1
|
Fukushima H, Takao S, Furusawa A, Suzuki M, Yang Y, Ricketts CJ, Kano M, Okuyama S, Yamamoto H, Kano M, Ball MW, Choyke PL, Linehan WM, Kobayashi H. Carbonic anhydrase-9-targeted near-infrared photoimmunotherapy as a theranostic modality for clear cell renal cell carcinoma. Int J Cancer 2025; 156:2377-2388. [PMID: 39936451 PMCID: PMC12008829 DOI: 10.1002/ijc.35364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Carbonic anhydrase-9 (CA9) is highly expressed in clear cell renal cell carcinoma (ccRCC) cells despite no expression in normal kidney tissues. Thus, CA9 has been proposed as a theranostic target for radioligand therapy (RLT). However, ccRCC tends to be radioresistant and may not effectively respond to RLT. Alternatively, CA9 can be targeted for near-infrared photoimmunotherapy (NIR-PIT) of ccRCC. Here, we sought to test NIR-PIT using CA9 in a preclinical model of ccRCC to determine its potential as a therapeutic strategy. Tissue microarray analysis showed that membrane CA9 was expressed in the majority of ccRCC cases. In vitro, CA9-targeted NIR-PIT induced cell membrane damage and cell killing in all CA9-expressing ccRCC cell lines specifically, UOK154, UOK220, and UOK122. In vivo, CA9-targeted NIR-PIT significantly inhibited tumor growth and prolonged survival in UOK154 and UOK220 subcutaneous xenograft models. Notably, 70%-80% of mice achieved complete remission after a single treatment of NIR-PIT. Additionally, remaining tumors after the first NIR-PIT persistently expressed CA9, suggesting that remaining tumors can be treated with repeated NIR-PIT. Furthermore, CA9-targeted NIR-PIT induced significant cytoplasmic damages on ccRCC cells in UOK154 orthotopic xenograft models. In conclusion, CA9-targeted NIR-PIT, which allow for safe and repeated application on the same lesion, is a promising treatment for ccRCC, especially in the management of multiple primary ccRCC (e.g., von Hippel-Lindau syndrome) and oligometastatic ccRCC.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Motofumi Suzuki
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Makoto Kano
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hiroshi Yamamoto
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Miyu Kano
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Mark W. Ball
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
2
|
Zhang Y, Qiu Y, Karimi AB, Smith BR. Systematic review: Mechanisms of photoactive nanocarriers for imaging and therapy including controlled drug delivery. Eur J Nucl Med Mol Imaging 2025; 52:1576-1595. [PMID: 39722062 PMCID: PMC11849580 DOI: 10.1007/s00259-024-07014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The design of smart, photoactivated nanomaterials for targeted drug delivery systems (DDS) has garnered significant research interest due in part to the ability of light to precisely control drug release in specific cells or tissues with high spatial and temporal resolution. The development of effective light-triggered DDS involves mechanisms including photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement, which permit response to ultraviolet (UV), visible (Vis), and/or Near Infrared (NIR) light. This review explores recent advancements in light-responsive small molecules, polymers, and nanocarriers, detailing their underlying mechanisms and utility for drug delivery and/or imaging. Furthermore, it highlights key challenges and future perspectives in the development of light-triggered DDS, emphasizing the potential of these systems to revolutionize targeted therapies. METHOD A systematic literature search was performed using Google Scholar as the primary database and information source. We searched the recently published literature (within 15 years) with the following keywords individually and in relevant combinations: light responsive, nanoparticle, drug release, mechanism, photothermal, photosensitization, photopolymerization, photocleavage, and photoisomerization. RESULTS We selected 117 scientific articles to assess the strength of evidence after screening titles and abstracts. We found that six mechanisms (photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement) have primarily been used for light-triggered drug release and categorized our review accordingly. Azobenzene/spiropyran-based derivatives and o-nitrobenzyl/Coumarin derivatives are often used for photoisomerization and photocleavage-enabled drug delivery, while free radical polymerization and cationic polymerization comprise two main mechanisms of photopolymerization. One hundred two is the primary active radical oxygen species employed for photosensitization, which is a key factor that impacts the therapeutic effects in Photodynamic therapy, but not in photothermal therapy. CONCLUSION The comprehensive review serves as a guiding compass for light-triggered DDS for biomedical applications. This rapidly advancing field is poised to generate breakthroughs for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Yunxiu Qiu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ali Bavandpour Karimi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Nishikawa D, Shimabukuro T, Suzuki H, Beppu S, Terada H, Kobayashi Y, Hanai N. Predictive Factors for the Efficacy of Head and Neck Photoimmunotherapy and Optimization of Treatment Schedules. CANCER DIAGNOSIS & PROGNOSIS 2025; 5:179-188. [PMID: 40034957 PMCID: PMC11871859 DOI: 10.21873/cdp.10428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Background/Aim Head and neck photoimmunotherapy (HN-PIT) is a promising treatment for unresectable locally advanced or recurrent head and neck cancers. However, the optimal tumor characteristics and treatment schedules remain unclear. This study aimed to identify factors associated with treatment efficacy and assess the effectiveness of treatment schedules. Patients and Methods A retrospective cohort study of patients treated with HN-PIT at Aichi Cancer Center Hospital from January 2021 to October 2024 was conducted. Tumor characteristics, treatment cycles, and outcomes were analyzed. The thickness and longest diameter of the tumors were evaluated, and treatment intervals were assessed for their association with complete response (CR). Results Among the 19 patients (30 cycles), CR was observed exclusively in local lesions. Smaller and thinner lesions showed significantly better treatment responses. Thinner lesions were more likely to achieve CR after a single cycle, whereas intermediate-thickness tumors often required multiple cycles with shorter intervals. The regional lesions did not achieve CR, even with multiple cycles and shorter intervals. Age was a significant factor influencing CR. Conclusion HN-PIT demonstrated promising efficacy for local lesions, particularly for smaller and thinner lesions. Optimizing treatment schedules, including shorter intervals for intermediate lesions, is critical for improving outcomes. Further research is needed to enhance the efficacy for regional lesions and refine treatment schedules.
Collapse
Affiliation(s)
- Daisuke Nishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Takuya Shimabukuro
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hidenori Suzuki
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Shintaro Beppu
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hoshino Terada
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yoshiaki Kobayashi
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
4
|
Yang JK, Kwon H, Kim S. Recent advances in light-triggered cancer immunotherapy. J Mater Chem B 2024; 12:2650-2669. [PMID: 38353138 DOI: 10.1039/d3tb02842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Light-triggered phototherapies, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have shown strong therapeutic efficacy with minimal invasiveness and systemic toxicity, offering opportunities for tumor-specific therapies. Phototherapies not only induce direct tumor cell killing, but also trigger anti-tumor immune responses by releasing various immune-stimulating factors. In recent years, conventional phototherapies have been combined with cancer immunotherapy as synergistic therapeutic modalities to eradicate cancer by exploiting the innate and adaptive immunity. These combined photoimmunotherapies have demonstrated excellent therapeutic efficacy in preventing tumor recurrence and metastasis compared to phototherapy alone. This review covers recent advancements in combined photoimmunotherapy, including photoimmunotherapy (PIT), PDT-combined immunotherapy, and PTT-combined immunotherapy, along with their underlying anti-tumor immune response mechanisms. In addition, the challenges and future research directions for light-triggered cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Jin-Kyoung Yang
- Department of Chemical Engineering, Dong-eui University, Busan, 47340, Republic of Korea.
| | - Hayoon Kwon
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sehoon Kim
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
5
|
Luo D, Wang X, Ramamurthy G, Walker E, Zhang L, Shirke A, Naidu NG, Burda C, Shakya R, Hostnik E, Joseph M, Ponsky L, Ponomarev V, Rosol TJ, Tweedle MF, Basilion JP. Evaluation of a photodynamic therapy agent using a canine prostate cancer model. Prostate 2023; 83:1176-1185. [PMID: 37211857 PMCID: PMC11135201 DOI: 10.1002/pros.24560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Male dogs can develop spontaneous prostate cancer, which is similar physiologically to human disease. Recently, Tweedle and coworkers have developed an orthotopic canine prostate model allowing implanted tumors and therapeutic agents to be tested in a more translational large animal model. We used the canine model to evaluate prostate-specific membrane antigen (PSMA)-targeted gold nanoparticles as a theranostic approach for fluorescence (FL) imaging and photodynamic therapy (PDT) of early stage prostate cancer. METHODS Dogs (four in total) were immunosuppressed with a cyclosporine-based immunosuppressant regimen and their prostate glands were injected with Ace-1-hPSMA cells using transabdominal ultrasound (US) guidance. Intraprostatic tumors grew in 4-5 weeks and were monitored by ultrasound (US). When tumors reached an appropriate size, dogs were injected intravenously (iv) with PSMA-targeted nano agents (AuNPs-Pc158) and underwent surgery 24 h later to expose the prostate tumors for FL imaging and PDT. Ex vivo FL imaging and histopathological studies were performed to confirm PDT efficacy. RESULTS All dogs had tumor growth in the prostate gland as revealed by US. Twenty-four hours after injection of PSMA-targeted nano agents (AuNPs-Pc158), the tumors were imaged using a Curadel FL imaging device. While normal prostate tissue had minimal fluorescent signal, the prostate tumors had significantly increased FL. PDT was activated by irradiating specific fluorescent tumor areas with laser light (672 nm). PDT bleached the FL signal, while fluorescent signals from the other unexposed tumor tissues were unaffected. Histological analysis of tumors and adjacent prostate revealed that PDT damaged the irradiated areas to a depth of 1-2 mms with the presence of necrosis, hemorrhage, secondary inflammation, and occasional focal thrombosis. The nonirradiated areas showed no visible damages by PDT. CONCLUSION We have successfully established a PSMA-expressing canine orthotopic prostate tumor model and used the model to evaluate the PSMA-targeted nano agents (AuNPs-Pc158) in the application of FL imaging and PDT. It was demonstrated that the nano agents allowed visualization of the cancer cells and enabled their destruction when they were irradiated with a specific wavelength of light.
Collapse
Affiliation(s)
- Dong Luo
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Lifang Zhang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Aditi Shirke
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Naraen G. Naidu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Reena Shakya
- Target Validation Shared Resource, James Comprehensive Cancer Center, The Ohio State University, Columbus Ohio, USA
| | - Eric Hostnik
- College of Veterinary Medicine- Veterinary Medical Center, The Ohio State University, Columbus, OH, USA
| | - Mathew Joseph
- Interventional Cardiology Cath Core Lab, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lee Ponsky
- Department of Urology, University Hospitals, Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | | | - Thomas J. Rosol
- Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Michael F. Tweedle
- Deptartment of Radiology, The Wright Center for Innovation in Biomolecular Imaging, The Ohio State University, Columbus, OH, USA
| | - James P. Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Matsuoka K, Yamada M, Fukatsu N, Goto K, Shimizu M, Kato A, Kato Y, Yukawa H, Baba Y, Sato M, Sato K. Contrast-enhanced ultrasound imaging for monitoring the efficacy of near-infrared photoimmunotherapy. EBioMedicine 2023; 95:104737. [PMID: 37558554 PMCID: PMC10505829 DOI: 10.1016/j.ebiom.2023.104737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy combining NIR-light irradiation with an antibody and IR700DX, a light-sensitive substance, to destroy tumours. However, homogeneous irradiation is difficult because the light varies depending on the distance and tissue environment. Therefore, markers that indicate sufficient irradiation are necessary. Nanoparticles sized 10∼200 nm show enhanced permeation and retention within tumours, which is further enhanced via NIR-PIT (super enhanced permeability and retention, SUPR). We aimed to monitor the effectiveness of NIR-PIT by measuring SUPR. METHODS A xenograft mouse tumour model was established by inoculating human cancer cells in both buttocks of Balb/C-nu/nu mice, and NIR-PIT was performed on only one side. To evaluate SUPR, fluorescent signal examination was performed using QD800-fluorescent nanoparticles and NIR-fluorescent poly (d,l-lactide-co-glycolic acid) (NIR-PLGA) microparticles. Harmonic signals were evaluated using micro-bubbles of the contrast agent Sonazoid and contrast-enhanced ultrasound (CEUS) imaging. The correlation between SUPR immediately after treatment and NIR-PIT effectiveness on the day after treatment was evaluated. FINDINGS QD800 fluorescent signals persisted only in the treated tumours, and the intensity of remaining signals showed high positive correlation with the therapeutic effect. NIR-PLGA fluorescent signals and Sonazoid-derived harmonic signals remained for a longer time in the treated tumours than in the controls, and the kE value of the two-compartment model correlated with NIR-PIT effectiveness. INTERPRETATION SUPR measurement using Sonazoid and CEUS imaging could be easily adapted for clinical use as a therapeutic image-based biomarker for monitoring and confirming of NIR-PIT efficacy. FUNDING This research was supported by ARIM JAPAN of MEXT, the Program for Developing Next-generation Researchers (Japan Science and Technology Agency), KAKEN (18K15923, 21K07217) (JSPS), CREST (JPMJCR19H2, JST), and FOREST-Souhatsu (JST). Mochida Memorial Foundation for Medical and Pharmaceutical Research; Takeda Science Foundation; The Japan Health Foundation; and Princess Takamatsu Cancer Research Fund. Funders only provided financial support and had no role in the study design, data collection, data analysis, interpretation, and writing of the report.
Collapse
Affiliation(s)
- Kohei Matsuoka
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Mizuki Yamada
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Noriaki Fukatsu
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Kyoichi Goto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan
| | - Misae Shimizu
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Ayako Kato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Yoshimi Kato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Hiroshi Yukawa
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan; Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Life and Medical Science, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Life and Medical Science, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Kazuhide Sato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan; Nagoya University Graduate School of Medicine, Japan; FOREST-Souhatsu, JST, Tokyo, Japan.
| |
Collapse
|
7
|
Li M, Zhao M, Li J. Near-infrared absorbing semiconducting polymer nanomedicines for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1865. [PMID: 36284504 DOI: 10.1002/wnan.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 05/13/2023]
Abstract
As a new type of organic optical nanomaterials, semiconducting polymer nanoparticles (SPNs) have the advantages of good optical characteristics and photostability, low toxicity concerns, and relatively simple preparation processes. Particularly, near-infrared (NIR) absorbing SPNs have shown a great promise in biomedicine. In addition to acting as nanoprobes for molecular imaging, these SPNs can produce local heat and reactive oxygen species with the stimulation of NIR light, allowing photothermal therapy (PTT) and photodynamic therapy (PDT), respectively. Herein, we summarize the recent development of SPN-based nanomedicines for cancer therapy. The rational designs of SPNs for enhanced PTT, PDT, or combinational PTT/PDT to achieve effective ablation of tumor tissues are highlighted. Via loading/conjugating SPNs with other therapeutic elements (such as chemotherapeutic drugs and immunotherapeutic agents), phototherapy-combined chemotherapy or immunotherapy can be realized, which is then discussed. In especial, the constructions of SPN-based nanomedicines for NIR photoactivatable chemotherapy and immunotherapy are introduced with representative examples. Finally, we discuss the current challenges and key concerns of SPNs for their biomedical applications and give an outlook for their future clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Ming Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
8
|
Du JR, Wang Y, Yue ZH, Zhang HY, Wang H, Sui GQ, Sun ZX. Recent advances in sonodynamic immunotherapy. J Cancer Res Clin Oncol 2023; 149:1645-1656. [PMID: 35831762 DOI: 10.1007/s00432-022-04190-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022]
Abstract
Tumor immunotherapy has become an important means of tumor therapy by enhancing the immune response and triggering the activation of immune cells. However, currently, only a small number of patients respond to immunotherapy alone, and patients may experience immune-related adverse events (irAEs) during the course of treatment. Sonodynamic therapy (SDT) can produce cytotoxic substances to tumor tissue, induce apoptosis and enhance immunity. SDT combined with immunotherapy is considered a promising strategy for cancer treatment. In this mini review, we summarize the role of SDT in immunotherapy in recent years, including the application of SDT-triggered immunotherapy and the combination of SDT and immunotherapy.
Collapse
Affiliation(s)
- Jia-Rui Du
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Yang Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Zong-Hua Yue
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Han-Yu Zhang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| | - Guo-Qing Sui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| | - Zhi-Xia Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| |
Collapse
|
9
|
Yamada M, Matsuoka K, Sato M, Sato K. Recent Advances in Localized Immunomodulation Technology: Application of NIR-PIT toward Clinical Control of the Local Immune System. Pharmaceutics 2023; 15:pharmaceutics15020561. [PMID: 36839882 PMCID: PMC9967863 DOI: 10.3390/pharmaceutics15020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Current immunotherapies aim to modulate the balance among different immune cell populations, thereby controlling immune reactions. However, they often cause immune overactivation or over-suppression, which makes them difficult to control. Thus, it would be ideal to manipulate immune cells at a local site without disturbing homeostasis elsewhere in the body. Recent technological developments have enabled the selective targeting of cells and tissues in the body. Photo-targeted specific cell therapy has recently emerged among these. Near-infrared photoimmunotherapy (NIR-PIT) has surfaced as a new modality for cancer treatment, which combines antibodies and a photoabsorber, IR700DX. NIR-PIT is in testing as an international phase III clinical trial for locoregional recurrent head and neck squamous cell carcinoma (HNSCC) patients (LUZERA-301, NCT03769506), with a fast-track designation by the United States Food and Drug Administration (US-FDA). In Japan, NIR-PIT for patients with recurrent head and neck cancer was conditionally approved in 2020. Although NIR-PIT is commonly used for cancer therapy, it could also be exploited to locally eliminate certain immune cells with antibodies for a specific immune cell marker. This strategy can be utilized for anti-allergic therapy. Herein, we discuss the recent technological advances in local immunomodulation technology. We introduce immunomodulation technology with NIR-PIT and demonstrate an example of the knockdown of regulatory T cells (Tregs) to enhance local anti-tumor immune reactions.
Collapse
Affiliation(s)
- Mizuki Yamada
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kohei Matsuoka
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kazuhide Sato
- B3 Unit Frontier, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Nagoya 466-8550, Japan
- FOREST-Souhatsu, CREST, JST, Tokyo 102-0076, Japan
- Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-052-744-2167; Fax: +81-052-744-2176
| |
Collapse
|
10
|
Cui Y, Xu Y, Li Y, Sun Y, Hu J, Jia J, Li X. Antibody Drug Conjugates of Near-Infrared Photoimmunotherapy (NIR-PIT) in Breast Cancers. Technol Cancer Res Treat 2023; 22:15330338221145992. [PMID: 36734039 PMCID: PMC9903039 DOI: 10.1177/15330338221145992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Worldwide, the incidence rate of breast cancer is the highest in women. Approximately 2.3 million people were newly diagnosed and 0.685 million were dead of breast cancer in 2020, which continues to grow. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with a higher risk of recurrence and metastasis, but disappointly, there are no effective and specific therapies clinically, especially for patients presenting with metastatic diseases. Therefore, it is urgent to develop a new type of cancer therapy for survival improvisation and adverse effects alleviation of breast cancers. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed, photochemistry-based cancer therapy. It was drive by an antibody-photoabsorber conjugate (APC) which is triggered by near-infrared light. The key part of APC is a cancer-targeting monoclonal antibody (mAb) that can bind to receptors or antigens on the surface of tumor cells. Because of this targeted conjugate accumulation, subsequent deployment of focal NIR-light results in functional damage on the targeted cell membranes without harming the immediately adjacent receptor-negative cells and evokes a kind of photochemical, speedy, and highly specific immunogenic cell death (ICD) of cancer cells with corresponding antigens. Subsequently, immature dendritic cells adjacent to dying cancer cells will become mature, further inducing a host-oriented anti-cancer immune response, complicatedly and comprehensively. Currently, NIR-PIT has progressed into phase 3 clinical trial for recurrent head and neck cancer. And preclinical studies have illustrated strong therapeutic efficacy of NIR-PIT targeting various molecular receptors overexpressed in breast cancer cells, including EGFR, HER2, CD44c, CD206, ICAM-1 and FAP-α. Thereby, NIR-PIT is in early trials, but appears to be a promising breast cancer therapy and moving into the future. Here, we present the specific advantages and discuss the most recent preclinical studies against several transmembrane proteins of NIR-PIT in breast cancers.
Collapse
Affiliation(s)
- Yingshu Cui
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Yuanyuan Xu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Laser, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Li
- Medical School of Chinese PLA, Beijing, China,Department of Laser, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Sun
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Hu
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Jia
- Department of Oncology, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, China,Jia Jia, Department of Oncology, the Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| | - Xiaosong Li
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China,Xiaosong Li, Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China.
| |
Collapse
|
11
|
Kaneko Y, Yamatsugu K, Yamashita T, Takahashi K, Tanaka T, Aki S, Tatsumi T, Kawamura T, Miura M, Ishii M, Ohkubo K, Osawa T, Kodama T, Ishikawa S, Tsukagoshi M, Chansler M, Sugiyama A, Kanai M, Katoh H. Pathological complete remission of relapsed tumor by photo-activating antibody-mimetic drug conjugate treatment. Cancer Sci 2022; 113:4350-4362. [PMID: 36121618 DOI: 10.1111/cas.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023] Open
Abstract
Antibody-mimetic drug conjugate is a novel noncovalent conjugate consisting of an antibody-mimetic recognizing a target molecule on the cancer cell surface and low-molecular-weight payloads that kill the cancer cells. In this study, the efficacy of a photo-activating antibody-mimetic drug conjugate targeting HER2-expressing tumors was evaluated in mice, by using the affibody that recognize HER2 (ZHER2:342 ) as a target molecule and an axially substituted silicon phthalocyanine (a novel potent photo-activating compound) as a payload. The first treatment with the photo-activating antibody-mimetic drug conjugates reduced the size of all HER2-expressing KPL-4 xenograft tumors macroscopically. However, during the observation period, relapsed tumors gradually appeared in approximately 50% of the animals. To evaluate the efficacy of repeated antibody-mimetic drug conjugate treatment, animals with relapsed tumors were treated again with the same regimen. After the second observation period, the mouse tissues were examined histopathologically. Unexpectedly, all relapsed tumors were eradicated, and all animals were diagnosed with pathological complete remission. After the second treatment, skin wounds healed rapidly, and no significant side effects were observed in other organs, except for occasional microscopic granulomatous tissues beneath the serosa of the liver in a few mice. Repeated treatments seemed to be well tolerated. These results indicate the promising efficacy of the repeated photo-activating antibody-mimetic drug conjugate treatment against HER2-expressing tumors.
Collapse
Affiliation(s)
- Yudai Kaneko
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takefumi Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kazuki Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiya Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sho Aki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Tatsumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Kawamura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mai Miura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masazumi Ishii
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tsuyoshi Osawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Akira Sugiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Tsukamoto T, Fujita Y, Shimogami M, Kaneda K, Seto T, Mizukami K, Takei M, Isobe Y, Yasui H, Sato K. Inside-the-body light delivery system using endovascular therapy-based light illumination technology. EBioMedicine 2022; 85:104289. [PMID: 36208989 PMCID: PMC9669774 DOI: 10.1016/j.ebiom.2022.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Background Light-based therapies are promising for treating diseases including cancer, hereditary conditions, and protein-related disorders. However, systems, methods, and devices that deliver light deep inside the body are limited. This study aimed to develop an endovascular therapy-based light illumination technology (ET-BLIT), capable of providing deep light irradiation within the body. Methods The ET-BLIT system consists of a catheter with a single lumen as a guidewire and diffuser, with a transparent section at the distal end for thermocouple head attachment. The optical light diffuser alters the emission direction laterally, according to the optical fibre's nose-shape angle. If necessary, after delivering the catheter to the target position in the vessel, the diffuser is inserted into the catheter and placed in the transparent section in the direction of the target lesion. Findings ET-BLIT was tested in an animal model. The 690-nm near-infrared (NIR) light penetrated the walls of blood vessels to reach the liver and kidneys without causing temperature increase, vessel damage, or blood component alterations. NIR light transmittance from the diffuser to the detector within the organ or vessel was approximately 30% and 65% for the renal and hepatic arteries, respectively. Interpretation ET-BLIT can be potentially used in clinical photo-based medicine, as a far-out technology. ET-BLIT uses a familiar method that can access the whole body, as the basic procedure is comparable to that of endovascular therapy in terms of sequence and technique. Therefore, the use of the ET-BLIT system is promising for many light-based therapies that are currently in the research phase. Funding Supported by Programme for Developing Next-generation Researchers (Japan Science and Technology Agency); JSPS KAKENHI (18K15923, 21K07217); JST-CREST (JPMJCR19H2); JST-FOREST-Souhatsu (JPMJFR2017); The Uehara Memorial Foundation; Yasuda Memorial Medical Foundation; Mochida Memorial Foundation for Medical and Pharmaceutical Research; Takeda Science Foundation; The Japan Health Foundation; Takahashi Industrial and Economic Research Foundation; AICHI Health Promotion Foundation; and Princess Takamatsu Cancer Research Fund.
Collapse
|
13
|
Yin X, Cheng Y, Feng Y, Stiles WR, Park SH, Kang H, Choi HS. Phototheranostics for multifunctional treatment of cancer with fluorescence imaging. Adv Drug Deliv Rev 2022; 189:114483. [PMID: 35944585 PMCID: PMC9860309 DOI: 10.1016/j.addr.2022.114483] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023]
Abstract
Phototheranostics stem from the recent advances in nanomedicines and bioimaging to diagnose and treat human diseases. Since tumors' diversity, heterogeneity, and instability limit the clinical application of traditional diagnostics and therapeutics, phototheranostics, which combine light-induced therapeutic and diagnostic modalities in a single platform, have been widely investigated. Numerous efforts have been made to develop phototheranostics for efficient light-induced antitumor therapeutics with minimal side effects. Herein, we review the fundamentals of phototheranostic nanomedicines with their biomedical applications. Furthermore, the progress of near-infrared fluorescence imaging and cancer treatments, including photodynamic therapy and photothermal therapy, along with chemotherapy, immunotherapy, and gene therapy, are summarized. This review also discusses the opportunities and challenges associated with the clinical translation of phototheranostics in pan-cancer research. Phototheranostics can pave the way for future research, improve the quality of life, and prolong cancer patients' survival times.
Collapse
Affiliation(s)
- Xiaoran Yin
- Department of Oncology, The Second Affiliate Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yifan Cheng
- Department of Oncology, The Second Affiliate Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Yan Feng
- Department of Oncology, The Second Affiliate Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Wesley R. Stiles
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Seung Hun Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA,Corresponding authors at: 149 13th Street, Boston, MA 02129, USA., (H. Kang), (H.S. Choi)
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA,Corresponding authors at: 149 13th Street, Boston, MA 02129, USA., (H. Kang), (H.S. Choi)
| |
Collapse
|
14
|
Takahashi K, Yasui H, Taki S, Shimizu M, Koike C, Taki K, Yukawa H, Baba Y, Kobayashi H, Sato K. Near-infrared-induced drug release from antibody-drug double conjugates exerts a cytotoxic photo-bystander effect. Bioeng Transl Med 2022; 7:e10388. [PMID: 36176626 PMCID: PMC9471993 DOI: 10.1002/btm2.10388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/21/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
Ideal cancer treatments specifically target and eradicate tumor cells without affecting healthy cells. Therefore, antibody-based therapies that specifically target cancer antigens can be considered ideal cancer therapies. Antibodies linked with small-molecule drugs (i.e., antibody-drug conjugates [ADCs]) are widely used in clinics as antibody-based therapeutics. However, because tumors express antigens heterogeneously, greater target specificity and stable binding of noncleavable linkers in ADCs limit their antitumor effects. To overcome this problem, strategies, including decreasing the binding strength, conjugating more drugs, and targeting tumor stroma, have been applied, albeit with limited success. Thus, further technological advancements are required to remotely control the ADCs. Here, we described a drug that is photo-releasable from an ADC created via simple double conjugation and its antitumor effects both on target and nontarget tumor cells. Specifically, noncleavable T-DM1 was conjugated with IR700DX to produce T-DM1-IR700. Although T-DM1-IR700 itself is noncleavable, with NIR-light irradiation, it can release DM1-derivatives which elicited antitumor effect in vitro mixed culture and in vivo mixed tumor model which are mimicking heterogeneous tumor-antigen expression same as real clinical tumors. This cytotoxic photo-bystander effect occurred in various types mixed cultures in vitro, and changing antibodies also exerted photo-bystander effects, suggesting that this technology can be used for targeting various specific cancer antigens. These findings can potentially aid the development of strategies to address challenges associated with tumor expression of heterogeneous antigen.
Collapse
Affiliation(s)
- Kazuomi Takahashi
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Hirotoshi Yasui
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Shunichi Taki
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Misae Shimizu
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
| | - Chiaki Koike
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
| | - Kentaro Taki
- Division for Medical Research EngineeringNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Hiroshi Yukawa
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
- Institute of Nano‐Life‐Systems, Institutes of Innovation for Future SocietyNagoya UniversityNagoyaJapan
- Department of Biomolecular EngineeringNagoya University Graduate School of EngineeringNagoyaJapan
| | - Yoshinobu Baba
- Institute of Nano‐Life‐Systems, Institutes of Innovation for Future SocietyNagoya UniversityNagoyaJapan
- Department of Biomolecular EngineeringNagoya University Graduate School of EngineeringNagoyaJapan
| | - Hisataka Kobayashi
- Molecular Imaging ProgramNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Kazuhide Sato
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
- Institute of Nano‐Life‐Systems, Institutes of Innovation for Future SocietyNagoya UniversityNagoyaJapan
- FOREST‐Souhatsu, CREST, JSTChiyoda‐kuTokyoJapan
- Nagoya University Institute for Advanced Research, S‐YLCJapan
| |
Collapse
|
15
|
Fukushima H, Turkbey B, Pinto PA, Furusawa A, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy (NIR-PIT) in Urologic Cancers. Cancers (Basel) 2022; 14:2996. [PMID: 35740662 PMCID: PMC9221010 DOI: 10.3390/cancers14122996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel molecularly-targeted therapy that selectively kills cancer cells by systemically injecting an antibody-photoabsorber conjugate (APC) that binds to cancer cells, followed by the application of NIR light that drives photochemical transformations of the APC. APCs are synthesized by selecting a monoclonal antibody that binds to a receptor on a cancer cell and conjugating it to IRDye700DX silica-phthalocyanine dye. Approximately 24 h after APC administration, NIR light is delivered to the tumor, resulting in nearly-immediate necrotic cell death of cancer cells while causing no harm to normal tissues. In addition, NIR-PIT induces a strong immunologic effect, activating anti-cancer immunity that can be further boosted when combined with either immune checkpoint inhibitors or immune suppressive cell-targeted (e.g., regulatory T cells) NIR-PIT. Currently, a global phase III study of NIR-PIT in recurrent head and neck squamous cell carcinoma is ongoing. The first APC and NIR laser systems were approved for clinical use in September 2020 in Japan. In the near future, the clinical applications of NIR-PIT will expand to other cancers, including urologic cancers. In this review, we provide an overview of NIR-PIT and its possible applications in urologic cancers.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Baris Turkbey
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter A. Pinto
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA;
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| |
Collapse
|
16
|
Wang F, Zhu J, Wang Y, Li J. Recent Advances in Engineering Nanomedicines for Second Near-Infrared Photothermal-Combinational Immunotherapy. NANOMATERIALS 2022; 12:nano12101656. [PMID: 35630880 PMCID: PMC9144442 DOI: 10.3390/nano12101656] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
Immunotherapy has emerged as one of the major strategies for cancer treatment. Unlike conventional therapeutic methods, immunotherapy can treat both primary and distant metastatic tumors through triggering systematic antitumor immune responses and can even prevent tumor recurrence after causing the formation of immune memory. However, immunotherapy still has the issues of low patient response rates and severe immune-related adverse events in clinical practices. In this regard, the combination of nanomedicine-mediated therapy with immunotherapy can modulate a tumor immunosuppressive microenvironment and thus amplify antitumor immunity. In particular, second near-infrared (NIR-II) photothermal therapy (PTT), which utilizes light conversions to generate heat for killing cancer cells, has shown unique advantages in combining with immunotherapy. In this review, the recent progress of engineering nanomedicines for NIR-II PTT combinational immunotherapy is summarized. The role of nanomedicine-mediated NIR-II PTT in inducing immunogenic cell death and reprogramming the tumor immunosuppressive microenvironment for facilitating immunotherapy are highlighted. The development of NIR-II-absorbing organic and inorganic nonmetal and inorganic metal nanomedicines for the NIR-II PTT combinational immunotherapy of cancer is also introduced in detail. Lastly, the current challenges and future perspectives of these nanomedicines for combinational immunotherapy are proposed.
Collapse
Affiliation(s)
- Fengshuo Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| | - Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China;
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Correspondence: (Y.W.); (J.L.)
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Correspondence: (Y.W.); (J.L.)
| |
Collapse
|
17
|
Furumoto H, Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Endoscopic Applications of Near-Infrared Photoimmunotherapy (NIR-PIT) in Cancers of the Digestive and Respiratory Tracts. Biomedicines 2022; 10:846. [PMID: 35453596 PMCID: PMC9027987 DOI: 10.3390/biomedicines10040846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and promising therapy that specifically destroys target cells by irradiating antibody-photo-absorber conjugates (APCs) with NIR light. APCs bind to target molecules on the cell surface, and when exposed to NIR light, cause disruption of the cell membrane due to the ligand release reaction and dye aggregation. This leads to rapid cell swelling, blebbing, and rupture, which leads to immunogenic cell death (ICD). ICD activates host antitumor immunity, which assists in killing still viable cancer cells in the treated lesion but is also capable of producing responses in untreated lesions. In September 2020, an APC and laser system were conditionally approved for clinical use in unresectable advanced head and neck cancer in Japan, and are now routine in appropriate patients. However, most tumors have been relatively accessible in the oral cavity or neck. Endoscopes offer the opportunity to deliver light deeper within hollow organs of the body. In recent years, the application of endoscopic therapy as an alternative to surgery for the treatment of cancer has expanded, providing significant benefits to inoperable patients. In this review, we will discuss the potential applications of endoscopic NIR-PIT, especially in thoracic and gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (H.F.); (T.K.); (H.W.); (A.F.); (P.L.C.)
| |
Collapse
|
18
|
Mussini A, Uriati E, Bianchini P, Diaspro A, Cavanna L, Abbruzzetti S, Viappiani C. Targeted photoimmunotherapy for cancer. Biomol Concepts 2022; 13:126-147. [PMID: 35304984 DOI: 10.1515/bmc-2022-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Eleonora Uriati
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza, Piacenza, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| |
Collapse
|
19
|
PD-L1 near Infrared Photoimmunotherapy of Ovarian Cancer Model. Cancers (Basel) 2022; 14:cancers14030619. [PMID: 35158887 PMCID: PMC8833482 DOI: 10.3390/cancers14030619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Despite advances in surgical approaches and drug development, ovarian cancer is still a leading cause of death from gynecological malignancies. Patients diagnosed with late-stage disease are treated with aggressive surgical resection and chemotherapy, but recurrence with resistant disease is often observed following treatment. There is a critical need for effective therapy for late-stage ovarian cancer. Photoimmunotherapy (PIT), using an antibody conjugated to a near infrared (NIR) dye, constitutes an effective theranostic strategy to detect and selectively eliminate targeted cell populations. (2) Methods: Here, we are targeting program death ligand 1 (PD-L1) using NIR-PIT in a syngeneic mouse model of ovarian cancer. PD-L1 PIT-mediated cytotoxicity was quantified in RAW264.7 macrophages and ID8-Defb29-VEGF cells in culture, and in vivo with orthotopic ID8-Defb29-VEGF tumors. (3) Results: Treatment efficacy was observed both in vitro and in vivo. (4) Conclusions: Our data highlight the need for further investigations to assess the potential of using NIR-PIT for ovarian cancer therapy to improve the treatment outcome of ovarian cancer.
Collapse
|
20
|
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022; 14:241. [PMID: 35213974 PMCID: PMC8879084 DOI: 10.3390/pharmaceutics14020241] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in the proliferation and metastatization of cancer cells. Aberrancies in the expression and activation of EGFR are hallmarks of many human malignancies. As such, EGFR-targeted therapies hold significant potential for the cure of cancers. In recent years, photodynamic therapy (PDT) has gained increased interest as a non-invasive cancer treatment. In PDT, a photosensitizer is excited by light to produce reactive oxygen species, resulting in local cytotoxicity. One of the critical aspects of PDT is to selectively transport enough photosensitizers to the tumors environment. Accordingly, an increasing number of strategies have been devised to foster EGFR-targeted PDT. Herein, we review the recent nanobiotechnological advancements that combine the promise of PDT with EGFR-targeted molecular cancer therapy. We recapitulate the chemistry of the sensitizers and their modes of action in PDT, and summarize the advantages and pitfalls of different targeting moieties, highlighting future perspectives for EGFR-targeted photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
21
|
Taki S, Matsuoka K, Nishinaga Y, Takahashi K, Yasui H, Koike C, Shimizu M, Sato M, Sato K. Spatiotemporal depletion of tumor-associated immune checkpoint PD-L1 with near-infrared photoimmunotherapy promotes antitumor immunity. J Immunother Cancer 2021; 9:jitc-2021-003036. [PMID: 34725216 PMCID: PMC8559243 DOI: 10.1136/jitc-2021-003036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Background Near-infrared photoimmunotherapy (NIR-PIT) is a new modality for treating cancer, which uses antibody-photoabsorber (IRDye700DX) conjugates that specifically bind to target tumor cells. This conjugate is then photoactivated by NIR light, inducing rapid necrotic cell death. NIR-PIT needs a highly expressed targeting antigen on the cells because of its reliance on antibodies. However, using antibodies limits this useful technology to only those patients whose tumors express high levels of a specific antigen. Thus, to propose an alternative strategy, we modified this phototechnology to augment the anticancer immune system by targeting the almost low-expressed immune checkpoint molecules on tumor cells. Methods We used programmed death-ligand 1 (PD-L1), an immune checkpoint molecule, as the target for NIR-PIT. Although the expression of PD-L1 on tumor cells is usually low, PD-L1 is almost expressed on tumor cells. Intratumoral depletion with PD-L1-targeted NIR-PIT was tested in mouse syngeneic tumor models. Results Although PD-L1-targeted NIR-PIT showed limited effect on tumor cells in vitro, the therapy induced sufficient antitumor effects in vivo, which were thought to be mediated by the ‘photoimmuno’ effect and antitumor immunity augmentation. Moreover, PD-L1-targeted NIR-PIT induced antitumor effect on non-NIR light-irradiated tumors. Conclusions Local PD-L1-targeted NIR-PIT enhanced the antitumor immune reaction through a direct photonecrotic effect, thereby providing an alternative approach to targeted cancer immunotherapy and expanding the scope of cancer therapeutics.
Collapse
Affiliation(s)
- Shunichi Taki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Kohei Matsuoka
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Yuko Nishinaga
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Kazuomi Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Hirotoshi Yasui
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Chiaki Koike
- Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, Nagoya University Institute for Advanced Research, Nagoya, AICHI, Japan
| | - Misae Shimizu
- Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, Nagoya University Institute for Advanced Research, Nagoya, AICHI, Japan
| | - Mitsuo Sato
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan
| | - Kazuhide Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, AICHI, Japan .,Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, Nagoya University Institute for Advanced Research, Nagoya, AICHI, Japan.,FOREST-Souhatsu, CREST, JST, Tokyo, Japan.,Nagoya University Institute for Advanced Research, S-YLC, Nagoya University, Nagoya, AICHI, Japan
| |
Collapse
|
22
|
Cheng D, Wang X, Zhou X, Li J. Nanosonosensitizers With Ultrasound-Induced Reactive Oxygen Species Generation for Cancer Sonodynamic Immunotherapy. Front Bioeng Biotechnol 2021; 9:761218. [PMID: 34660560 PMCID: PMC8514668 DOI: 10.3389/fbioe.2021.761218] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is a promising therapeutic strategy for cancer, while it has been demonstrated to encounter the issues of low immune responses and underlying immune-related adverse events. The sonodynamic therapy (SDT) that utilizes sonosensitizers to produce reactive oxygen species (ROS) triggered by ultrasound (US) stimulation can be used to ablate tumors, which also leads to the induction of immunogenic cell death (ICD), thus achieving SDT-induced immunotherapy. Further combination of SDT with immunotherapy is able to afford enhanced antitumor immunity for tumor regression. In this mini review, we summarize the recent development of nanosonosensitizers with US-induced ROS generation for cancer SDT immunotherapy. The uses of nanosonosensitizers to achieve SDT-induced immunotherapy, combinational therapy of SDT with immunotherapy, and combinational therapy of SDT with multiple immunotherapies are briefly introduced. Furthermore, the current concerns and perspectives for the development and further clinical applications of these nanosonosensitizers for SDT-combined immunotherapy of cancer are discussed.
Collapse
Affiliation(s)
- Danling Cheng
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
23
|
Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. NANOPHOTONICS 2021; 10:3135-3151. [PMID: 36405499 PMCID: PMC9646249 DOI: 10.1515/nanoph-2021-0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-photo-absorber conjugate (APC) composed of a targeting monoclonal antibody conjugated with a photoactivatable phthalocyanine-derivative dye, IRDye700DX (IR700). APCs injected into the body can bind to cancer cells where they are activated by local exposure to NIR light typically delivered by a NIR laser. NIR light alters the APC chemical conformation inducing damage to cancer cell membranes, resulting in necrotic cell death within minutes of light exposure. NIR-PIT selectivity kills cancer cells by immunogenic cell death (ICD) with minimal damage to adjacent normal cells thus, leading to rapid recovery by the patient. Moreover, since NIR-PIT induces ICD only on cancer cells, NIR-PIT initiates and activates antitumor host immunity that could be further enhanced when combined with immune checkpoint inhibition. NIR-PIT induces dramatic changes in the tumor vascularity causing the super-enhanced permeability and retention (SUPR) effect that dramatically enhances nanodrug delivery to the tumor bed. Currently, a worldwide Phase 3 study of NIR-PIT for recurrent or inoperable head and neck cancer patients is underway. In September 2020, the first APC and accompanying laser system were conditionally approved for clinical use in Japan. In this review, we introduce NIR-PIT and the SUPR effect and summarize possible applications of NIR-PIT in a variety of cancers.
Collapse
Affiliation(s)
- Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
24
|
Maruoka Y, Wakiyama H, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy for cancers: A translational perspective. EBioMedicine 2021; 70:103501. [PMID: 34332294 PMCID: PMC8340111 DOI: 10.1016/j.ebiom.2021.103501] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/20/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly-developed, highly-selective cancer treatment, which utilizes a monoclonal antibody conjugated to a photoabsorbing dye, IRDye700DX (IR700). The antibody conjugate is injected into the patient and accumulates in the tumour. Within 24 h of injection the tumour is exposed to NIR light which activates the conjugate and causes rapid, selective cancer cell death. A global phase III clinical trial of NIR-PIT in recurrent head and neck squamous cell cancer (HNSCC) patients is currently underway. Conditional clinical approval for NIR-PIT in recurrent HNSCC has been granted in Japan as of September 2020. Not only does NIR-PIT induce highly selective and immediate cancer cell killing, but it also stimulates highly active anti-tumour immunity. While monotherapy with NIR-PIT has proven effective it is likely that combinations with immune-checkpoint inhibitors or additional NIR-PIT targeting immune suppressive cells in the tumour microenvironment will further improve results. In this review, we discuss the translational aspects of NIR-PIT especially in HNSCC, and potential future applications.
Collapse
Affiliation(s)
- Yasuhiro Maruoka
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Departments of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Pan P, Yue Q, Li J, Gao M, Yang X, Ren Y, Cheng X, Cui P, Deng Y. Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004586. [PMID: 34165902 PMCID: PMC8224433 DOI: 10.1002/advs.202004586] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Indexed: 05/05/2023]
Abstract
Bone diseases constitute a major issue for modern societies as a consequence of progressive aging. Advantages such as open mesoporous channel, high specific surface area, ease of surface modification, and multifunctional integration are the driving forces for the application of mesoporous nanoparticles (MNs) in bone disease diagnosis and treatment. To achieve better therapeutic effects, it is necessary to understand the properties of MNs and cargo delivery mechanisms, which are the foundation and key in the design of MNs. The main types and characteristics of MNs for bone regeneration, such as mesoporous silica (mSiO2 ), mesoporous hydroxyapatite (mHAP), mesoporous calcium phosphates (mCaPs) are introduced. Additionally, the relationship between the cargo release mechanisms and bone regeneration of MNs-based nanocarriers is elucidated in detail. Particularly, MNs-based smart cargo transport strategies such as sustained cargo release, stimuli-responsive (e.g., pH, photo, ultrasound, and multi-stimuli) controllable delivery, and specific bone-targeted therapy for bone disease diagnosis and treatment are analyzed and discussed in depth. Lastly, the conclusions and outlook about the design and development of MNs-based cargo delivery systems in diagnosis and treatment for bone tissue engineering are provided to inspire new ideas and attract researchers' attention from multidisciplinary areas spanning chemistry, materials science, and biomedicine.
Collapse
Affiliation(s)
- Panpan Pan
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610051, China
| | - Juan Li
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Meiqi Gao
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xuanyu Yang
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yuan Ren
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xiaowei Cheng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Penglei Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
26
|
Li F, Mao C, Yeh S, Sun Y, Xin J, Shi Q, Ming X. MRP1-targeted near infrared photoimmunotherapy for drug resistant small cell lung cancer. Int J Pharm 2021; 604:120760. [PMID: 34077781 DOI: 10.1016/j.ijpharm.2021.120760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC), one of the most aggressive cancers, has a high mortality rate and poor prognosis, and the clinical therapeutic outcomes of multidrug resistant SCLC are even worse. Multidrug resistance protein 1 (MRP1), one of the ATP-binding cassette (ABC) transporter proteins that cause decreased drug accumulation in cancer cells, is overexpressed in drug resistant SCLC cells and could be a promising target for treating the patients suffering from this illness. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed approach for targeted cancer treatment which uses a conjugate of a monoclonal antibody and photoabosorber IR700 followed by NIR light irradiation to induce rapid cancer cell death. In the present study, an anti-MRP1 antibody (Mab) -IR700 conjugate (Mab-IR700) was synthesized, purified and used to treat chemoresistant SCLC H69AR cells that overexpressed MRP1, while non-MRP1-expressing H69 cells were used as a control. Then, the photokilling and tumor suppression effect were separately evaluated in H69AR cells both in vitro and in vivo. Higher cellular delivery of Mab-IR700 was detected in H69AR cells, whereas there was little uptake of IgG-IR700 in both H69 and H69AR cells. Due to the targeting activity of Mab, stronger photokilling effect was found both in H69AR cells and spheroids treated with Mab-IR700, while superior tumor suppression effect was also observed in the mice treated with Mab-IR700 and light illumination. Photoacoustic imaging results proved that oxygen was involved in NIR-PIT treatment, and TUNEL staining images showed the occurrence of cell apoptosis, which was also testified by HE staining. This research provides MRP1 as a novel target for PIT and presents a prospective way for treating drug resistant SCLC and, thus, should be further studied.
Collapse
Affiliation(s)
- Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Stacy Yeh
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Yao Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| |
Collapse
|
27
|
Yu N, Ding M, Li J. Near-Infrared Photoactivatable Immunomodulatory Nanoparticles for Combinational Immunotherapy of Cancer. Front Chem 2021; 9:701427. [PMID: 34109160 PMCID: PMC8181730 DOI: 10.3389/fchem.2021.701427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022] Open
Abstract
As a promising treatment option for cancer, immunotherapy can eliminate local and distant metastatic tumors and even prevent recurrence through boosting the body’s immune system. However, immunotherapy often encounters the issues of limited therapeutic efficacy and severe immune-related adverse events in clinical practices, which should be mainly due to the non-specific accumulations of immunotherapeutic agents. Activatable immunomodulatory agents that are responsive to endogenous stimuli in tumor microenvironment can afford controlled immunotherapeutic actions, while they still face certain extent of off-target activation. Since light has the advantages of noninvasiveness, simple controllability and high spatio-temporal selectivity, therapeutic agents that can be activated by light, particularly near-infrared (NIR) light with minimal phototoxicity and strong tissue penetrating ability have been programmed for cancer treatment. In this mini review, we summarize the recent progress of NIR photoactivatable immunomodulatory nanoparticles for combinational cancer immunotherapy. The rational designs, constructions and working mechanisms of NIR photoactivatable agents are first briefly introduced. The uses of immunomodulatory nanoparticles with controlled immunotherapeutic actions upon NIR photoactivation for photothermal and photodynamic combinational immunotherapy of cancer are then summarized. A conclusion and discussion of the existing challenges and further perspectives for the development and clinical translation of NIR photoactivatable immunomodulatory nanoparticles are finally given.
Collapse
Affiliation(s)
- Ningyue Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Mengbin Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
28
|
Yasui H, Nishinaga Y, Taki S, Takahashi K, Isobe Y, Shimizu M, Koike C, Taki T, Sakamoto A, Katsumi K, Ishii K, Sato K. Near-infrared photoimmunotherapy targeting GPR87: Development of a humanised anti-GPR87 mAb and therapeutic efficacy on a lung cancer mouse model. EBioMedicine 2021; 67:103372. [PMID: 33993055 PMCID: PMC8138482 DOI: 10.1016/j.ebiom.2021.103372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND GPR87 is a G-protein receptor that is specifically expressed in tumour cells, such as lung cancer, and rarely expressed in normal cells. GPR87 is a promising target for cancer therapy, but its ligand is controversial. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer therapy in which a photosensitiser, IRDye700DX (IR700), binds to antibodies and specifically destroys target cells by irradiating them with near-infrared-light. Here, we aimed to develop a NIR-PIT targeting GPR87. METHODS We evaluated the expression of GPR87 in resected specimens of lung cancer and malignant pleural mesothelioma (MPM) resected at Nagoya University Hospital using immunostaining. Humanised anti-GPR87 antibody (huGPR87) was generated by introducing CDRs from mouse anti-GPR87 antibody generated by standard hybridoma method. HuGPR87 was conjugated with IR700 and the therapeutic effect of NIR-PIT was evaluated in vitro and in vivo using lung cancer or MPM cell lines. FINDINGS Among the surgical specimens, 54% of lung cancer and 100% of MPM showed high expression of GPR87. It showed therapeutic effects on lung cancer and MPM cell lines in vitro, and showed therapeutic effects in multiple models in vivo. INTERPRETATION These results suggest that NIR-PIT targeting GPR87 is a promising therapeutic approach for the treatment of thoracic cancer. FUNDING This research was supported by the Program for Developing Next-generation Researchers (Japan Science and Technology Agency), KAKEN (18K15923, 21K07217, JSPS), FOREST-Souhatsu, CREST (JST).
Collapse
Affiliation(s)
- Hirotoshi Yasui
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Yuko Nishinaga
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Shunichi Taki
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Kazuomi Takahashi
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Yoshitaka Isobe
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Misae Shimizu
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Chiaki Koike
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Tetsuro Taki
- Department of Pathology, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan
| | - Aya Sakamoto
- Perseus Proteomics, Inc., 4-7-6, Komaba 153-0041, Meguro-ku, Tokyo, Japan
| | - Keiko Katsumi
- Perseus Proteomics, Inc., 4-7-6, Komaba 153-0041, Meguro-ku, Tokyo, Japan
| | - Keisuke Ishii
- Perseus Proteomics, Inc., 4-7-6, Komaba 153-0041, Meguro-ku, Tokyo, Japan
| | - Kazuhide Sato
- Respiratory Medicine, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan; Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC) / Medical Engineering Unit (MEU), B3 Unit, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8560, Aichi, Japan; FOREST- Souhatsu, CREST, JST; Nagoya University Institute for Advanced Research, S-YLC, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi,, Japan.
| |
Collapse
|
29
|
Yasui H, Takahashi K, Taki S, Shimizu M, Koike C, Umeda K, Rahman S, Akashi T, Nguyen VS, Nakagawa Y, Sato K. Near Infrared Photo‐Antimicrobial Targeting Therapy for
Candida albicans. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hirotoshi Yasui
- Respiratory Medicine Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Kazuomi Takahashi
- Respiratory Medicine Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Shunichi Taki
- Respiratory Medicine Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Misae Shimizu
- Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit Nagoya University Institute for Advanced Research 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Chiaki Koike
- Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit Nagoya University Institute for Advanced Research 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Koji Umeda
- EW Nutrition Japan Immunology Research Institute in Gifu 839‐7, Gifu‐City Sano Gifu 501‐1101 Japan
| | - Shofiqur Rahman
- EW Nutrition Japan Immunology Research Institute in Gifu 839‐7, Gifu‐City Sano Gifu 501‐1101 Japan
| | - Tomohiro Akashi
- Division of OMICS Analysis Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
- Division of Systems Biology Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
- S‐YLC Nagoya University Institute for Advanced Research Furo‐cho, Chikusa‐ku Nagoya Aichi 464‐8601 Japan
| | - Van Sa Nguyen
- EW Nutrition Japan Immunology Research Institute in Gifu 839‐7, Gifu‐City Sano Gifu 501‐1101 Japan
| | - Yoshiyuki Nakagawa
- Division of OMICS Analysis Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
| | - Kazuhide Sato
- Respiratory Medicine Nagoya University Graduate School of Medicine 65 Tsuumai‐cho, Showa‐ku Nagoya Aichi 466‐8550 Japan
- CREST, JST Honcho Kawaguchi Saitama 332‐0012 Japan
| |
Collapse
|
30
|
Davies JA. SynPharm and the guide to pharmacology database: A toolset for conferring drug control on engineered proteins. Protein Sci 2021; 30:160-167. [PMID: 33047381 PMCID: PMC7737777 DOI: 10.1002/pro.3971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/09/2023]
Abstract
Optimizing synthetic biological systems, for example novel metabolic pathways, becomes more complicated with more protein components. One method of taming the complexity and allowing more rapid optimization is engineering external control into components. Pharmacology is essentially the science of controlling proteins using (mainly) small molecules, and a great deal of information, spread between different databases, is known about structural interactions between these ligands and their target proteins. In principle, protein engineers can use an inverse pharmacological approach to include drug response in their design, by identifying ligand-binding domains from natural proteins that are amenable to being included in a designed protein. In this context, "amenable" means that the ligand-binding domain is in a relatively self-contained subsequence of the parent protein, structurally independent of the rest of the molecule so that its function should be retained in another context. The SynPharm database is a tool, built on to the Guide to Pharmacology database and connected to various structural databases, to help protein engineers identify ligand-binding domains suitable for transfer. This article describes the tool, and illustrates its use in seeking candidate domains for transfer. It also briefly describes already-published proof-of-concept studies in which the CRISPR effectors Cas9 and Cpf1 were placed separately under the control of tamoxifen and mefipristone, by including ligand-binding domains of the Estrogen Receptor and Progesterone Receptor in modified versions of Cas9 and Cpf1. The advantages of drug control or the rival protein-control technology of optogenetics, for different purposes and in different situations, are also briefly discussed.
Collapse
Affiliation(s)
- Jamie A. Davies
- Synthsys Centre for Systems and Synthetic Biology, Deanery of Biomedical ScienceUniversity of EdinburghEdinburghUK
| |
Collapse
|
31
|
Luo D, Wang X, Walker E, Wang J, Springer S, Lou J, Ramamurthy G, Burda C, Basilion JP. Nanoparticles Yield Increased Drug Uptake and Therapeutic Efficacy upon Sequential Near-Infrared Irradiation. ACS NANO 2020; 14:15193-15203. [PMID: 33090762 PMCID: PMC9109620 DOI: 10.1021/acsnano.0c05425] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanoparticles offer great opportunities for precision medicine. However, the use of nanoparticles as smart photosensitizers that target tumor biomarkers and are responsive to the tumor microenvironment has yet to be explored. Herein, prostate cancer (PCa)-selective theranostic gold nanoparticles (AuNPs) for precise cancer imaging and therapy are developed. Silicon phthalocyanine, Pc158, was synthesized and deactivated by conjugating it to AuNPs via a biocleavable linker. In vitro and in vivo, the targeted AuNPs show excellent selectivity for PSMA-positive tumor cells. Triggered release of the therapeutic, Pc158, followed by sequential photodynamic therapy (PDT) results in significant inhibition of tumor growth. Further, we demonstrate that multiple sequential PDT greatly enhances nanoparticle uptake and therapeutic efficacy. PSMA is highly expressed in the neovasculature of most other solid tumors in humans, as well as PCa, making this approach of great practical interest for precision PDT in a wide range of cancers.
Collapse
|
32
|
Near-Infrared Photoimmunotherapy Combined with CTLA4 Checkpoint Blockade in Syngeneic Mouse Cancer Models. Vaccines (Basel) 2020; 8:vaccines8030528. [PMID: 32937841 PMCID: PMC7564971 DOI: 10.3390/vaccines8030528] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed and highly selective cancer treatment that induces necrotic/immunogenic cell death. It employs a monoclonal antibody (mAb) conjugated to a photo-absorber dye, IRDye700DX, which is activated by NIR light. Tumor-targeting NIR-PIT is also at least partly mediated by a profound immune response against the tumor. Cytotoxic T-lymphocyte antigen-4 (CTLA4) is widely recognized as a major immune checkpoint protein, which inhibits the immune response against tumors and is therefore, a target for systemic blockade. We investigated the effect of combining tumor-targeted NIR-PIT against the cell-surface antigen, CD44, which is known as a cancer stem cell marker, with a systemic CTLA4 immune checkpoint inhibitor in three syngeneic tumor models (MC38-luc, LL/2, and MOC1). CD44-targeted NIR-PIT combined with CTLA4 blockade showed greater tumor growth inhibition with longer survival compared with CTLA4 blockade alone in all tumor models. NIR-PIT and CTLA4 blockade produced more complete remission in MOC1 tumors (44%) than NIR-PIT and programmed cell death protein 1 (PD-1) blockade (8%), which was reported in our previous paper. However, the combination of NIR-PIT and CTLA4 blockade was less effective in MC38-luc tumors (11%) than the combination of NIR-PIT and PD-1 blockade (70%). Nonetheless, in many cases ineffective results with NIR-PIT and PD-1 blockade were reversed with NIR-PIT and CTLA4 blockade.
Collapse
|
33
|
Wang X, Xuan Z, Zhu X, Sun H, Li J, Xie Z. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J Nanobiotechnology 2020; 18:108. [PMID: 32746846 PMCID: PMC7397640 DOI: 10.1186/s12951-020-00668-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Drug delivery systems (DDSs) based on nanomaterials have shown a promise for cancer chemotherapy; however, it remains a great challenge to localize on-demand release of anticancer drugs in tumor tissues to improve therapeutic effects and minimize the side effects. In this regard, photoresponsive DDSs that employ light as an external stimulus can offer a precise spatiotemporal control of drug release at desired sites of interest. Most photoresponsive DDSs are only responsive to ultraviolet-visible light that shows phototoxicity and/or shallow tissue penetration depth, and thereby their applications are greatly restricted. To address these issues, near-infrared (NIR) photoresponsive DDSs have been developed. In this review, the development of NIR photoresponsive DDSs in last several years for cancer photo-chemotherapy are summarized. They can achieve on-demand release of drugs into tumors of living animals through photothermal, photodynamic, and photoconversion mechanisms, affording obviously amplified therapeutic effects in synergy with phototherapy. Finally, the existing challenges and further perspectives on the development of NIR photoresponsive DDSs and their clinical translation are discussed.
Collapse
Affiliation(s)
- Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Zeliang Xuan
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Xiaofeng Zhu
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Haitao Sun
- Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingchao Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Zongyu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.
| |
Collapse
|
34
|
Maruoka Y, Furusawa A, Okada R, Inagaki F, Fujimura D, Wakiyama H, Kato T, Nagaya T, Choyke PL, Kobayashi H. Combined CD44- and CD25-Targeted Near-Infrared Photoimmunotherapy Selectively Kills Cancer and Regulatory T Cells in Syngeneic Mouse Cancer Models. Cancer Immunol Res 2020; 8:345-355. [PMID: 31953245 DOI: 10.1158/2326-6066.cir-19-0517] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/06/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and selective cancer treatment that induces necrotic and immunogenic cell death and utilizes a mAb conjugated to a photo-absorber dye, IR700DX, activated by NIR light. Although CD44 is a surface cancer marker associated with drug resistance, anti-CD44-IR700 NIR-PIT results in inhibited cell growth and prolonged survival in multiple tumor types. Meanwhile, CD25-targeted NIR-PIT has been reported to achieve selective and local depletion of FOXP3+CD25+CD4+ regulatory T cells (Treg), which are primary immunosuppressive cells in the tumor microenvironment (TME), resulting in activation of local antitumor immunity. Combined NIR-PIT with CD44- and CD25-targeted agents has the potential to directly eliminate tumor cells and also amplify the immune response by removing FOXP3+CD25+CD4+ Tregs from the TME. We investigated the difference in therapeutic effects of CD44-targeted NIR-PIT alone, CD25-targeted NIR-PIT alone, and the combination of CD44- and CD25-targeted NIR-PIT in several syngeneic tumor models, including MC38-luc, LL/2, and MOC1. The combined NIR-PIT showed significant tumor growth inhibition and prolonged survival compared with CD44-targeted NIR-PIT alone in all tumor models and showed prolonged survival compared with CD25-targeted NIR-PIT alone in MC38-luc and LL/2 tumors. Combined CD44- and CD25-targeted NIR-PIT also resulted in some complete remissions. Therefore, combined NIR-PIT simultaneously targeting cancer antigens and immunosuppressive cells in the TME may be more effective than either type of NIR-PIT alone and may have potential to induce prolonged immune responses in treated tumors.
Collapse
Affiliation(s)
- Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aki Furusawa
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryuhei Okada
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Fuyuki Inagaki
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daiki Fujimura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hiroaki Wakiyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Takuya Kato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
35
|
Li J, Duan H, Pu K. Nanotransducers for Near-Infrared Photoregulation in Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901607. [PMID: 31199021 DOI: 10.1002/adma.201901607] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Photoregulation, which utilizes light to remotely control biological events, provides a precise way to decipher biology and innovate in medicine; however, its potential is limited by the shallow tissue penetration and/or phototoxicity of ultraviolet (UV)/visible light that are required to match the optical responses of endogenous photosensitive substances. Thereby, biologically friendly near-infrared (NIR) light with improved tissue penetration is desired for photoregulation. Since there are a few endogenous biomolecules absorbing or emitting light in the NIR region, the development of molecular transducers is essential to convert NIR light into the cues for regulation of biological events. In this regard, optical nanomaterials able to convert NIR light into UV/visible light, heat, or free radicals are suitable for this task. Here, the recent developments of optical nanotransducers for NIR-light-mediated photoregulation in medicine are summarized. The emerging applications, including photoregulation of neural activity, gene expression, and visual systems, as well as photochemical tissue bonding, are highlighted, along with the design principles of nanotransducers. Moreover, the current challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
36
|
Abstract
The treatment of malignancies has undergone dramatic changes in the past few decades. Advances in drug delivery techniques and nanotechnology have allowed for new formulations of old drugs, so as to improve the pharmacokinetics, to enhance accumulation in solid tumors, and to reduce the significant toxic effects of these important therapeutic agents. Here, we review the published clinical data in cancer therapy of several major drug delivery systems, including targeted radionuclide therapy, antibody-drug conjugates, liposomes, polymer-drug conjugates, polymer implants, micelles, and nanoparticles. The clinical outcomes of these delivery systems from various phases of clinical trials are summarized. The success and limitations of the drug delivery strategies are discussed based on the clinical observations. In addition, the challenges in applying drug delivery for efficacious cancer therapy, including physical barriers, tumor heterogeneity, drug resistance, and metastasis, are discussed along with future perspectives of drug delivery in cancer therapy. In doing so, we intend to underscore that efficient delivery of cancer therapeutics to solid malignancies remains a major challenge in cancer therapy, and requires a multidisciplinary approach that integrates knowledge from the diverse fields of chemistry, biology, engineering, and medicine. The overall objective of this review is to improve our understanding of the clinical fate of commonly investigated drug delivery strategies, and to identify the limitations that must be addressed in future drug delivery strategies, toward the pursuit of curative therapies for cancer.
Collapse
Affiliation(s)
- Zheng-Rong Lu
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Peter Qiao
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|