [PMID: 39313872 DOI: 10.2174/0113894501312703240826070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts a significant portion of the population. Despite extensive research, an effective cure for PD remains elusive, and conventional pharmacological treatments often face limitations in efficacy and management of symptoms. There has been a lot of discussion about using nanotechnology to increase the bioavailability of small- molecule drugs to target cells in recent years. It is possible that PD treatment might become far more effective and have fewer side effects if medication delivery mechanisms were to be improved. Potential alternatives to pharmacological therapy for molecular imaging and treatment of PD may lie in abnormal proteins such as parkin, α-synuclein, leucine-rich repeat serine and threonine protein kinase 2. Published research has demonstrated encouraging outcomes when nanomedicine-based approaches are used to address the challenges of PD therapy. So, to address the present difficulties of antiparkinsonian treatment, this review outlines the key issues and limitations of antiparkinsonian medications, new therapeutic strategies, and the breadth of delivery based on nanomedicine. This review covers a wide range of subjects, including drug distribution in the brain, the efficacy of drug-loaded nano-carriers in crossing the blood-brain barrier, and their release profiles. In PD, the nano-carriers are also used. Novel techniques of pharmaceutical delivery are currently made possible by vesicular carriers, which eliminate the requirement to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Manisha Majumdar
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| | - Hemant Badwaik
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| |
Collapse
|
3
|
Nakmode DD, Day CM, Song Y, Garg S. The Management of Parkinson's Disease: An Overview of the Current Advancements in Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051503. [PMID: 37242745 DOI: 10.3390/pharmaceutics15051503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) has significantly affected a large proportion of the elderly population worldwide. According to the World Health Organization, approximately 8.5 million people worldwide are living with PD. In the United States, an estimated one million people are living with PD, with approximately 60,000 new cases diagnosed every year. Conventional therapies available for Parkinson's disease are associated with limitations such as the wearing-off effect, on-off period, episodes of motor freezing, and dyskinesia. In this review, a comprehensive overview of the latest advances in DDSs used to reduce the limitations of current therapies will be presented, and both their promising features and drawbacks will be discussed. We are also particularly interested in the technical properties, mechanism, and release patterns of incorporated drugs, as well as nanoscale delivery strategies to overcome the blood-brain barrier.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Candace M Day
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
De Maio F, Rullo M, de Candia M, Purgatorio R, Lopopolo G, Santarelli G, Palmieri V, Papi M, Elia G, De Candia E, Sanguinetti M, Altomare CD. Evaluation of Novel Guanidino-Containing Isonipecotamide Inhibitors of Blood Coagulation Factors against SARS-CoV-2 Virus Infection. Viruses 2022; 14:v14081730. [PMID: 36016352 PMCID: PMC9415951 DOI: 10.3390/v14081730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/02/2023] Open
Abstract
Coagulation factor Xa (fXa) and thrombin (thr) are widely expressed in pulmonary tissues, where they may catalyze, together with the transmembrane serine protease 2 (TMPRSS2), the coronaviruses spike protein (SP) cleavage and activation, thus enhancing the SP binding to ACE2 and cell infection. In this study, we evaluate in vitro the ability of approved (i.e., dabigatran and rivaroxaban) and newly synthesized isonipecotamide-based reversible inhibitors of fXa/thr (cmpds 1-3) to hinder the SARS-CoV-2 infectivity of VERO cells. Nafamostat, which is a guanidine/amidine antithrombin and antiplasmin agent, disclosed as a covalent inhibitor of TMPRSS2, was also evaluated. While dabigatran and rivaroxaban at 100 μM concentration did not show any effect on SARS-CoV-2 infection, the virus preincubation with new guanidino-containing fXa-selective inhibitors 1 and 3 did decrease viral infectivity of VERO cells at subtoxic doses. When the cells were pre-incubated with 3, a reversible nanomolar inhibitor of fXa (Ki = 15 nM) showing the best in silico docking score toward TMPRSS2 (pdb 7MEQ), the SARS-CoV-2 infectivity was completely inhibited at 100 μM (p < 0.0001), where the cytopathic effect was just about 10%. The inhibitory effects of 3 on SARS-CoV-2 infection was evident (ca. 30%) at lower concentrations (3-50 μM). The covalent TMPRSS2 and the selective inhibitor nafamostat mesylate, although showing some effect (15-20% inhibition), did not achieve statistically significant activity against SARS-CoV-2 infection in the whole range of test concentrations (3-100 μM). These findings suggest that direct inhibitors of the main serine proteases of the blood coagulation cascade may have potential in SARS-CoV-2 drug discovery. Furthermore, they prove that basic amidino-containing fXa inhibitors with a higher docking score towards TMPRSS2 may be considered hits for optimizing novel small molecules protecting guest cells from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Mariagrazia Rullo
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Modesto de Candia
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Rosa Purgatorio
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Gianfranco Lopopolo
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
| | - Giulia Santarelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Valentina Palmieri
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Massimiliano Papi
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari Aldo Moro, I-70125 Bari, Italy;
| | - Erica De Candia
- Department of Translational Medicine and Surgery, Catholic University of Rome, I-00168 Rome, Italy;
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy; (F.D.M.); (G.S.); (V.P.); (M.P.)
- Correspondence: (M.S.); (C.D.A.)
| | - Cosimo Damiano Altomare
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (M.R.); (M.d.C.); (R.P.); (G.L.)
- Correspondence: (M.S.); (C.D.A.)
| |
Collapse
|
5
|
Cesari A, Balzano F, Uccello Barretta G, Recchimurzo A. Hydrolysis and Enantiodiscrimination of ( R)- and ( S)-Oxazepam Hemisuccinate by Methylated β-Cyclodextrins: An NMR Investigation. Molecules 2021; 26:molecules26216347. [PMID: 34770758 PMCID: PMC8587842 DOI: 10.3390/molecules26216347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Partially and exhaustively methylated β-cyclodextrins [(2-methyl)-β-CD (MCD), heptakis-(2,6-di-O-methyl)-β-CD (DIMEB), and heptakis-(2,3,6-tri-O-methyl)-β-CD (TRIMEB)] have been compared in the hydrolysis and enantiodiscrimination of benzodiazepine derivative (R)- or (S)-oxazepam hemisuccinate (OXEMIS), using nuclear magnetic resonance (NMR) spectroscopy as an investigation tool. After 6 h, MCD induced an 11% hydrolysis of OXEMIS, remarkably lower in comparison with underivatized β-CD (48%), whereas no hydrolysis was detected in the presence of DIMEB or TRIMEB after 24 h. DIMEB showed greater ability to differentiate OXEMIS enantiomers in comparison to TRIMEB, by contrast MCD did not produce any splitting of racemic OXEMIS resonances. Both enantiomers of OXEMIS underwent deep inclusion of their phenyl pendant into cyclodextrins cavities from their wider rims, but tighter complexes were formed by DIMEB with respect to TRIMEB.
Collapse
Affiliation(s)
- Andrea Cesari
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Federica Balzano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy;
- Correspondence: (F.B.); (G.U.B.)
| | - Gloria Uccello Barretta
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy;
- Correspondence: (F.B.); (G.U.B.)
| | - Alessandra Recchimurzo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy;
| |
Collapse
|
6
|
Ailuno G, Iacobazzi RM, Lopalco A, Baldassari S, Arduino I, Azzariti A, Pastorino S, Caviglioli G, Denora N. The Pharmaceutical Technology Approach on Imaging Innovations from Italian Research. Pharmaceutics 2021; 13:1214. [PMID: 34452175 PMCID: PMC8402236 DOI: 10.3390/pharmaceutics13081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Many modern therapeutic approaches are based on precise diagnostic evidence, where imaging procedures play an essential role. To date, in the diagnostic field, a plethora of agents have been investigated to increase the selectivity and sensitivity of diagnosis. However, the most common drawbacks of conventional imaging agents reside in their non-specificity, short imaging time, instability, and toxicity. Moreover, routinely used diagnostic agents have low molecular weights and consequently a rapid clearance and renal excretion, and this represents a limitation if long-lasting imaging analyses are to be conducted. Thus, the development of new agents for in vivo diagnostics requires not only a deep knowledge of the physical principles of the imaging techniques and of the physiopathological aspects of the disease but also of the relative pharmaceutical and biopharmaceutical requirements. In this scenario, skills in pharmaceutical technology have become highly indispensable in order to respond to these needs. This review specifically aims to collect examples of newly developed diagnostic agents connoting the importance of an appropriate formulation study for the realization of effective products. Within the context of pharmaceutical technology research in Italy, several groups have developed and patented promising agents for fluorescence and radioactive imaging, the most relevant of which are described hereafter.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Ilaria Arduino
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Sara Pastorino
- Nuclear Medicine Unit, S. Andrea Hospital, via Vittorio Veneto 197, 19124 La Spezia, Italy;
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| |
Collapse
|
7
|
Zhao C, Li Z, Chen J, Su L, Wang J, Chen DS, Ye J, Liao N, Yang H, Song J, Shi J. Site-Specific Biomimicry of Antioxidative Melanin Formation and Its Application for Acute Liver Injury Therapy and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102391. [PMID: 34278624 DOI: 10.1002/adma.202102391] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Biocompatible nano-antioxidants composed of natural molecules/materials, such as dopamine and melanin, are of great interest for diverse biomedical applications. However, the lack of understanding of the precise structure of these biomaterials and thus the actual dose of effective components impedes their advancement to translation. Herein, a strategy to mimic in situ melanin formation and explore its antioxidative applications is reported, by developing a PEGylated, phenylboronic-acid-protected L-DOPA precursor (PAD) that can self-assemble into well-defined nanoparticles (PADN). Exposure to oxidative species leads to deprotection of phenylboronic acids, transforming PADN to PEG-L-DOPA, which, similar to the biosynthetic pathway of melanin, can be oxidized and polymerized into an antioxidative melanin-like structure. With ultrahigh stability and superior antioxidative activity, the PADN shows remarkable efficacy in prevention and treatment of acute liver injury/failure. Moreover, the in situ structure transformation enables PADN to visualize damaged tissue noninvasively by photoacoustic imaging. Overall, a bioinspired antioxidant with precise structure and site-specific biological activity for theranostics of oxidative stress-related diseases is described.
Collapse
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou, 350108, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhi Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou, 350108, China
| | - Jingxiao Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou, 350108, China
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dean Shuailin Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiamin Ye
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou, 350108, China
| | - Naishun Liao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou, 350108, China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Purgatorio R, de Candia M, Catto M, Rullo M, Pisani L, Denora N, Carrieri A, Nevskaya AA, Voskressensky LG, Altomare CD. Evaluation of Water-Soluble Mannich Base Prodrugs of 2,3,4,5-Tetrahydroazepino[4,3-b]indol-1(6H)-one as Multitarget-Directed Agents for Alzheimer's Disease. ChemMedChem 2020; 16:589-598. [PMID: 33156950 DOI: 10.1002/cmdc.202000583] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Different Mannich base derivatives have been studied with the aim of addressing the poor aqueous solubility of the recently disclosed 6-phenethyl-2,3,4,5-tetrahydroazepino[4,3-b]indol-1(6H)-one (1), a human butyrylcholinesterase inhibitor (hBChE, IC50 13 nM) and protective agent in NMDA-induced neurotoxicity, in in vivo assays. The N-(4-methylpiperazin-1-yl)methyl derivative 2 c showed a 50-fold increase in solubility in pH 7.4-buffered solution, high stability in serum and (half-life >24 h) and rapid (<3 min) conversion to 1 at acidic pH. Although less active than 1, 2 c retained moderate hBChE inhibition (IC50 =3.35 μM) and a significant protective effect against NMDA-induced neurotoxicity at 0.1 μM. Moreover, 2 c resulted a weaker serum albumin binder than 1, could pass the blood-brain barrier, and exerted negligible cytotoxicity on HepG2 cells. These findings suggest that 2 c could be a water-soluble prodrug candidate of 1 for oral administration or a slow-release injectable derivative in in vivoAlzheimer's disease models.
Collapse
Affiliation(s)
- Rosa Purgatorio
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Mariagrazia Rullo
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Alisa A Nevskaya
- Organic Chemistry Department, RUDN University, Miklukho-Maklai St. 6, Moscow, 117198, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, RUDN University, Miklukho-Maklai St. 6, Moscow, 117198, Russia
| | - Cosimo D Altomare
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
9
|
Zhou DG, Li YQ. Mechanistic Study of 1,4-Benzodiazepine-2,5-diones from Diphenylamine and Diethyl 2-Phenylmalonate by Density Functional Theory. J Phys Chem A 2019; 124:395-408. [PMID: 31856564 DOI: 10.1021/acs.jpca.9b10662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Da-Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province Institute of Synthesis and Application of Functional Materials College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637002, P.R. China
| | - Yan-Qiong Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P.R. China
| |
Collapse
|
10
|
Denora N, Lee C, Iacobazzi RM, Choi JY, Song IH, Yoo JS, Piao Y, Lopalco A, Leonetti F, Lee BC, Kim SE. TSPO-targeted NIR-fluorescent ultra-small iron oxide nanoparticles for glioblastoma imaging. Eur J Pharm Sci 2019; 139:105047. [PMID: 31422171 DOI: 10.1016/j.ejps.2019.105047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/15/2019] [Accepted: 08/15/2019] [Indexed: 12/29/2022]
Abstract
The translocator protein 18 kDa (TSPO) is mainly located in outer membrane of mitochondria and results highly expressed in a variety of tumor including breast, colon, prostate, ovarian and brain (such as glioblastoma). Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor. Although GBM patients had currently available therapies, the median survival is <14 months. Complete surgical resection of GBM is critical to improve GBM treatment. In this study, we performed the one-step synthesis of water-dispersible ultra-small iron oxide nanoparticles (USPIONs) and combine them with an imidazopyridine based TSPO ligand and a fluorescent dye. The optical and structural characteristics of TSPO targeted-USPIONs were properly evaluated at each step of preparation demonstrating the high colloidal stability in physiological media and the ability to preserve the relevant optical properties in the NIR region. The cellular uptake in TSPO expressing cells was assessed by confocal microscopy. The TSPO selectivity was confirmed in vivo by competition studies with the TSPO ligand PK 11195. In vivo fluorescence imaging of U87-MG xenograft models were performed to highlight the great potential of the new NIR imaging nanosystem for diagnosis and successful delineation of GBM.
Collapse
Affiliation(s)
- Nunzio Denora
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari 70125, Italy; Institute for Physical and Chemical Processes (IPCF)-CNR, SS Bari, Via Orabona, St. 4, 70125 Bari, Italy.
| | - Chaedong Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Republic of Korea.
| | | | - Ji Young Choi
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea.
| | - Jung Sun Yoo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Yuanzhe Piao
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea.
| | - Antonio Lopalco
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari 70125, Italy.
| | - Francesco Leonetti
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari 70125, Italy.
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea.
| | - Sang Eun Kim
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea.
| |
Collapse
|
11
|
1,3-Dioxane as a scaffold for potent and selective 5-HT 1AR agonist with in-vivo anxiolytic, anti-depressant and anti-nociceptive activity. Eur J Med Chem 2019; 176:310-325. [PMID: 31112892 DOI: 10.1016/j.ejmech.2019.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
A series of compounds generated by ring expansion/opening and molecular elongation/simplification of the 1,3-dioxolane scaffold were prepared and tested for binding affinity at 5-HT1AR and α1 adrenoceptors. The compounds with greater affinity were selected for further functional studies. N-((2,2-diphenyl-1,3-dioxan-5-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-ammonium hydrogen oxalate (12) emerged as highly potent full agonist at the 5-HT1AR (pKi 5-HT1A = 8.8; pD2 = 9.22, %Emax = 92). The pharmacokinetic data in rats showed that the orally administered 12 has a high biodistribution in the brain compartment. Thus, 12 was further investigated in-vivo, showing an anxiolytic and antidepressant effect. Moreover, in the formalin test, 12 was able to decrease the late response to the noxious stimulus, indicating a potential use in the treatment of chronic pain.
Collapse
|
12
|
Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3. Eur J Med Chem 2019; 168:58-77. [DOI: 10.1016/j.ejmech.2018.12.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022]
|
13
|
Ma Z, Zhu XX. Core Cross-linked Micelles Made of Glycopolymers Bearing Dopamine and Cholic Acid Pendants. Mol Pharm 2018; 15:2348-2354. [DOI: 10.1021/acs.molpharmaceut.8b00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Zhiyuan Ma
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - X. X. Zhu
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
14
|
Lopalco A, Cutrignelli A, Denora N, Perrone M, Iacobazzi RM, Fanizza E, Lopedota A, Depalo N, de Candia M, Franco M, Laquintana V. Delivery of Proapoptotic Agents in Glioma Cell Lines by TSPO Ligand-Dextran Nanogels. Int J Mol Sci 2018; 19:ijms19041155. [PMID: 29641449 PMCID: PMC5979576 DOI: 10.3390/ijms19041155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 12/22/2022] Open
Abstract
Translocator protein 18-kDa (TSPO) is a versatile mitochondrial target for molecular imaging and therapy. Moreover, selective TSPO ligands have been widely investigated for diagnostic purposes and explored to target drug delivery systems directed to cancer cells overexpressing TSPO. Indeed, poly(d,l-lactic-co-glycolic acid (PLGA) polymers and nanocarriers decorated with TSPO ligands are capable of transporting TSPO ligands inside cancer cells, inducing survival inhibition in cancer cells and producing mitochondrial morphology modification. The aim of this work was to prepare nanogels (NGs) made with TSPO ligand dextran conjugates (TSPO-Dex) that are useful as potential delivery systems of two TSPO ligands as apoptotic agents. Synthesis and complete characterization of TSPO–dextran conjugates, an average molecular weights analysis, TSPO ligand release profiles, thermal behaviour and swelling studies were achieved. NG preparation, characterization and in vitro biological studies were also performed. The release of TSPO ligands released from dextran conjugates at 37 °C occurred in human serum at a faster rate than that detected in phosphate buffer. Cytotoxicity studies demonstrated that NGs produced from TSPO ligand–dextran conjugates induce survival inhibition in rat C6 glioma cell lines. Cellular uptake was also proven by fluorescence microscopy.
Collapse
Affiliation(s)
- Antonio Lopalco
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, St. 4, 70125 Bari, Italy.
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, St. 4, 70125 Bari, Italy.
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, St. 4, 70125 Bari, Italy.
- Institute for Physical and Chemical Processes (IPCF)-CNR, SS Bari, Via Orabona, St. 4, 70125 Bari, Italy.
| | - Mara Perrone
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, St. 4, 70125 Bari, Italy.
- Istituto tumori IRCCS "Giovanni Paolo II", Flacco, St. 65, 70124 Bari, Italy.
| | | | - Elisabetta Fanizza
- Institute for Physical and Chemical Processes (IPCF)-CNR, SS Bari, Via Orabona, St. 4, 70125 Bari, Italy.
- Department of Chemistry, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Angela Lopedota
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, St. 4, 70125 Bari, Italy.
| | - Nicoletta Depalo
- Institute for Physical and Chemical Processes (IPCF)-CNR, SS Bari, Via Orabona, St. 4, 70125 Bari, Italy.
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, St. 4, 70125 Bari, Italy.
| | - Massimo Franco
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, St. 4, 70125 Bari, Italy.
| | - Valentino Laquintana
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, St. 4, 70125 Bari, Italy.
| |
Collapse
|
15
|
Lopalco A, Cutrignelli A, Denora N, Lopedota A, Franco M, Laquintana V. Transferrin Functionalized Liposomes Loading Dopamine HCl: Development and Permeability Studies across an In Vitro Model of Human Blood-Brain Barrier. NANOMATERIALS 2018; 8:nano8030178. [PMID: 29558440 PMCID: PMC5869669 DOI: 10.3390/nano8030178] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
The transport of dopamine across the blood brain barrier represents a challenge for the management of Parkinson’s disease. The employment of central nervous system targeted ligands functionalized nanocarriers could be a valid tactic to overcome this obstacle and avoid undesirable side effects. In this work, transferrin functionalized dopamine-loaded liposomes were made by a modified dehydration–rehydration technique from hydrogenated soy phosphatidylcoline, cholesterol and 1,2-stearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(poly(ethylene glycol)-2000)]. The physical features of the prepared liposomes were established with successive determination of their endothelial permeability across an in vitro model of the blood-brain barrier, constituted by human cerebral microvascular endothelial cells (hCMEC/D3). Functionalized dopamine-loaded liposomes with encapsulation efficiency more than 35% were made with sizes in a range around 180 nm, polydispersity indices of 0.2, and positive zeta potential values (+7.5 mV). Their stability and drug release kinetics were also evaluated. The apparent permeability (Pe) values of encapsulated dopamine in functionalized and unfunctionalized liposomes showed that transferrin functionalized nanocarriers could represent appealing non-toxic candidates for brain delivery, thus improving benefits and decreasing complications to patients subjected to L-dopa chronical treatment.
Collapse
Affiliation(s)
- Antonio Lopalco
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
- Institute for Physical and Chemical Processes (IPCF)-CNR, SS Bari, 4 E. Orabona st, 70125 Bari, Italy.
| | - Angela Lopedota
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
| | - Massimo Franco
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
| | - Valentino Laquintana
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
| |
Collapse
|