1
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
2
|
Al Khatib AO, El-Tanani M, Al-Obaidi H. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2777. [PMID: 38140117 PMCID: PMC10748026 DOI: 10.3390/pharmaceutics15122777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout the years, considerable progress has been made in methods for delivering drugs directly to the lungs, which offers enhanced precision in targeting specific lung regions. Currently, for treatment of lung cancer, the prevalent routes for drug administration are oral and parenteral. These methods, while effective, often come with side effects including hair loss, nausea, vomiting, susceptibility to infections, and bleeding. Direct drug delivery to the lungs presents a range of advantages. Notably, it can significantly reduce or even eliminate these side effects and provide more accurate targeting of malignancies. This approach is especially beneficial for treating conditions like lung cancer and various respiratory diseases. However, the journey towards perfecting inhaled drug delivery systems has not been without its challenges, primarily due to the complex structure and functions of the respiratory tract. This comprehensive review will investigate delivery strategies that target lung cancer, specifically focusing on non-small-cell lung cancer (NSCLC)-a predominant variant of lung cancer. Within the scope of this review, active and passive targeting techniques are covered which highlight the roles of advanced tools like nanoparticles and lipid carriers. Furthermore, this review will shed light on the potential synergies of combining inhalation therapy with other treatment approaches, such as chemotherapy and immunotherapy. The goal is to determine how these combinations might amplify therapeutic results, optimizing patient outcomes and overall well-being.
Collapse
Affiliation(s)
- Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6AD, UK;
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan;
| | - Mohamed El-Tanani
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan;
- College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | |
Collapse
|
3
|
Yan X, Sha X. Nanoparticle-Mediated Strategies for Enhanced Drug Penetration and Retention in the Airway Mucosa. Pharmaceutics 2023; 15:2457. [PMID: 37896217 PMCID: PMC10610050 DOI: 10.3390/pharmaceutics15102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Airway mucus is a complex viscoelastic gel composed mainly of water, glycoproteins, lipids, enzymes, minerals, etc. Among them, glycoproteins are the main factors determining mucus's gel-like rheology. Airway mucus forms a protective barrier by secreting mucin, which represents a barrier for absorption, especially for more lipophilic drugs. It rapidly removes drugs from the airway through the physiological mucus clearance mechanism so drugs cannot remain in the lungs or reach the airway epithelial tissue for a long time. Significant progress has been made in enhancing drug lung deposition recently, but strategies are still needed to help drugs break through the lung mucosal barrier. Based on the physiopathological mechanisms of airway mucus, this paper reviews and summarizes strategies to enhance drug penetration and retention in the airway mucosa mediated by nano-delivery systems, including mucosal permeation systems, mucosal adhesion systems, and enzyme-modified delivery systems. On this basis, the potential and challenges of nano-delivery systems for improving airway mucus clearance are revealed. New ideas and approaches are provided for designing novel nano-delivery systems that effectively improve drug retention and penetration in the airway mucus layer.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
- The Institutes of Integrative Medicine of Fudan University, 120 Urumqi Middle Road, Shanghai 200040, China
| |
Collapse
|
4
|
Xu J, Tang X, Yang X, Zhao MX. pH and GSH dual-responsive drug-controlled nanomicelles for breast cancer treatment. Biomed Mater 2023; 18. [PMID: 36720160 DOI: 10.1088/1748-605x/acb7bb] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
We developed a pH/glutathione (GSH) dual-responsive smart nano-drug delivery system to achieve targeted release of a chemotherapeutic drug at breast tumor site. Doxorubicin (DOX) was linked to polyethylene glycol (PEG) through cis-aconitic anhydride (CA) and disulfide bonds (SS) to obtain the PEG-SS-CA-DOX prodrug, which spontaneously assembled into nanomicelles with a particle size of 48 ± 0.45 nm. PEG-SS-CA-DOX micelles achieved an efficient and rapid release of DOX under dual stimulation by weak acidic pH and high GSH content of tumors, with the release amount reaching 88.0% within 48 h. Cellular uptake experiments demonstrated that PEG-SS-CA-DOX micelles could efficiently transport DOX into cells and rapidly release it in the tumor microenvironment. In addition,in vivoantitumor experiments showed that PEG-SS-CA-DOX had a high inhibition rate of 70% against 4T1 breast cancer cells along with good biosafety. In conclusion, dual-responsive smart nanomicelles can achieve tumor-targeted drug delivery and specific drug release, thus improving therapeutic efficacy of drugs.
Collapse
Affiliation(s)
- Jingjing Xu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Xianjiao Tang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
5
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Kai Zhang, Liu P, Bai X, Gao X, Liu K, Li A, Lyu Z. The pH-Responsive CS-g-PEI-g-PEG Graft Copolymer as PolyI:C/OVA Drug Carrier. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x2370061x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
7
|
Adilakshmi B, Reddy OS, Hemalatha D, Krishna Rao KSV, Lai WF. ROS-Generating Poly(Ethylene Glycol)-Conjugated Fe 3O 4 Nanoparticles as Cancer-Targeting Sustained Release Carrier of Doxorubicin. Int J Nanomedicine 2022; 17:4989-5000. [PMID: 36275478 PMCID: PMC9584772 DOI: 10.2147/ijn.s379200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
Purpose Site-specific drug delivery systems can contribute to the development and execution of effective cancer treatment. Due to its favorable features (including high biocompatibility, high hydrophilicity and ease of functionalization), poly(ethylene glycol) (PEG) has been widely adopted to design drug carriers. Generating carriers for delivery of hydrophobic anticancer agents, however, is still a challenge in carrier design. Methods In the first step, PEG is functionalized with dialdehyde to generate PEG-(CHO)2 using EDC/NHS chemistry. In the second step, Fe3O4 nanoparticles are functionalized with amino groups to generate Fe3O4-NH2. In the third step, PEG-(CHO)2, Fe3O4-NH2 and doxorubicin (DOX) react in an acidic environment to yield a drug conjugate (PEGDA-MN-DOX), which is subsequently characterized by FT-IR, 1H-NMR, SEM, TEM, DLS, TGA, and DSC. Results The chemical functionalities of the drug conjugate are confirmed by FTIR, H-NMRand XRD analysis.The release pattern of PEGDA-MN-DOX is investigated at 25 and 37 °C at different pH values. The results indicate that the developed drug conjugate cannot only behave as a sustained-release carrier, but can also generate a significant level of reactive oxygen species (ROS), leading to a high level of toxicity against MCF-7 cells while still showing excellent biocompatibility in 3T3 cells. Conclusion The reported conjugate shows anticancer potential, cancer-targeting ability, and ROS-generating capacity for effective drug encapsulation and sustained release in chemotherapy.
Collapse
Affiliation(s)
- Boddu Adilakshmi
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Obireddy Sreekanth Reddy
- Department of Urology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Zhejiang, 310012, People’s Republic of China,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People’s Republic of China,Department of Chemistry, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, 515003, India
| | - Duddekunta Hemalatha
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Kummari S V Krishna Rao
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Zhejiang, 310012, People’s Republic of China,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People’s Republic of China,Correspondence: Wing-Fu Lai; Kummari SV Krishna Rao, Email ;
| |
Collapse
|
8
|
Soltani A, Faramarzi M, Farjadian F, Parsa SAM, Panahi HA. pH-responsive glycodendrimer as a new active targeting agent for doxorubicin delivery. Int J Biol Macromol 2022; 221:508-522. [PMID: 36089082 DOI: 10.1016/j.ijbiomac.2022.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
The present study synthesized a new kind of pH-responsive active targeting glycodendrimer (ATGD) for doxorubicin delivery to cancerous cells. First, the glycodendrimer was synthesized based on the cultivation of chitosan dendrons on amine-functionalized, silica-grafted cellulose nanocrystals. Afterward, glycodendrimer was conjugated with folic acid to provide a folate receptor-targeting agent. The response surface method was employed to obtain the optimum conditions for the preparation of doxorubicin-loaded ATGD. The effect of doxorubicin/ATGD ratio, temperature, and pH on doxorubicin loading capacity was evaluated, and high loading capacity was achieved under optimized conditions. After determining doxorubicin release pattern at acidic and physiological pH, ATGD cytotoxicity was surveyed by MTT assay. Based on the results, the loading behavior of doxorubicin onto ATGD was in good agreement with monolayer-physisorption, and drug release was Fickian diffusion-controlled. ATGD could release the doxorubicin much more at acidic pH than physiological pH, corresponding to pH-responsive release behavior. Results of MTT assay confirmed the cytotoxicity of doxorubicin-loaded ATGD in cancer cells, while ATGD (without drug) was biocompatible with no tangible toxicity. These results suggested that ATGD has the potential for the treatment of cancer.
Collapse
Affiliation(s)
- Ali Soltani
- Department of Chemical Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Mehdi Faramarzi
- Department of Chemical Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran; Department of Chemical Engineering, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Prasher P, Sharma M, Singh SK, Gulati M, Jha NK, Gupta PK, Gupta G, Chellappan DK, Zacconi F, de Jesus Andreoli Pinto T, Chan Y, Liu G, Paudel K, Hansbro PM, George Oliver BG, Dua K. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem Biol Interact 2022; 365:110048. [PMID: 35932910 DOI: 10.1016/j.cbi.2022.110048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Mucus gel constitutes of heavily cross-linked mucin fibers forming a viscoelastic, dense porous network that coats all the exposed epithelia not covered with the skin. The layer provides protection to the underlying gastrointestinal, respiratory, and female reproductive tracts, in addition to the organs such as the surface of eye by trapping the pathogens, irritants, environmental fine particles, and potentially hazardous foreign matter. However, this property of mucus gel poses a substantial challenge for realizing the localized and sustained drug delivery across the mucosal surfaces. The mucus permeating particles that spare the protective properties of mucus gel improve the therapeutic potency of the drugs aimed at the management of diseases, including sexually transmitted infections, lung cancer, irritable bowel disease, degenerative eye diseases and infections, and cystic fibrosis. As such, the mucoadhesive materials conjugated with drug molecules display a prolonged retention time in the mucosal gel that imparts a sustained release of the deliberated drug molecules across the mucosa. The contemporarily developed mucus penetrating materials for drug delivery applications comprise of a finer size, appreciable hydrophilicity, and a neutral surface to escape the entrapment within the cross-inked mucus fibers. Pertaining to the mucus secretion as a first line of defence in respiratory tract in response to the invading physical, chemical, and biological pathogens, the development of mucus penetrating materials hold promise as a stalwart approach for revolutionizing the respiratory drug delivery paradigm. The present review provides an epigrammatic collation of the mucus penetrating/mucoadhesive materials for achieving a controlled/sustained release of the cargo pharmaceutics and drug molecules across the respiratory mucus barrier.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Monica Gulati
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, 201310, UP, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago, 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo, 05508-000, Brazil
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Keshav Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
10
|
Kumar R, Mehta P, Shankar KR, Rajora MAK, Mishra YK, Mostafavi E, Kaushik A. Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharm Res 2022; 39:2831-2855. [PMID: 35552983 PMCID: PMC9097569 DOI: 10.1007/s11095-022-03286-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Respiratory disorders pose a major threat to the morbidity and mortality to public health. Here we reviewed the nanotechnology based pulmonary drug delivery using metered dose inhalers. METHODS Major respiratory diseases such as chronic obstructive pulmonary diseases (COPD), asthma, acute lower respiratory tract infections, tuberculosis (TB) and lung cancer. At present, common treatments for respiratory disorders include surgery, radiation, immunotherapy, and chemotherapy or a combination. The major challenge is development of systemic delivery of the chemotherapeutic agents to the respiratory system. Conventional delivery of chemotherapy has various limitation and adverse side effected. Hence, targeted, and systemic delivery need to be developed. Towards this direction nanotechnology, based controlled, targeted, and systemic drug delivery systems are potential candidate to enhance therapeutic efficacy with minimum side effect. Among different route of administration, pulmonary delivery has unique benefits such as circumvents first pass hepatic metabolism and reduces dose and side effects. RESULTS Respiratory disorders pose a major threat to the morbidity and mortality to public health globally. Pulmonary delivery can be achieved through various drug delivery devices such as nebulizers, dry powder inhalers, and metered dose inhalers. Among them, metered dose inhalers are the most interesting and first choice of clinician over others. This review focused on nanotechnology based pulmonary drug delivery using metered dose inhalers. This report focused on delivery of various types of therapeutics using nanocarriers such as polymeric nanoparticles and micelles, dendrimers, lipid nanocarriers such as liposomes, solid lipid nanostructures and nanostructured lipid carriers, and other using metered dose inhalers discussed comprehensively. This report provides insight about the effect of parameters of MDI such as co-solvent, propellants, actuators shape, nozzle diameters, and jet lengths, and respiratory flow rate, and particle size of co-suspension of drug on aerodynamics and lung deposition of formulation. This review also provided the insight about various metered dose inhalers market scenario and digital metered dose inhalers. CONCLUSION This report concluded the clinical potential of metered dose inhalers, summary of current progress and future perspectives towards the smart digital metered dose inhalers development.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| | - Piyush Mehta
- Pharmaceutical Technology Center, Department of Aerosol, Zydus Life Sciences Ltd., Ahmedabad, Gujarat, India
| | | | - Manju A K Rajora
- College of Nursing, All India Institute of Medical Sciences, New Delhi, 100029, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA.
| |
Collapse
|
11
|
Yang R, Ma J, Guo H, Meng Q, Wang Y, Yan H, Jin R, Li Z, Meng L. Synthesis and Antitumor Activity of Evodiamine Derivatives With Nitro, Amino, and Methoxy Groups. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x211059645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
MS, and IR, 1H NMR and 13C NMR spectroscopy were employed to elucidate 4 novel evodiamine (EVO) derivatives with nitro, amino, and methoxy groups, namely 2-NO2-EVO (7a), 10-OCH3-2-NO2-EVO (7b), 2-NH2-EVO (8a), and 10-OCH3-2-NH2-EVO (8b). The amino compounds (8a, 8b) were obtained by the reduction of nitro derivatives (7a, 7b) with SnCl2/HCl. The antiproliferative activities of these compounds were tested by Cell Counting Kit-8 assay for 48 h against the MDA-MB-231 and sw620 cancer cell lines, as well as the normal LO2 cells. The in vitro experiment showed that 8a possesses the most potent inhibitory activities against MDA-MB-231 and SW620 cells, with IC50 values of 0.79 and 1.28 μM, respectively. The cytotoxicity of 8a against the 2 cancer cell lines was higher than that of EVO.
Collapse
Affiliation(s)
- Ruolan Yang
- Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Jingjing Ma
- Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Hui Guo
- Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
- Xi’an Jiao TongUniversity, Xi’an, People’s Republic of China
| | - Qinghua Meng
- Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Yuwei Wang
- Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Hao Yan
- Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Ruyi Jin
- Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Zhi Li
- Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Lingjie Meng
- Xi’an Jiao TongUniversity, Xi’an, People’s Republic of China
| |
Collapse
|
12
|
Nagaraja K, Krishna Rao KSV, Zo S, Soo Han S, Rao KM. Synthesis of Novel Tamarind Gum- co-poly(acrylamidoglycolic acid)-Based pH Responsive Semi-IPN Hydrogels and Their Ag Nanocomposites for Controlled Release of Chemotherapeutics and Inactivation of Multi-Drug-Resistant Bacteria. Gels 2021; 7:237. [PMID: 34940297 PMCID: PMC8701875 DOI: 10.3390/gels7040237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
In this paper, novel pH-responsive, semi-interpenetrating polymer hydrogels based on tamarind gum-co-poly(acrylamidoglycolic acid) (TMGA) polymers were synthesized using simple free radical polymerization in the presence of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker and potassium persulfate as a initiator. In addition, these hydrogels were used as templates for the green synthesis of silver nanoparticles (13.4 ± 3.6 nm in diameter, TMGA-Ag) by using leaf extract of Teminalia bellirica as a reducing agent. Swelling kinetics and the equilibrium swelling behavior of the TMGA hydrogels were investigated in various pH environments, and the maximum % of equilibrium swelling behavior observed was 2882 ± 1.2. The synthesized hydrogels and silver nanocomposites were characterized via UV, FTIR, XRD, SEM and TEM. TMGA and TMGA-Ag hydrogels were investigated to study the characteristics of drug delivery and antimicrobial study. Doxorubicin hydrochloride, a chemotherapeutic agent successfully encapsulated with maximum encapsulation efficiency, i.e., 69.20 ± 1.2, was used in in vitro release studies in pH physiological and gastric environments at 37 °C. The drug release behavior was examined with kinetic models such as zero-order, first-order, Higuchi, Hixson Crowell and Korsmeyer-Peppas. These release data were best fitted with the Korsemeyer-Peppas transport mechanism, with n = 0.91. The effects of treatment on HCT116 human colon cancer cells were assessed via cell viability and cell cycle analysis. The antimicrobial activity of TMGA-Ag hydrogels was studied against Staphylococcus aureus and Klebsiella pneumonia. Finally, the results demonstrate that TMGA and TMGA-Ag are promising candidates for anti-cancer drug delivery and the inactivation of pathogenic bacteria, respectively.
Collapse
Affiliation(s)
- Kasula Nagaraja
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India;
| | - Kummari S. V. Krishna Rao
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India;
| | - Sunmi Zo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea; (S.Z.); (S.S.H.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea; (S.Z.); (S.S.H.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea
| | - Kummara Madhususdana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea; (S.Z.); (S.S.H.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea
| |
Collapse
|
13
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
14
|
Formulation and clinical perspectives of inhalation-based nanocarrier delivery: a new archetype in lung cancer treatment. Ther Deliv 2021; 12:397-418. [PMID: 33902294 DOI: 10.4155/tde-2020-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous research in targeted delivery and specific molecular inhibitors (gene delivery), cytotoxic drug delivery through inhalation has been seen as a core part in the treatment of the lung cancer. Inhalation delivery provides a high dose of the drug directly to the lungs without affecting other body organs, increasing the therapeutic ratio. This article reviews the research performed over the last several decades regarding inhalation delivery of various cancer therapeutics for the treatment of lung cancer. Nevertheless, pulmonary administration of nanocarrier-based cancer therapeutics for lung cancer therapy is still in its infancy and faces greater than expected challenges. This article focuses on the current inhalable nanocarrier-based drugs for lung cancer treatment.
Collapse
|
15
|
Pan Q, Deng X, Gao W, Chang J, Pu Y, He B. Small molecules-PEG amphiphilic conjugates as carriers for drug delivery: 1. the effect of molecular structures on drug encapsulation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Supasena W, Muangnoi C, Praengam K, Wong TW, Qiu G, Ye S, Wu J, Tanasupawat S, Rojsitthisak P. Enhanced selective cytotoxicity of doxorubicin to breast cancer cells by methoxypolyethylene glycol conjugation via a novel beta-thiopropanamide linker. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
He H, Song B, Qiu G, Wang W, Gu H. Synthesis, conjugating capacity and biocompatibility evaluation of a novel amphiphilic polynorbornene. Des Monomers Polym 2020; 23:141-154. [PMID: 33029082 PMCID: PMC7473315 DOI: 10.1080/15685551.2020.1812832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polynorbornenes, prepared by the ‘living’ and ‘controlled’ ring-opening metathesis polymerization (ROMP) method, have emerged as a stimuli-sensitive new class of polymer carriers. Herein, we reported a novel amphiphilic diblock polynorbornene, PNCHO-b-PNTEG, containing active benzaldehyde units, which exhibited good conjugating capacity to amino-containing molecules (e.g., doxorubicin (DOX)) via the pH-sensitive Schiff base linkage. The copolymer and its conjugate with DOX, DOX-PNCHO-b-PNTEG, were adequately analyzed by various techniques including 1H NMR, 13C NMR, gel permeation chromatography, etc. Especially, the formed conjugate of DOX-PNCHO-b-PNTEG could self-assemble into near-spherical micelles with the diameter of 81 ± 10 nm, and exhibit acid-triggered DOX release behavior, and the release rate could be adjusted by changing the environmental pH value. The excellent biological safety of PNCHO-b-PNTEG was further demonstrated by the results from both in vitro toxicity evaluation to murine fibroblast cells (L-929 cells) and in vivo evaluation of acute developmental toxicity and cell death in zebrafish embryos. Hence, the present polynorbornene-based PNCHO-b-PNTEG possesses great potential application as a biocompatible polymeric carrier and could be employed to fabricate various pH-sensitive conjugates.
Collapse
Affiliation(s)
- Hengxi He
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Bin Song
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Guirong Qiu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Weixiang Wang
- College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Zhang Y, Dosta P, Conde J, Oliva N, Wang M, Artzi N. Prolonged Local In Vivo Delivery of Stimuli-Responsive Nanogels That Rapidly Release Doxorubicin in Triple-Negative Breast Cancer Cells. Adv Healthc Mater 2020; 9:e1901101. [PMID: 31957227 DOI: 10.1002/adhm.201901101] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Triple negative breast cancer patients remain with chemotherapy as their only viable therapeutic option. However, the toxicity of available anticancer drugs and their inefficient delivery have limited the development of effective chemotherapy administration protocols and combination therapies. Drug delivery devices that can properly target chemotherapy to the right cells with efficient cancer-cell killing may play a vital role in eliminating triple-negative breast cancer. While systemic delivery results in low drug accumulation at the tumor site and for a short period of time, local delivery enables sustained drug release. However, a system that is able to provide rapid, yet prolonged action, would enable efficient tumor elimination. Herein, the development of dual-sensitive nanogels is described that are designed to rapidly dislodge the chemotherapy drug, doxorubicin, inside cancer cells through dual-sensitive action-pH and redox sensitivities-enabling efficient cancer-cell killing while eliminating systemic side effects. Their embedding within a hydrogel injected next to a tumor in a triple-negative breast-cancer mouse model enables prolonged release of the drug with instantaneous action when inside the cells resulting in efficacious tumor elimination compared to sustained local delivery only. This technology can be used for the delivery of combination therapies and for the treatment of other solid tumors.
Collapse
Affiliation(s)
- Yi Zhang
- Institute for Medical Engineering and ScienceMassachusetts Institute of Technology Cambridge MA 02139 USA
| | - Pere Dosta
- Institute for Medical Engineering and ScienceMassachusetts Institute of Technology Cambridge MA 02139 USA
- Department of MedicineDivision of Engineering in MedicineBrigham and Women's HospitalHarvard Medical School Boston MA 02115 USA
| | - João Conde
- Institute for Medical Engineering and ScienceMassachusetts Institute of Technology Cambridge MA 02139 USA
- School of Engineering and Materials ScienceQueen Mary University of London London E14NS UK
| | - Nuria Oliva
- Institute for Medical Engineering and ScienceMassachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mian Wang
- Institute for Medical Engineering and ScienceMassachusetts Institute of Technology Cambridge MA 02139 USA
- Department of MedicineDivision of Engineering in MedicineBrigham and Women's HospitalHarvard Medical School Boston MA 02115 USA
| | - Natalie Artzi
- Institute for Medical Engineering and ScienceMassachusetts Institute of Technology Cambridge MA 02139 USA
- Department of MedicineDivision of Engineering in MedicineBrigham and Women's HospitalHarvard Medical School Boston MA 02115 USA
- State Key Laboratory of Molecular Engineering of PolymersFudan University Shanghai 200438 China
| |
Collapse
|
19
|
Production and computational fluid dynamics-based modeling of PMMA nanoparticles impregnated with ivermectin by a supercritical antisolvent process. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Tumor Microenvironment Stimuli-Responsive Polymeric Prodrug Micelles for Improved Cancer Therapy. Pharm Res 2019; 37:4. [DOI: 10.1007/s11095-019-2709-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
|
21
|
Zhang T, Liu H, Li Y, Li C, Wan G, Chen B, Li C, Wang Y. A pH-sensitive nanotherapeutic system based on a marine sulfated polysaccharide for the treatment of metastatic breast cancer through combining chemotherapy and COX-2 inhibition. Acta Biomater 2019; 99:412-425. [PMID: 31494294 DOI: 10.1016/j.actbio.2019.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022]
Abstract
Metastasis and chemotherapy resistance are the leading causes of breast cancer mortality. Celecoxib (CXB), a selective cyclooxygenase-2 (COX-2) inhibitor, has antiangiogenetic activity and inhibitory effect on tumor metastasis, and can also enhance the sensitivity of chemotherapeutic drug doxorubicin (DOX) in breast cancer. To combine anticancer effects of DOX and CXB more efficiently, we designed a pH-sensitive nanotherapeutic system based on propylene glycol alginate sodium sulfate (PSS), a marine sulfated polysaccharide that possesses anti-platelet aggregation activity and has been used as a heparinoid drug in China. A facile one-pot nanoprecipitation method was used to prepare this nanotherapeutic system named as PSS@DC nanoparticles, in which DOX and CXB were complexed to form hydrophobic nanocores and PPS coated these nanocores through conjugation with DOX via a highly acid-labile benzoic-imine linker. PSS@DC nanoparticles showed distinct pH-sensitivity and significantly accelerated the release of DOX at the acidic pH mimicking the tumor microenvironment and endocytic-related organelles. Compared to single- and mixed-drug treatments, PSS@DC nanoparticles notably inhibited the growth of mouse breast cancer 4T1 cells with an IC50 of about 0.82 μg/mL DOX, and meanwhile reduced cell migration, invasion and adhesion abilities more efficiently. In 4T1 tumor-bearing mice, PSS@DC nanoparticles exhibited good tumor-targeting ability and markedly inhibited tumor growth with an inhibition rate of approximately 73.3%, and furthermore suppressed tumor metastasis through anti-angiogenesis. In summary, this nanotherapeutic system shows a great potential for the treatment of metastatic breast cancer by combining chemotherapy and COX-2 inhibitor. STATEMENT OF SIGNIFICANCE: A pH-sensitive nanotherapeutic system (PSS@DC nanoparticles) containing both chemotherapeutic drug doxorubicin (DOX) and COX-2 specific inhibitor celecoxib was designed based on a marine sulfated polysaccharide that possesses anti-platelet aggregation activity and has been used as a heparinoid drug in China. PSS@DC nanoparticles had distinct pH-sensitivity and could accelerate the release of DOX at the acidic pH values of tumor microenvironment and endocytic-related organelles. Both in vitro and in vivo, PSS@DC nanoparticles showed synergistic effects on the suppression of breast tumor growth and metastasis by combining chemotherapy and COX-2 inhibition.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Hui Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yating Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, China.
| | - Guoyun Wan
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Bowei Chen
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, Key Laboratory of Glycoscience and Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yinsong Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
22
|
Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother 2019; 116:109006. [PMID: 31152925 DOI: 10.1016/j.biopha.2019.109006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the leading cause of cancer mortality in women worldwide. To overcome the toxic side effects and multidrug resistance (MDR) during doxorubicin (DOX) chemotherapy, an arginine-glycine-aspartic (RGD) tripeptide modified, pH-sensitive solid lipid nanoparticles (SLNs) is employed in this study. In this study, a RGD conjugated, pH sensitive lipid was synthesized using glycerin monostearate (GMS) and adipic acid dihydrazide (HZ) as lipid materials and named RGD-HZ-GMS. RGD-HZ-GMS was applied to encapsulate DOX to construct a RGD modified, DOX loaded SLNs (RGD-DOX-SLNs). To evaluate the anticancer effect of RGD-DOX-SLNs, breast cancer cell line (MCF-7 cells) and DOX resistant cell line (MCF-7/ADR cells) were used. in vivo tumor suspension and toxicity effects were evaluated on mice bearing MCF-7/ADR cells breast cancer model. RGD-DOX-SLNs had a uniformly spherical shape. The mean particle size and zeta potential of the RGD-DOX-SLNs was 96.3 nm and 35.6 mV, respectively. RGD-DOX-SLNs showed 5.58 fold higher area under the plasma concentration - time curve (AUC) compared with DOX solution. Terminal half life (T1/2) and peak concentration (Cmax) of RGD-DOX-SLNs was 10.85 h and 39.12 ± 2.71 L/kg/h. in vitro and in vivo antitumor results indicate that RGD-DOX-SLNs might be a promising novel lipid carrier which could improve breast cancer therapy.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Meizhu Zheng
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Ben Yang
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Hui Fu
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Yongqing Li
- Department of Surgical Ward 1, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China.
| |
Collapse
|
23
|
Qiu G, Zhao L, Liu X, Zhao Q, Liu F, Liu Y, Liu Y, Gu H. ROMP synthesis of benzaldehyde-containing amphiphilic block polynorbornenes used to conjugate drugs for pH-responsive release. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|