1
|
Rosales JJ, Domínguez ML, Sancho L, Prieto E, de Arcocha M, Torres I, Roteta A, Ramos R, Quincoces G. State of the art and future perspectives of new radionuclides in Nuclear Medicine. Rev Esp Med Nucl Imagen Mol 2025; 44:500082. [PMID: 39793702 DOI: 10.1016/j.remnie.2025.500082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/05/2024] [Indexed: 01/13/2025]
Abstract
This continuing education analyzes recent advances in Nuclear Medicine focused on the development of new radiopharmaceuticals that improve both the diagnosis and treatment of complex diseases. The focus is on teragnosis, which combines diagnosis and treatment by means of pairs of radiopharmaceuticals directed to the same molecular target, which allows the personalization of treatments. This first part specifically reviews the teragnostic pairs copper-64/copper-67, lead-212/lead-203 and scandium-44/scandium-47, highlighting their physical characteristics, methods of production and potential clinical applications. Despite the challenges in their production, their versatility and effectiveness are driving their clinical application in oncology and other diseases. The text also addresses the development of new radiopharmaceuticals and their impact on precision medicine, pointing out future directions and opportunities for research in this field.
Collapse
Affiliation(s)
- J J Rosales
- Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Pamplona, Spain
| | - M L Domínguez
- Servicio de Medicina Nuclear, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - L Sancho
- Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Madrid, Spain
| | - E Prieto
- Servicio de Radiofísica y Protección Radiológica, Clínica Universidad de Navarra, Pamplona, Spain
| | - M de Arcocha
- Unidad de Radiofarmacia, Servicio de Medicina Nuclear, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - I Torres
- Servicio de Medicina Nuclear, Hospital La Fe, Valencia, Spain
| | - A Roteta
- Servicio de Medicina Nuclear, Hospital Universitario de Donostia, San Sebastián, Spain
| | - R Ramos
- Unidad de Radiofarmacia, Servicio de Medicina Nuclear Clínica Universidad de Navarra, Madrid, Spain.
| | - G Quincoces
- Unidad de Radiofarmacia, Servicio de Medicina Nuclear Clínica Universidad de Navarra, Madrid, Spain
| |
Collapse
|
2
|
Toàn NM. Novel Molecular Classification of Breast Cancer with PET Imaging. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2099. [PMID: 39768978 PMCID: PMC11678748 DOI: 10.3390/medicina60122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Breast cancer is a heterogeneous disease characterized by a wide range of biomarker expressions, resulting in varied progression, behavior, and prognosis. While traditional biopsy-based molecular classification is the gold standard, it is invasive and limited in capturing tumor heterogeneity, especially in deep or metastatic lesions. Molecular imaging, particularly positron emission tomography (PET) imaging, offering a non-invasive alternative, potentially plays a crucial role in the classification and management of breast cancer by providing detailed information about tumor location, heterogeneity, and progression. This narrative review, which focuses on both clinical patients and preclinical studies, explores the latest advancements in PET imaging for breast cancer, emphasizing the development of new tracers targeting hormone receptors such as the estrogen alpha receptor, progesterone receptor, androgen receptor, estrogen beta receptor, as well as the ErbB family of receptors, VEGF/VEGFR, PARP1, PD-L1, and markers for indirectly assessing Ki-67. These innovative radiopharmaceuticals have the potential to guide personalized treatment approaches based on the unique tumor profiles of individual patients. Additionally, they may improve the assessment of treatment efficacy, ultimately leading to better outcomes for those diagnosed with breast cancer.
Collapse
Affiliation(s)
- Ngô Minh Toàn
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- Medical Imaging Clinic, Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Fathima A, Farboodniay Jahromi MA, Begum SA, Jamma T. Withametelin inhibits TGF-β induced Epithelial-to-Mesenchymal Transition and Programmed-Death Ligand-1 expression in vitro. Front Oncol 2024; 14:1435516. [PMID: 39077463 PMCID: PMC11284055 DOI: 10.3389/fonc.2024.1435516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Withanolides are a group of naturally occurring plant-based small molecules known for their wide range of host cellular functions. The anticancer potential of withanolides has been explored in varying cancer cell lines in vitro. Based on our prior studies, among the tested withanolides, withametelin (WM) has shown significant cytotoxicity with the highest efficacy on HCT-116 colon cancer cells (IC50 0.719 ± 0.12μM). Treatment with WM reduced the TGF-β driven proliferation, colony-forming ability, migration, and invasiveness of HCT-116 cells in vitro. WM also downregulated the expression of mesenchymal markers such as N-CADHERIN, SNAIL, and SLUG in HCT-116 cells. At the molecular level, WM inhibited TGF-β induced phosphorylation of SMAD2/3 and reduced the expression of an immune checkpoint inhibitor programmed-death ligand-1 (PD-L1). Our study highlights the possible anticancer mechanisms of WM involving modulation of the TGF-β pathway and associated target gene expression, suggesting its potential utility in cancer therapy.
Collapse
Affiliation(s)
- Ashna Fathima
- Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Hyderabad, India
| | | | - Sajeli A. Begum
- Department of Pharmacy, Birla Institute of Technology & Science, Hyderabad, India
| | - Trinath Jamma
- Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Hyderabad, India
| |
Collapse
|
4
|
Wang Y, Tang T, Yuan Y, Li N, Wang X, Guan J. Copper and Copper Complexes in Tumor Therapy. ChemMedChem 2024; 19:e202400060. [PMID: 38443744 DOI: 10.1002/cmdc.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Copper (Cu), a crucial trace element in physiological processes, has garnered significant interest for its involvement in cancer progression and potential therapeutic applications. The regulation of cellular copper levels is essential for maintaining copper homeostasis, as imbalances can lead to toxicity and cell death. The development of drugs that target copper homeostasis has emerged as a promising strategy for anticancer treatment, with a particular focus on copper chelators, copper ionophores, and novel copper complexes. Recent research has also investigated the potential of copper complexes in cancer therapy.
Collapse
Affiliation(s)
- Yingqiao Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingxi Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Guan
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Krutzek F, Donat CK, Ullrich M, Stadlbauer S. Design, Synthesis, and Biological Evaluation of Small-Molecule-Based Radioligands with Improved Pharmacokinetic Properties for Imaging of Programmed Death Ligand 1. J Med Chem 2023; 66:15894-15915. [PMID: 38038981 PMCID: PMC10726354 DOI: 10.1021/acs.jmedchem.3c01355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Small molecules offer some advantages for developing positron emission tomography (PET) tracers and are therefore a promising approach for imaging and therapy monitoring of programmed death ligand 1 (PD-L1) positive tumors. Here, we report six biphenyl PD-L1 radioligands using the NODA-GA-chelator for efficient copper-64 complexation. These radioligands contain varying numbers of sulfonic and/or phosphonic acid groups, serving as hydrophilizing units to lower the log D7.4 value down to -4.28. The binding affinities of compounds were evaluated using saturation binding and a real-time binding assay, with a highest binding affinity of 21 nM. Small-animal PET imaging revealed vastly different pharmacokinetic profiles depending on the quantity and type of hydrophilizing units. Of the investigated radioligands, [64Cu]Cu-3 showed the most favorable kinetics in vitro. This was also found in vivo, with a predominantly renal clearance and a specific uptake in the PD-L1-overexpressing tumor. With further modifications, this compound could be a promising candidate for the imaging of PD-L1 in the clinical setting.
Collapse
Affiliation(s)
- Fabian Krutzek
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Cornelius K. Donat
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Sven Stadlbauer
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
6
|
Krasnovskaya OO, Abramchuck D, Erofeev A, Gorelkin P, Kuznetsov A, Shemukhin A, Beloglazkina EK. Recent Advances in 64Cu/ 67Cu-Based Radiopharmaceuticals. Int J Mol Sci 2023; 24:9154. [PMID: 37298101 PMCID: PMC10288943 DOI: 10.3390/ijms24119154] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Copper-64 (T1/2 = 12.7 h) is a positron and beta-emitting isotope, with decay characteristics suitable for both positron emission tomography (PET) imaging and radiotherapy of cancer. Copper-67 (T1/2 = 61.8 h) is a beta and gamma emitter, appropriate for radiotherapy β-energy and with a half-life suitable for single-photon emission computed tomography (SPECT) imaging. The chemical identities of 64Cu and 67Cu isotopes allow for convenient use of the same chelating molecules for sequential PET imaging and radiotherapy. A recent breakthrough in 67Cu production opened previously unavailable opportunities for a reliable source of 67Cu with high specific activity and purity. These new opportunities have reignited interest in the use of copper-containing radiopharmaceuticals for the therapy, diagnosis, and theranostics of various diseases. Herein, we summarize recent (2018-2023) advances in the use of copper-based radiopharmaceuticals for PET, SPECT imaging, radiotherapy, and radioimmunotherapy.
Collapse
Affiliation(s)
- Olga O. Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| | - Daniil Abramchuck
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
- Research Laboratory of Biophysics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Peter Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Kuznetsov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Andrey Shemukhin
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
| | - Elena K. Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| |
Collapse
|
7
|
Krutzek F, Donat CK, Ullrich M, Zarschler K, Ludik MC, Feldmann A, Loureiro LR, Kopka K, Stadlbauer S. Design and Biological Evaluation of Small-Molecule PET-Tracers for Imaging of Programmed Death Ligand 1. Cancers (Basel) 2023; 15:cancers15092638. [PMID: 37174103 PMCID: PMC10177516 DOI: 10.3390/cancers15092638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Noninvasive molecular imaging of the PD-1/PD-L1 immune checkpoint is of high clinical relevance for patient stratification and therapy monitoring in cancer patients. Here we report nine small-molecule PD-L1 radiotracers with solubilizing sulfonic acids and a linker-chelator system, designed by molecular docking experiments and synthesized according to a new, convergent synthetic strategy. Binding affinities were determined both in cellular saturation and real-time binding assay (LigandTracer), revealing dissociation constants in the single digit nanomolar range. Incubation in human serum and liver microsomes proved in vitro stability of these compounds. Small animal PET/CT imaging, in mice bearing PD-L1 overexpressing and PD-L1 negative tumors, showed moderate to low uptake. All compounds were cleared primarily through the hepatobiliary excretion route and showed a long circulation time. The latter was attributed to strong blood albumin binding effects, discovered during our binding experiments. Taken together, these compounds are a promising starting point for further development of a new class of PD-L1 targeting radiotracers.
Collapse
Affiliation(s)
- Fabian Krutzek
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Cornelius K Donat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Marie-Charlotte Ludik
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Liliana R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sven Stadlbauer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
8
|
Yang C, Qian Q, Zhao Y, Huang B, Chen R, Gong Q, Ji H, Wang C, Xia L, You Z, Zhang J, Chen X. Fibrinogen-like protein 1 promotes liver-resident memory T-cell exhaustion in hepatocellular carcinoma. Front Immunol 2023; 14:1112672. [PMID: 36993960 PMCID: PMC10040674 DOI: 10.3389/fimmu.2023.1112672] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Background and aimsThe key role of tissue-resident memory T (TRM) cells in the immune regulation of hepatocellular carcinoma (HCC) has been investigated and reported, but the regulatory mechanism of tumor microenvironment on TRM cells is still unclear. Lymphocyte activating gene 3 (LAG-3) is a promising next-generation immune checkpoint that is continuously expressed due to persistent antigen exposure in the tumor microenvironment. Fibrinogen-like protein 1 (FGL1) is a classical ligand of LAG-3 and can promote T cell exhaustion in tumors. Here, we excavated the effect of FGL1-LAG3 regulatory axis on TRM cells in HCC.MethodsThe function and phenotype of intrahepatic CD8+ TRM cells in 35 HCC patients were analyzed using multicolor flow cytometry. Using a tissue microarray of 80 HCC patients, we performed the prognosis analysis. Moreover, we investigated the suppressive effect of FGL1 on CD8+ TRM cells both in in vitro induction model and in vivo orthotopic HCC mouse model.ResultsThere was an increase in LAG3 expression in CD8+ TRM cells in end-stage HCC; moreover, FGL1 levels were negatively correlated with CD103 expression and related to poor outcomes in HCC. Patients with high CD8+ TRM cell proportions have better outcomes, and FGL1-LAG3 binding could lead to the exhaustion of CD8+ TRM cells in tumors, indicating its potential as a target for immune checkpoint therapy of HCC. Increased FGL1 expression in HCC may result in CD8+ TRM cell exhaustion, causing tumor immune escape.ConclusionsWe identified CD8+TRM cells as a potential immunotherapeutic target and reported the effect of FGL1-LAG3 binding on CD8+ TRM cell function in HCC.
Collapse
Affiliation(s)
- Changjie Yang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yudong Zhao
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruilin Chen
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiyu Gong
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ji
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chenchen Wang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaosong Chen, ; Jianjun Zhang,
| | - Xiaosong Chen
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaosong Chen, ; Jianjun Zhang,
| |
Collapse
|
9
|
García Melián MF, Moreno M, Cerecetto H, Calzada V. Aptamer-Based Immunotheranostic Strategies. Cancer Biother Radiopharm 2023; 38:246-255. [PMID: 36603108 DOI: 10.1089/cbr.2022.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The escape from immune surveillance is a hallmark of cancer progression. The classic immune checkpoint molecules PD-1, PD-L1, CTLA-4, LAG-3, TIM-3 novel ones are part of a sophisticated system of up- and downmodulation of the immune system, which is unregulated in cancer. In recent years, there have been remarkable advances in the development of targeting strategies, focused principally on immunotherapies aiming at blocking those molecules involved in the evasion of the immune system. However, there are still challenges to predicting their efficacy due to the wide heterogeneity of clinical responses. Thus, there is a need to develop new strategies, and theranostics has much to contribute in this field. Besides that, aptamers have emerged as promising molecules with the potential to generate a huge impact in the immunotheranostic field. They are single-stranded oligonucleotides with a unique self-folding tridimensional structure, with high affinity and specificity for the target. In particular, their small size and physicochemical characteristics make them a versatile tool for designing theranostic strategies. Here, we review the progress in theranostic strategies based on aptamers against immune checkpoints, and highlight the potential of those approaches.
Collapse
Affiliation(s)
- María Fernanda García Melián
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hugo Cerecetto
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Victoria Calzada
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
Zhang Y, Ding Y, Li N, Wang S, Zhou S, Li R, Yang H, Li W, Qu J. Noninvasive Imaging of Tumor PD-L1 Expression Using [ 99mTc]Tc-Labeled KN035 with SPECT/CT. Mol Pharm 2023; 20:690-700. [PMID: 36541699 DOI: 10.1021/acs.molpharmaceut.2c00874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Programmed cell death protein-1/ligand-1 (PD-1/PD-L1) checkpoint blockade is a major breakthrough in cancer therapy, but identifying patients likely to benefit from this therapy remains challenging. Immunohistochemistry is not informative about PD-L1 expression heterogeneity because of the limitations of invasive tissue collection. Noninvasive SPECT imaging is an approach to patient selection and therapeutic monitoring by assessing the PD-L1 status throughout the whole body. Here, we radiolabeled a single-domain PD-L1 antibody with technetium-99m (99mTc) for immune-SPECT imaging to evaluate its feasibility of detecting PD-L1 expression. The radiochemical purity of [99mTc]Tc-HYNIC-KN035 was 99.40 ± 0.11% with a specific activity of 2.68 MBq/μg. [99mTc]Tc-HYNIC-KN035 displayed a high PD-L1 specificity both in vitro and in vivo and showed a high specific affinity for PD-L1 with an equilibrium dissociation constant (KD) of 31.04 nM. The binding of [99mTc]Tc-HYNIC-KN035 to H1975 cells (high expression of PD-L1) was much higher than to A549 cells (low expression of PD-L1). SPECT/CT imaging showed that H1975 tumors were visualized at 4 h post-injection and became clearer with time. However, mild tumor uptake was observed in A549 tumors and H1975 tumors of the blocking group at all time points. The uptake value of [99mTc]Tc-HYNIC-KN035 in H1975 tumors was increased continuously from 9.68 ± 0.91% ID/g at 4 h to 13.31 ± 2.23% ID/g at 24 h post-injection, which was higher than in A549 tumors with %ID/g of 4.59 ± 0.76 and 5.54 ± 0.28 at 4 and 24 h post-injection, respectively. These specific bindings were confirmed by blocking studies. [99mTc]Tc-HYNIC-KN035 can be synthesized easily and specifically targeted to PD-L1 in the tumor environment, allowing PD-L1 expression assessment noninvasively and dynamically with SPECT/CT imaging.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ying Ding
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.,Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Ning Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Sen Wang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Si Zhou
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ruping Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hui Yang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Wenliang Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jinrong Qu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
11
|
Yamamoto M, Kurino T, Matsuda R, Jones HS, Nakamura Y, Kanamori T, Tsuji AB, Sugyo A, Tsuda R, Matsumoto Y, Sakurai Y, Suzuki H, Sano M, Osada K, Uehara T, Ishii Y, Akita H, Arano Y, Hisaka A, Hatakeyama H. Delivery of aPD-L1 antibody to i.p. tumors via direct penetration by i.p. route: Beyond EPR effect. J Control Release 2022; 352:328-337. [PMID: 36280153 DOI: 10.1016/j.jconrel.2022.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
Chemotherapy for peritoneal dissemination is poorly effective owing to limited drug transfer from the blood to the intraperitoneal (i.p.) compartment after intravenous (i.v.) administration. i.p. chemotherapy has been investigated to improve drug delivery to tumors; however, the efficacy continues to be debated. As anticancer drugs have low molecular weight and are rapidly excreted through the peritoneal blood vessels, maintaining the i.p. concentration as high as expected is a challenge. In this study, we examined whether i.p. administration is an efficient route of administration of high-molecular-weight immune checkpoint inhibitors (ICIs) for the treatment of peritoneal dissemination using a model of peritoneal disseminated carcinoma. After i.p. administration, the amount of anti-PD-L1 antibody transferred into i.p. tumors increased by approximately eight folds compared to that after i.v. administration. Intratumoral distribution analysis revealed that anti-PD-L1 antibodies were delivered directly from the i.p. space to the surface of tumor tissue, and that they deeply penetrated the tumor tissues after i.p. administration; in contrast, after i.v. administration, anti-PD-L1 antibodies were only distributed around blood vessels in tumor tissues via the enhanced permeability and retention (EPR) effect. Owing to the enhanced delivery, the therapeutic efficacy of anti-PD-L1 antibody in the peritoneal dissemination models was also improved after i.p. administration compared to that after i.v. administration. This is the first study to clearly demonstrate an EPR-independent delivery of ICIs to i.p. tumors by which ICIs were delivered in a massive amount to the tumor tissue via direct penetration after i.p. administration.
Collapse
Affiliation(s)
- Mayu Yamamoto
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Taiki Kurino
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Reiko Matsuda
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Haleigh Sakura Jones
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yoshito Nakamura
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Taisei Kanamori
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Atushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Ryota Tsuda
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yui Matsumoto
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yu Sakurai
- Laboratory of DDS design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroyuki Suzuki
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Makoto Sano
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Kensuke Osada
- Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Tomoya Uehara
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yukimoto Ishii
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Laboratory of DDS design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yasushi Arano
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Akihiro Hisaka
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| |
Collapse
|
12
|
Mulero F. ImmunoPET in oncology. Rev Esp Med Nucl Imagen Mol 2022; 41:332-339. [PMID: 35961857 DOI: 10.1016/j.remnie.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
Abstract
Due to increase of immunotherapy in oncology, it is essential to have a biological characterization of tumors. Knowing which antigens are expressed both on the surface of the tumor cell and at tumor microenvironment in order to predict the tretment response different therapeutic antibodies, has become a need. ImmunoPET is a non-invasive diagnostic imaging tool that combines the high specificity of antibodies against antigens with the high sensitivity, resolution and quantification capacity of PET imaging. With ImmunoPET we obtain a virtual biopsy of tumors, it has a big present and future in preclinical-clinical research, being already a reality in predicting and monitoring the response to treatments with monoclonal antibodies, allowing a selection of patients and therapies reaching a personalized medicine contributing to improve clinical decisions.
Collapse
Affiliation(s)
- Francisca Mulero
- Unidad de Imagen Molecular, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro, 3, Madrid, Spain.
| |
Collapse
|
13
|
InmunoPET en oncología. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Ge S, Jia T, Li J, Zhang B, Sang S, Deng S. Molecular imaging of immune checkpoints in oncology: Current and future applications. Cancer Lett 2022; 548:215896. [PMID: 36041658 DOI: 10.1016/j.canlet.2022.215896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Immune checkpoint (IC) blockade therapy has become the first-line treatment for various cancers. However, the low response rate and acquired drug resistance severely restrict the clinical application of immune checkpoint inhibitors (ICIs). Nuclide molecular imaging of ICs can provide non-invasive and whole-body visualization of in vivo IC dynamic biodistribution. Therefore, molecular imaging of ICs can predict and monitor responses to ICIs as a complementary tool to existing immunohistochemical techniques. Herein, we outlined the current status and recent advances in molecular imaging of the "first-generation" and "next-generation" ICs in preclinical and clinical studies.
Collapse
Affiliation(s)
- Shushan Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621099, China
| | - Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jihui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621099, China.
| |
Collapse
|
15
|
Brown EL, DeWeerd RA, Zidel A, Pereira PMR. Preclinical antibody-PET imaging of PD-L1. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:953202. [PMID: 39354977 PMCID: PMC11440863 DOI: 10.3389/fnume.2022.953202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 10/03/2024]
Abstract
Programmed cell death protein-1/ligand-1 (PD-1/PD-L1) blockade, including antibody therapeutics, has transformed cancer treatment. However, a major challenge in the field relates to selecting patients who are likely to respond to immune checkpoint inhibitors. Indeed, biopsy-based diagnostic tests to determine immune checkpoint protein levels do not accurately capture the inherent spatial and temporal heterogeneity of PD-L1 tumor expression. As a result, not all PD-L1-positive tumors respond to immunotherapies, and some patients with PD-L1-negative tumors have shown clinical benefits. In 2018, a first-in-human study of the clinically-approved anti-PD-L1 antibody Atezolizumab labeled with the positron emitter zirconium-89 validated the ability of positron emission tomography (PET) to visualize PD-L1 expression in vivo and predict tumor response to immunotherapy. These studies have triggered the expansion of PD-L1-targeted immunoPET to assess PD-L1 protein levels and PD-L1 expression heterogeneity in real time and across the whole tumor. First, this mini-review introduces new PD-L1 PET imaging studies of the last 4 years, focusing on the expansion of preclinical tumor models and anti-PD-L1 antibodies/antibody fragments in development. Then, the review discusses how these preclinical models and targeting agents can be utilized to study spatial and temporal heterogeneity of PD-L1 expression.
Collapse
Affiliation(s)
- Emma L. Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel A. DeWeerd
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Abbey Zidel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Patricia M. R. Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Krutzek F, Kopka K, Stadlbauer S. Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis. Pharmaceuticals (Basel) 2022; 15:ph15060747. [PMID: 35745666 PMCID: PMC9228425 DOI: 10.3390/ph15060747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has emerged as a major treatment option for a variety of cancers. Among the immune checkpoints addressed, the programmed death receptor 1 (PD-1) and its ligand PD-L1 are the key targets for an ICI. PD-L1 has especially been proven to be a reproducible biomarker allowing for therapy decisions and monitoring therapy success. However, the expression of PD-L1 is not only heterogeneous among and within tumor lesions, but the expression is very dynamic and changes over time. Immunohistochemistry, which is the standard diagnostic tool, can only inadequately address these challenges. On the other hand, molecular imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) provide the advantage of a whole-body scan and therefore fully address the issue of the heterogeneous expression of checkpoints over time. Here, we provide an overview of existing PET, SPECT, and optical imaging (OI) (radio)tracers for the imaging of the upregulation levels of PD-1 and PD-L1. We summarize the preclinical and clinical data of the different molecule classes of radiotracers and discuss their respective advantages and disadvantages. At the end, we show possible future directions for developing new radiotracers for the imaging of PD-1/PD-L1 status in cancer patients.
Collapse
Affiliation(s)
- Fabian Krutzek
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
| | - Klaus Kopka
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Cancer Cancer (UCC), 01307 Dresden, Germany
| | - Sven Stadlbauer
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- Correspondence:
| |
Collapse
|
17
|
Boron encapsulated in a liposome can be used for combinational neutron capture therapy. Nat Commun 2022; 13:2143. [PMID: 35440126 PMCID: PMC9018847 DOI: 10.1038/s41467-022-29780-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/08/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is an attractive approach to treat invasive malignant tumours due to binary heavy-particle irradiation, but its clinical applications have been hindered by boron delivery agents with low in vivo stability, poor biocompatibility, and limited application of combinational modalities. Here, we report boronsome, a carboranyl-phosphatidylcholine based liposome for combinational BNCT and chemotherapy. Theoretical simulations and experimental approaches illustrate high stability of boronsome. Then positron emission tomography (PET) imaging with Cu-64 labelled boronsome reveals high-specific tumour accumulation and long retention with a clear irradiation background. In particular, we show the suppression of tumour growth treated with boronsome with neutron irradiation and therapeutic outcomes are further improved by encapsulation of chemotherapy drugs, especially with PARP1 inhibitors. In sum, boronsome may be an efficient agent for concurrent chemoradiotherapy with theranostic properties against malignancies. Boron neutron capture therapy is a type of cancer therapy but is associated with insufficient boron delivery and with poor biocompatibility. Here, the authors constructed boronated lipids to generate - boronsome - and show the system can reduce tumour growth.
Collapse
|
18
|
Hegi-Johnson F, Rudd S, Hicks RJ, De Ruysscher D, Trapani JA, John T, Donnelly P, Blyth B, Hanna G, Everitt S, Roselt P, MacManus MP. Imaging immunity in patients with cancer using positron emission tomography. NPJ Precis Oncol 2022; 6:24. [PMID: 35393508 PMCID: PMC8989882 DOI: 10.1038/s41698-022-00263-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.
Collapse
Affiliation(s)
- Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stacey Rudd
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Rodney J Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joseph A Trapani
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thomas John
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul Donnelly
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Blyth
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Roselt
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Wang J, Zhuo LG, Zhao P, Liao W, Wei H, Yang Y, Peng S, Yang X. Screening for a 177Lu-labeled CA19-9 monoclonal antibody via PET imaging for colorectal cancer therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Chen J, Wang J, Xu M, Jia X, Song G, Liu Z. Production of positron-emitting radionuclide yttrium-86 with a computer-aided design target for positron emission tomography. Nucl Med Biol 2022; 108-109:54-60. [DOI: 10.1016/j.nucmedbio.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 01/21/2023]
|
21
|
Biochanin A Suppresses Tumor Progression and PD-L1 Expression via Inhibiting ZEB1 Expression in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3224373. [PMID: 35242187 PMCID: PMC8888121 DOI: 10.1155/2022/3224373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/15/2022] [Indexed: 12/23/2022]
Abstract
Objective. To investigate the regulatory effect of ZEB1 on PD-L1 expression and the pharmacodynamic effects of Biochanin A on the malignant biological behaviors of colorectal cancer (CRC). Methods. The correlation between epithelial-mesenchymal transition (EMT) score and features of the tumor microenvironment (TME) was investigated using the Cancer Genome Atlas (TCGA) dataset. The correlation between ZEB1 and PD-L1 expression was validated using immunohistochemistry (IHC) staining, and the regulatory effect of ZEB1 on PD-L1 expression was explored by in vitro assays. Moreover, the pharmacodynamic effects of Biochanin A on ZEB1 and PD-L1 expression, as well as malignant biological behaviors of CRC cells, were evaluated by in vitro and in vivo assays. Results. EMT score was positively correlated with a majority of immunostimulators, immune checkpoints, activities of antitumor immunity cycles, and infiltration levels of most immune cells in the TCGA dataset. In addition, ZEB1 was correlated with and positively regulated PD-L1 expression in CRC. Besides, Biochanin A, an inhibitor for the ZEB1/PD-L1 axis, notably inhibited ZEB1-mediated aggressiveness and PD-L1 expression of CRC cells. Moreover, Biochanin A also exerted a tumor-inhibitory role in vivo in the CRC mouse model. Conclusion. Overall, we found that ZEB1 is a main regulator of PD-L1 expression in CRC. In addition, we also identified Biochanin A as a novel inhibitor for the ZEB1/PD-L1 axis, which could inhibit tumor progression and immune escape.
Collapse
|
22
|
Liu XH, Qi LW, Alolga RN, Liu Q. Implication of the hepatokine, fibrinogen-like protein 1 in liver diseases, metabolic disorders and cancer: The need to harness its full potential. Int J Biol Sci 2022; 18:292-300. [PMID: 34975333 PMCID: PMC8692158 DOI: 10.7150/ijbs.66834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/24/2021] [Indexed: 12/17/2022] Open
Abstract
Fibrinogen-like protein 1 (FGL1) is a novel hepatokine that forms part of the fibrinogen superfamily. It is predominantly expressed in the liver under normal physiological conditions. When the liver is injured by external factors, such as chemical drugs and radiation, FGL1 acts as a protective factor to promote the growth of regenerated cells. However, elevated hepatic FGL1 under high fat conditions can cause lipid accumulation and inflammation, which in turn trigger the development of non-alcoholic fatty liver disease, diabetes, and obesity. FGL1 is also involved in the regulation of insulin resistance in adipose tissues and skeletal muscles as a means of communication between the liver and other tissues. In addition, the abnormally changed FGL1 levels in the plasma of cancer patients make it a potential predictor of cancer incidence in clinical practice. FGL1 was recently identified as a major functional ligand of the immune inhibitory receptor, lymphocyte-activation gene 3 (LAG3), thus making it a promising target for cancer immunotherapy except for the classical programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis. Despite the potential of FGL1 as a new cancer biomarker and therapeutic target, there are few related studies and much of what has been reported are superficial and lack depth and particularity. Therefore, elucidating the role and underlying mechanisms of FGL1 could be crucial for the development of promising diagnostic and therapeutic strategies for related diseases. Here, we provide a comprehensive review of the cellular mechanisms and clinical prospects of FGL1 in the prevention and treatment of liver diseases, metabolic disorders and cancer, and proffer suggestions for future studies.
Collapse
Affiliation(s)
- Xi-Hua Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Albumin-binding lipid-aptamer conjugates for cancer immunoimaging and immunotherapy. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Bouleau A, Lebon V, Truillet C. PET imaging of immune checkpoint proteins in oncology. Pharmacol Ther 2021; 222:107786. [PMID: 33307142 DOI: 10.1016/j.pharmthera.2020.107786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Despite the remarkable clinical successes of immune checkpoint inhibitors (ICIs) in various advanced cancers, response is still limited to a subset of patients that generally exhibit tumoral expression of immune checkpoint (IC) proteins. Development of biomarkers assessing the expression of such ICs is therefore a major challenge nowadays to refine patient selection and improve therapeutic benefits. Positron emission tomography (PET) imaging using IC-targeted radiolabeled monoclonal antibodies (immunoPET) provides a non-invasive and whole-body visualization of in vivo IC biodistribution. As such, PET imaging of ICs may serve as a robust biomarker to predict and monitor responses to ICIs, complementing the existing immunohistochemical techniques. Besides monoclonal antibodies, other PET radioligand formats, ranging from antibody-derived fragments to small proteins, have gained increasing interest owing to their faster pharmacokinetics and enhanced imaging characteristics. We provide an overview of the various strategies investigated so far for PET imaging of ICs in preclinical and clinical studies, emphasizing their benefits and limitations. Moreover, we discuss various parameters to consider for designing optimized and best-suited PET radioligands.
Collapse
Affiliation(s)
- Alizée Bouleau
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 ORSAY, France
| | - Vincent Lebon
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 ORSAY, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 ORSAY, France.
| |
Collapse
|
25
|
Chomet M, van Dongen GAMS, Vugts DJ. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem 2021; 32:1315-1330. [PMID: 33974403 PMCID: PMC8299458 DOI: 10.1021/acs.bioconjchem.1c00136] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Inert
and stable radiolabeling of monoclonal antibodies (mAb),
antibody fragments, or antibody mimetics with radiometals is a prerequisite
for immuno-PET. While radiolabeling is preferably fast, mild, efficient,
and reproducible, especially when applied for human use in a current
Good Manufacturing Practice compliant way, it is crucial that the
obtained radioimmunoconjugate is stable and shows preserved immunoreactivity
and in vivo behavior. Radiometals and chelators have
extensively been evaluated to come to the most ideal radiometal–chelator
pair for each type of antibody derivative. Although PET imaging of
antibodies is a relatively recent tool, applications with 89Zr, 64Cu, and 68Ga have greatly increased in
recent years, especially in the clinical setting, while other less
common radionuclides such as 52Mn, 86Y, 66Ga, and 44Sc, but also 18F as in [18F]AlF are emerging promising candidates for the radiolabeling
of antibodies. This review presents a state of the art overview of
the practical aspects of radiolabeling of antibodies, ranging from
fast kinetic affibodies and nanobodies to slow kinetic intact mAbs.
Herein, we focus on the most common approach which consists of first
modification of the antibody with a chelator, and after eventual storage
of the premodified molecule, radiolabeling as a second step. Other
approaches are possible but have been excluded from this review. The
review includes recent and representative examples from the literature
highlighting which radiometal–chelator–antibody combinations
are the most successful for in vivo application.
Collapse
Affiliation(s)
- Marion Chomet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
26
|
Liberini V, Laudicella R, Capozza M, Huellner MW, Burger IA, Baldari S, Terreno E, Deandreis D. The Future of Cancer Diagnosis, Treatment and Surveillance: A Systemic Review on Immunotherapy and Immuno-PET Radiotracers. Molecules 2021; 26:2201. [PMID: 33920423 PMCID: PMC8069316 DOI: 10.3390/molecules26082201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is an effective therapeutic option for several cancers. In the last years, the introduction of checkpoint inhibitors (ICIs) has shifted the therapeutic landscape in oncology and improved patient prognosis in a variety of neoplastic diseases. However, to date, the selection of the best patients eligible for these therapies, as well as the response assessment is still challenging. Patients are mainly stratified using an immunohistochemical analysis of the expression of antigens on biopsy specimens, such as PD-L1 and PD-1, on tumor cells, on peritumoral immune cells and/or in the tumor microenvironment (TME). Recently, the use and development of imaging biomarkers able to assess in-vivo cancer-related processes are becoming more important. Today, positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is used routinely to evaluate tumor metabolism, and also to predict and monitor response to immunotherapy. Although highly sensitive, FDG-PET in general is rather unspecific. Novel radiopharmaceuticals (immuno-PET radiotracers), able to identify specific immune system targets, are under investigation in pre-clinical and clinical settings to better highlight all the mechanisms involved in immunotherapy. In this review, we will provide an overview of the main new immuno-PET radiotracers in development. We will also review the main players (immune cells, tumor cells and molecular targets) involved in immunotherapy. Furthermore, we report current applications and the evidence of using [18F]FDG PET in immunotherapy, including the use of artificial intelligence (AI).
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Artificial Intelligence
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Fluorodeoxyglucose F18/administration & dosage
- Fluorodeoxyglucose F18/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immune Checkpoint Inhibitors/chemistry
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasms/diagnostic imaging
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Positron-Emission Tomography/methods
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemical synthesis
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
- Department of Nuclear Medicine, Kantonsspital Baden, 5004 Baden, Switzerland
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
27
|
Wang F, Ding J, Guo X, Liu T, Ding L, Xia L, Zhu H, Yang Z. Production of the next-generation positron nuclide zirconium-89 ( 89 Zr) guided by Monte Carlo simulation and its good quality for antibody labeling. J Labelled Comp Radiopharm 2021; 64:47-56. [PMID: 33067822 DOI: 10.1002/jlcr.3888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 11/12/2022]
Abstract
The next-generation positron zirconium-89 (89 Zr, T1/2 = 3.27 days) is a novel nuclide for immunological positron emission tomography because of its favorite longer half-life. The aim of this work is to develop optimized methods for routine production and purification of 89 Zr through Monte Carlo (MC) simulation and laboratory experiments. 89 Y(p,n)89 Zr reaction was used for 89 Zr production. Optimized thicknesses of Al degrader (0.11 cm) and 89 Y foil (0.064 cm) were simulated through MC method. 89 Zr (15.0-40.7 mCi) with an average production rate of 0.92 ± 0.12 mCi/μA·h was produced after 1- to 2-h bombardment at the proton beam energy of 20 MeV and current of 20 μA. High radio-purity 89 Zr (6.14-26.8 mCi) obtained eluted from hydroxamate resin using 1-mol/L oxalic acid solution, with the concentration of 2.7 × 104 mCi/L. The gamma spectrum showed that the characteristic peak of 89 Zr was 511 and 909 keV, and no impurities were found. [89 Zr]Zr-DFO-trastuzumab was successfully labeled and performed good radiochemical purity (>95%) and stability that showed potential application in tumor molecular imaging.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lixin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
28
|
Shi Y, Fu Q, Li J, Liu H, Zhang Z, Liu T, Liu Z. Covalent Organic Polymer as a Carborane Carrier for Imaging-Facilitated Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55564-55573. [PMID: 33327054 DOI: 10.1021/acsami.0c15251] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Boron neutron capture therapy (BNCT) is an atomic targeted radiotherapy that shows fantastic suppression impact on locally intrusive threatening tumors. One key factor for effective BNCT is to aggregate an adequate concentration (>20 ppm) of 10B in the cytoplasm of the tumor. Carborane-loaded polymer nanoparticles are promising because of their outstanding biocompatibility and plasma steadiness. In this study, a new class of carborane-loaded nanoscale covalent organic polymers (BCOPs) was prepared by a Schiff base condensation reaction, and their solubility was greatly improved in common solvents via alkyl chain engineering and size tailoring. The obtained BCOP-5T was further functionalized by biocompatible 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene-glycol)-2000] (DSPE-PEG, molecular weight 2000) to form stable aqueous-phase nanoparticles with a hydrodynamic diameter of around 100 nm. After chelating with radioactive copper-64, DSPE-BCOP-5T was tracked by positron emission tomography (PET) imaging and showed significant accumulation in the tumor. DSPE-BCOP-5T + neutron radiation showed remarkable tumor suppression in 4T1 tumor-bearing mice (murine breast cancer). No obvious physical tissue damage and abnormal behavior were observed, demonstrating that the boron delivery was successful and tumor-selective. To conclude, this study presents a theranostic COP-based platform with a well-defined composition, good biocompatibility, and satisfactory tumor accumulation, which is promising for PET imaging, drug delivery, and BNCT.
Collapse
Affiliation(s)
- Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zizhu Zhang
- Beijing Capture Tech Co. Ltd., Beijing 102413, China
| | - Tong Liu
- Beijing Capture Tech Co. Ltd., Beijing 102413, China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
29
|
Han J, Xu X, Liu Z, Li Z, Wu Y, Zuo D. Recent advances of molecular mechanisms of regulating PD-L1 expression in melanoma. Int Immunopharmacol 2020; 88:106971. [DOI: 10.1016/j.intimp.2020.106971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
|
30
|
Flavell RR, Evans MJ, Villanueva-Meyer JE, Yom SS. Understanding Response to Immunotherapy Using Standard of Care and Experimental Imaging Approaches. Int J Radiat Oncol Biol Phys 2020; 108:242-257. [PMID: 32585333 DOI: 10.1016/j.ijrobp.2020.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/14/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Immunotherapy has emerged as a standard of care in the treatment of a wide variety of malignancies, and it may be used in combination with other treatments including surgery, radiation, and chemotherapy. However, a patient's imaging response to immunotherapy can be confounded by a variety of factors, including the appearance of pseudoprogression or the development of immune-related adverse events. In these situations, the immune response itself can mimic disease progression, potentially causing confusion in assessment and determination of further treatment. To address these challenges, a variety of approaches have been proposed to improve response assessment. First, revised definitions of response criteria, accounting for the appearance of pseudoprogression, can improve specificity of assessment. Second, advanced image processing including radiomics and machine learning analysis can be used to further analyze standard of care imaging data. In addition, new molecular imaging techniques can be used to directly interrogate immune cell activity or study aspects of the tumor microenvironment. These approaches have promise for improving the understanding of the response to immunotherapy and improving patient care.
Collapse
Affiliation(s)
- Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Sue S Yom
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
31
|
Huang N, Liu Y, Fang Y, Zheng S, Wu J, Wang M, Zhong W, Shi M, Xing M, Liao W. Gold Nanoparticles Induce Tumor Vessel Normalization and Impair Metastasis by Inhibiting Endothelial Smad2/3 Signaling. ACS NANO 2020; 14:7940-7958. [PMID: 32413258 DOI: 10.1021/acsnano.9b08460] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gold nanoparticles (AuNPs) are a promising nanomaterial due to their drug-delivery properties and inherent anti-neoplastic activity. Here, we focused on the anti-neoplastic effects of an improved targeting polymer and folic acid-modified gold nanoparticles (AuNPP-FA) without therapeutic drugs. AuNPP-FA inhibited tumor proliferation both in vitro and in vivo, and tumor metastasis was controlled in vivo. We also found that, in addition to inhibiting tumor angiogenesis, AuNPP-FA normalized tumor vasculature by increasing pericyte coverage and strengthening tight junctions by upregulating VE-cadherin (VE-cad) levels on endothelial cells. This decreased vascular permeability, improved vascular perfusion, and alleviated tissue hypoxia. The immunotherapeutic response was enhanced due to the increased infiltration of CD3+CD8+ T lymphocytes. AuNPP-FA increased the expression and secretion of semaphorin 3A (SEMA3A) in cancer cells to further inhibit Smad2/3 signaling in human umbilical vein endothelial cells (HUVECs). This normalized tumor vasculature and inhibited metastasis. In conclusion, AuNPP-FA normalized tumor vasculature; therefore, AuNPP-FA has great potential for future clinical applications.
Collapse
Affiliation(s)
- Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yuqing Liu
- Department of Mechanical Engineering, Faculty of Agriculture, University of Manitoba, Winnipeg R3T2N2, Canada
| | - Yisheng Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Siting Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Miaohong Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wen Zhong
- Department of Biosystem Engineering, Faculty of Agriculture, University of Manitoba, Winnipeg R3T2N2, Canada
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Malcolm Xing
- Department of Mechanical Engineering, Faculty of Agriculture, University of Manitoba, Winnipeg R3T2N2, Canada
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
32
|
Zalba S, Contreras-Sandoval AM, Martisova E, Debets R, Smerdou C, Garrido MJ. Quantification of Pharmacokinetic Profiles of PD-1/PD-L1 Antibodies by Validated ELISAs. Pharmaceutics 2020; 12:pharmaceutics12060595. [PMID: 32604843 PMCID: PMC7356959 DOI: 10.3390/pharmaceutics12060595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/02/2022] Open
Abstract
Immunotherapy has changed the paradigm of cancer treatments. In this way, several combinatorial strategies based on monoclonal antibodies (mAb) such as anti (a)-PD-1 or anti (a)-PD-L1 are often reported to yield promising clinical benefits. However, the pharmacokinetic (PK) behavior of these mAbs is a critical issue that requires selective analytical techniques. Indeed, few publications report data on a-PD1/a-PD-L1 exposure and its relationship with therapeutic or toxic effects. In this regard, preclinical assays allow the time profiles of antibody plasma concentrations to be characterized rapidly and easily, which may help to increase PK knowledge. In this study, we have developed and validated two in-house ELISAs to quantify a-PD-1 and a-PD-L1 in plasma collected from tumor-bearing mice. The linear range for the a-PD-1 assay was 2.5–125 ng/mL and 0.11–3.125 ng/mL for the a-PD-L1 assay, whereas the intra-and inter-day precision was lower than 20% for both analytes. The PK characterization revealed a significant decrease in drug exposure after administration of multiple doses. Plasma half-life for a-PD-1 was slightly shorter (22.3 h) than for a-PD-L1 (46.7 h). To our knowledge, this is the first reported preclinical ELISA for these immune checkpoint inhibitors, which is sufficiently robust to be used in different preclinical models. These methods can help to understand the PK behavior of these antibodies under different scenarios and the relationship with response, thus guiding the choice of optimal doses in clinical settings.
Collapse
Affiliation(s)
- Sara Zalba
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31008 Pamplona, Spain; (S.Z.); (A.M.C.-S.)
| | - Ana M. Contreras-Sandoval
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31008 Pamplona, Spain; (S.Z.); (A.M.C.-S.)
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eva Martisova
- Division of Gene Therapy and Regulation of Gene Expression, CIMA Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain; (E.M.); (C.S.)
| | - Reno Debets
- Laboratory of Experimental Tumor, Medical Oncology Department, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
| | - Christian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, CIMA Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain; (E.M.); (C.S.)
| | - María Jesús Garrido
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31008 Pamplona, Spain; (S.Z.); (A.M.C.-S.)
- Correspondence: ; Tel.: +34-348425600 (ext. 806529)
| |
Collapse
|
33
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
34
|
Application of molecular imaging technology in tumor immunotherapy. Cell Immunol 2020; 348:104039. [DOI: 10.1016/j.cellimm.2020.104039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
|
35
|
Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics 2020; 10:938-955. [PMID: 31903161 PMCID: PMC6929980 DOI: 10.7150/thno.37443] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023] Open
Abstract
Molecular imaging modalities hold great potential as less invasive techniques for diagnosis and management of various diseases. Molecular imaging combines imaging agents with targeting moieties to specifically image diseased sites in the body. Monoclonal antibodies (mAbs) have become increasingly popular as novel therapeutics against a variety of diseases due to their specificity, affinity and serum stability. Because of the same properties, mAbs are also exploited in molecular imaging to target imaging agents such as radionuclides to the cell of interest in vivo. Many studies investigated the use of mAb-targeted imaging for a variety of purposes, for instance to monitor disease progression and to predict response to a specific therapeutic agent. Herein, we highlighted the application of mAb-targeted imaging in three different types of pathologies: autoimmune diseases, oncology and cardiovascular diseases. We also described the potential of molecular imaging strategies in theranostics and precision medicine. Due to the nearly infinite repertoire of mAbs, molecular imaging can change the future of modern medicine by revolutionizing diagnostics and response prediction in practically any disease.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
36
|
Wei H, Jiang H, Song B. Role of medical imaging for immune checkpoint blockade therapy: From response assessment to prognosis prediction. Cancer Med 2019; 8:5399-5413. [PMID: 31385454 PMCID: PMC6745848 DOI: 10.1002/cam4.2464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/29/2019] [Accepted: 07/15/2019] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint blockade (ICB) represents a promising approach in cancer therapy. Owing to the peculiar biologic mechanisms of anticancer activity, checkpoint blockers are accompanied with distinctive response patterns and toxicity profiles. Medical imaging is the cornerstone for response assessment to immunotherapy and plays a critical role in monitoring of immune-related adverse events (irAEs). Imaging-based biomarkers have shown tremendous potential for the prediction of therapeutic efficacies and clinical outcomes in patients treated with checkpoint inhibitors. In this article, the landscape of current response assessment systems for immunotherapy was reviewed with a special focus on the latest advances in the assessment of responses to ICB. Emerging imaging biomarkers were discussed along with the challenges regarding their clinical transformation. In addition, the biological mechanisms and clinical applications of ICB and irAEs were also within the scope of this review.
Collapse
Affiliation(s)
- Hong Wei
- Department of RadiologySichuan University West China HospitalChengduSichuan ProvinceChina
| | - Hanyu Jiang
- Department of RadiologySichuan University West China HospitalChengduSichuan ProvinceChina
| | - Bin Song
- Department of RadiologySichuan University West China HospitalChengduSichuan ProvinceChina
| |
Collapse
|
37
|
Hu K, Kuan H, Hanyu M, Masayuki H, Xie L, Zhang Y, Nagatsu K, Kotaro N, Suzuki H, Hisashi S, Zhang MR. Developing native peptide-based radiotracers for PD-L1 PET imaging and improving imaging contrast by pegylation. Chem Commun (Camb) 2019; 55:4162-4165. [PMID: 30810133 DOI: 10.1039/c9cc00445a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, a PD-L1 targeted native peptide was developed for PET imaging. 18F and 64Cu were utilized to label the peptide. To improve the pharmacokinetics and biodistribution of the tracers, the peptide was further pegylated to form star-like tetramers. Consequently, four tracers were synthesized with acceptable radiochemical characteristics and their in vivo pharmacokinetics and PD-L1 imaging capability were systematically evaluated. This proof-of-principle study may provide new possibilities for PD-L1 PET imaging in cancers.
Collapse
Affiliation(s)
| | - Hu Kuan
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shi Y, Li J, Zhang Z, Duan D, Zhang Z, Liu H, Liu T, Liu Z. Tracing Boron with Fluorescence and Positron Emission Tomography Imaging of Boronated Porphyrin Nanocomplex for Imaging-Guided Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43387-43395. [PMID: 30451482 DOI: 10.1021/acsami.8b14682] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boron neutron capture therapy (BNCT) induces high-energy radiation within cancer cells while avoiding damage to normal cells without uptake of BNCT drugs, which is holding great promise to provide excellent control over locally invasive malignant tumors. However, lack of quantitative imaging technique to determine local boron concentration has been a great challenge for nuclear physicians to apply accurate neutron irradiation during the treatment, which is a key factor that has limited BNCT's application in clinics. To meet this challenge, this study describes coating boronated porphyrins with a biocompatible poly(lactide- co-glycolide)-monomethoxy-poly(polyethylene-glycol) (PLGA-mPEG) micelle for selective tumor accumulation and reduced toxicity comparing with the previously reported boronated porphyrin drugs. Fluorescence imaging and positron emission tomography (PET) imaging were performed, unveiling the potential imaging properties of this boronated porphyrin nanocomplex (BPN) to locate tumor region and to determine tissue-localized boron concentration which facilitates treatment planning. By studying the pharmacokinetics of BPN with Cu-64 PET imaging, the treatment plan was adjusted from single bolus injection to multiple times of injections of smaller doses. As expected, high tumor uptake of boron (125.17 ± 13.54 ppm) was achieved with an extraordinarily high tumor to normal tissue ratio: tumors to liver, muscle, fat, and blood were 3.24 ± 0.22, 61.46 ± 20.26, 31.55 ± 10.30, and 33.85 ± 5.73, respectively. At last, neutron irradiation with BPN showed almost complete tumor suppression, demonstrating that BPN holds a great potential for being an efficient boron delivery agent for imaging-guided BNCT.
Collapse
Affiliation(s)
- Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zizhu Zhang
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Dongban Duan
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhengchu Zhang
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Tong Liu
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
- Peking University-Tsinghua University Center for Life Sciences , Beijing 100871 , China
| |
Collapse
|
39
|
Duan D, Liu H, Xu M, Chen M, Han Y, Shi Y, Liu Z. Size-Controlled Synthesis of Drug-Loaded Zeolitic Imidazolate Framework in Aqueous Solution and Size Effect on Their Cancer Theranostics in Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42165-42174. [PMID: 30457318 DOI: 10.1021/acsami.8b17660] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, metal-organic frameworks (MOFs) or coordination polymers have shown great potential for drug delivery, yet little has been done to study how particle size affects their tumor targeting and other in vivo features. This plight is probably due to two challenges: (1) the lack of a biocompatible method to precisely control the size of drug-loaded MOFs and (2) the lack of a robust and facile radiolabeling technique to trace particles in vivo. Here, we report a one-pot, rapid, and completely aqueous approach that can precisely tune the size of drug-loaded MOF at room temperature. A chelator-free 64Cu-labeled method was developed by taking the advantage of this rapid and aqueous synthesis. Cancer cells were found to take drug-loaded MOFs in a size-dependent manner. The in vivo biodistribution of drug-loaded MOF was analyzed with positron emission tomography imaging, which, as far as we know, was used for the first time to quantitatively evaluate MOF in living animals, unveiling that 60 nm MOF showed longer blood circulation and over 50% higher tumor accumulation than 130 nm MOF. Altogether, this size-controlled method helps to find the optimal size of MOF as a drug carrier and opens new possibilities to construct multifunctional delivery systems for cancer theranostics.
Collapse
|